[1]
|
Zhu JK. 2016. Abiotic stress signaling and responses in plants. Cell 167:313−24 doi: 10.1016/j.cell.2016.08.029
CrossRef Google Scholar
|
[2]
|
Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, et al. 2017. Crop production under drought and heat stress: plant responses and management options. Frontiers in Plant Science 8:1147 doi: 10.3389/fpls.2017.01147
CrossRef Google Scholar
|
[3]
|
Dutta S, Mohanty S, Tripathy BC. 2009. Role of temperature stress on chloroplast biogenesis and protein import in pea. Plant Physiology 150:1050−61 doi: 10.1104/pp.109.137265
CrossRef Google Scholar
|
[4]
|
Abid M, Ali S, Qi LK, Zahoor R, Tian Z, et al. 2018. Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). Scientific Reports 8:4615 doi: 10.1038/s41598-018-21441-7
CrossRef Google Scholar
|
[5]
|
Gill SS, Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48:909−30 doi: 10.1016/j.plaphy.2010.08.016
CrossRef Google Scholar
|
[6]
|
Das K, Roychoudhury A. 2014. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science 2:53 doi: 10.3389/fenvs.2014.00053
CrossRef Google Scholar
|
[7]
|
Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M. 2013. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences 14:9643−84 doi: 10.3390/ijms14059643
CrossRef Google Scholar
|
[8]
|
Ding Y, Fromm M, Avramova Z. 2012. Multiple exposures to drought 'train' transcriptional responses in Arabidopsis. Nature Communications 3:740 doi: 10.1038/ncomms1732
CrossRef Google Scholar
|
[9]
|
Kuromori T, Sugimoto E, Shinozaki K. 2011. Arabidopsis mutants of AtABCG22, an ABC transporter gene, increase water transpiration and drought susceptibility. The Plant Journal 67:885−94 doi: 10.1111/j.1365-313X.2011.04641.x
CrossRef Google Scholar
|
[10]
|
Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez MM, et al. 2005. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. The Plant Cell 17:3470−88 doi: 10.1105/tpc.105.035659
CrossRef Google Scholar
|
[11]
|
Jha UC, Nayyar H, Jha R, Khurshid M, Zhou M, et al. 2020. Long non-coding RNAs: emerging players regulating plant abiotic stress response and adaptation. BMC Plant Biology 20:466 doi: 10.1186/s12870-020-02595-x
CrossRef Google Scholar
|
[12]
|
Zhao Z, Zang S, Zou W, Pan YB, Yao W, et al. 2022. Long non-coding RNAs: new players in plants. International Journal of Molecular Sciences 23(16):9301 doi: 10.3390/ijms23169301
CrossRef Google Scholar
|
[13]
|
Mercer TR, Dinger ME, Mattick JS. 2009. Long non-coding RNAs: insights into functions. Nature Reviews Genetics 10:155−59 doi: 10.1038/nrg2521
CrossRef Google Scholar
|
[14]
|
Wierzbicki AT, Haag JR, Pikaard CS. 2008. Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes. Cell 135:635−48 doi: 10.1016/j.cell.2008.09.035
CrossRef Google Scholar
|
[15]
|
Zhang YC, Chen YQ. 2013. Long noncoding RNAs: new regulators in plant development. Biochemical and Biophysical Research Communications 436:111−14 doi: 10.1016/j.bbrc.2013.05.086
CrossRef Google Scholar
|
[16]
|
Wang X, Ai G, Zhang C, Cui L, Wang J, et al. 2016. Expression and diversification analysis reveals transposable elements play important roles in the origin of Lycopersicon-specific lncRNAs in tomato. New Phytologist 209:1442−55 doi: 10.1111/nph.13718
CrossRef Google Scholar
|
[17]
|
Liu J, Jung C, Xu J, Wang H, Deng S, et al. 2012. Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis. The Plant Cell 24:4333−45 doi: 10.1105/tpc.112.102855
CrossRef Google Scholar
|
[18]
|
He X, Guo S, Wang Y, Wang L, Shu S, et al. 2020. Systematic identification and analysis of heat-stress-responsive lncRNAs, circRNAs and miRNAs with associated co-expression and ceRNA networks in cucumber (Cucumis sativus L.). Physiologia Plantarum 168:736−54 doi: 10.1111/ppl.12997
CrossRef Google Scholar
|
[19]
|
Yang Z, Li W, Su X, Ge P, Zhou Y, et al. 2019. Early response of radish to heat stress by strand-specific transcriptome and miRNA analysis. International Journal of Molecular Sciences 20(13):3321 doi: 10.3390/ijms20133321
CrossRef Google Scholar
|
[20]
|
Wunderlich M, Groß-Hardt, Schöffl F. 2014. Heat shock factor HSFB2a involved in gametophyte development of Arabidopsis thaliana and its expression is controlled by a heat-inducible long non-coding antisense RNA. Plant Molecular Biology 85:541−50 doi: 10.1007/s11103-014-0202-0
CrossRef Google Scholar
|
[21]
|
Eom SH, Lee HJ, Lee JH, Wi SH, Kim SK, et al. 2019. Identification and functional prediction of drought-responsive long non-coding RNA in tomato. Agronomy 9:629 doi: 10.3390/agronomy9100629
CrossRef Google Scholar
|
[22]
|
Tan X, Li S, Hu L, Zhang C. 2020. Genome-wide analysis of long non-coding RNAs (lncRNAs) in two contrasting rapeseed (Brassica napus L.) genotypes subjected to drought stress and re-watering. BMC Plant Biology 20(1):81 doi: 10.1186/s12870-020-2286-9
CrossRef Google Scholar
|
[23]
|
Qi X, Xie S, Liu Y, Yi F, Yu J. 2013. Genome-wide annotation of genes and noncoding RNAs of foxtail millet in response to simulated drought stress by deep sequencing. Plant Molecular Biology 83:459−73 doi: 10.1007/s11103-013-0104-6
CrossRef Google Scholar
|
[24]
|
Zhang W, Han Z, Guo Q, Liu Y, Zheng Y, et al. 2014. Identification of maize long non-coding RNAs responsive to drought stress. PLoS One 9(6):e98958 doi: 10.1371/journal.pone.0098958
CrossRef Google Scholar
|
[25]
|
Song X, Hu J, Wu T, Yang Q, Feng X, et al. 2021. Comparative analysis of long noncoding RNAs in angiosperms and characterization of long noncoding RNAs in response to heat stress in Chinese cabbage. Horticulture Research 8:48 doi: 10.1038/s41438-021-00484-4
CrossRef Google Scholar
|
[26]
|
Zhang X, Henriques R, Lin SS, Niu QW, Chua NH. 2006. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nature Protocols 1:641−46 doi: 10.1038/nprot.2006.97
CrossRef Google Scholar
|
[27]
|
Arnon DI. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology 24:1−15 doi: 10.1104/pp.24.1.1
CrossRef Google Scholar
|
[28]
|
Chen T, Zhang B. 2023. Correction notice: measurements of proline and malondialdehyde contents and antioxidant enzyme activities in leaves of drought stressed cotton. Bio-protocol 5(13):e4752 doi: 10.21769/BioProtoc.4752
CrossRef Google Scholar
|
[29]
|
Lesk C, Rowhani P, Ramankutty N. 2016. Influence of extreme weather disasters on global crop production. Nature 529:84−87 doi: 10.1038/nature16467
CrossRef Google Scholar
|
[30]
|
Liu D, Mewalal R, Hu R, Tuskan GA, Yang X. 2017. New technologies accelerate the exploration of non-coding RNAs in horticultural plants. Horticulture Research 4:17031 doi: 10.1038/hortres.2017.31
CrossRef Google Scholar
|
[31]
|
Ramírez Gonzales L, Shi L, Bergonzi SB, Oortwijn M, Franco-Zorrilla JM, et al. 2021. Potato CYCLING DOF FACTOR 1 and its lncRNA counterpart StFLORE link tuber development and drought response. The Plant Journal 105:855−69 doi: 10.1111/tpj.15093
CrossRef Google Scholar
|
[32]
|
Chen J, Zhong Y, Qi X. 2021. LncRNA TCONS_00021861 is functionally associated with drought tolerance in rice (Oryza sativa L.) via competing endogenous RNA regulation. BMC Plant Biology 21(1):410 doi: 10.1186/s12870-021-03195-z
CrossRef Google Scholar
|
[33]
|
Xin M, Wang Y, Yao Y, Song N, Hu Z, et al. 2011. Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing. BMC Plant Biology 11:61 doi: 10.1186/1471-2229-11-61
CrossRef Google Scholar
|
[34]
|
Naing AH, Kim CK. 2021. Abiotic stress-induced anthocyanins in plants: their role in tolerance to abiotic stresses. Physiologia Plantarum 172:1711−23 doi: 10.1111/ppl.13373
CrossRef Google Scholar
|
[35]
|
Zhou B, Zheng B, Wu W. 2024. The ncRNAs involved in the regulation of abiotic stress-induced anthocyanin biosynthesis in plants. Antioxidants 13(1):55 doi: 10.3390/antiox13010055
CrossRef Google Scholar
|
[36]
|
Meng X, Yin B, Feng HL, Zhang S, Liang XQ, et al. 2014. Overexpression of R2R3-MYB gene leads to accumulation of anthocyanin and enhanced resistance to chilling and oxidative stress. Biologia Plantarum 58:121−30 doi: 10.1007/s10535-013-0376-3
CrossRef Google Scholar
|
[37]
|
Shan Q, Ma F, Wei J, Li H, Ma H, Sun P. 2020. Physiological functions of heat shock proteins. Current Protein & Peptide Science 21:751−60 doi: 10.2174/1389203720666191111113726
CrossRef Google Scholar
|
[38]
|
Jacob P, Hirt H, Bendahmane A. 2017. The heat-shock protein/chaperone network and multiple stress resistance. Plant Biotechnology Journal 15:405−14 doi: 10.1111/pbi.12659
CrossRef Google Scholar
|
[39]
|
Haider S, Raza A, Iqbal J, Shaukat M, Mahmood T. 2022. Analyzing the regulatory role of heat shock transcription factors in plant heat stress tolerance: a brief appraisal. Molecular Biology Reports 49:5771−85 doi: 10.1007/s11033-022-07190-x
CrossRef Google Scholar
|
[40]
|
Takahashi T, Komeda Y. 1989. Characterization of two genes encoding small heat-shock proteins in Arabidopsis thaliana. Molecular and General Genetics MGG 219:365−72 doi: 10.1007/BF00259608
CrossRef Google Scholar
|
[41]
|
Charng YY, Liu HC, Liu NY, Chi WT, Wang CN, et al. 2007. A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiology 143:251−62 doi: 10.1104/pp.106.091322
CrossRef Google Scholar
|
[42]
|
Zhang H, Zhu J, Gong Z, Zhu JK. 2022. Abiotic stress responses in plants. Nature Reviews Genetics 23:104−19 doi: 10.1038/s41576-021-00413-0
CrossRef Google Scholar
|
[43]
|
Zandalinas SI, Mittler R. 2022. Plant responses to multifactorial stress combination. New Phytologist 234:1161−67 doi: 10.1111/nph.18087
CrossRef Google Scholar
|
[44]
|
Munir S, Liu H, Xing Y, Hussain S, Ouyang B, et al. 2016. Overexpression of calmodulin-like (ShCML44) stress-responsive gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses. Scientific Reports 6:31772 doi: 10.1038/srep31772
CrossRef Google Scholar
|
[45]
|
Tian Q, Chen J, Wang D, Wang HL, Liu C, et al. 2017. Overexpression of a Populus euphratica CBF4 gene in poplar confers tolerance to multiple stresses. Plant Cell, Tissue and Organ Culture 128:391−407 doi: 10.1007/s11240-016-1118-y
CrossRef Google Scholar
|
[46]
|
Qin T, Zhao H, Cui P, Albesher N, Xiong L. 2017. A nucleus-localized long non-coding RNA enhances drought and salt stress tolerance. Plant Physiology 175:1321−36 doi: 10.1104/pp.17.00574
CrossRef Google Scholar
|
[47]
|
Soma F, Takahashi F, Yamaguchi-Shinozaki K, Shinozaki K. 2021. Cellular Phosphorylation signaling and gene expression in drought stress responses: ABA-dependent and ABA-independent regulatory systems. Plants 10:756 doi: 10.3390/plants10040756
CrossRef Google Scholar
|
[48]
|
Liu S, Lv Z, Liu Y, Li L, Zhang L. 2018. Network analysis of ABA-dependent and ABA-independent drought responsive genes in Arabidopsis thaliana. Genetics and Molecular Biology 41:624−37 doi: 10.1590/1678-4685-gmb-2017-0229
CrossRef Google Scholar
|
[49]
|
Msanne J, Lin J, Stone JM, Awada T. 2011. Characterization of abiotic stress-responsive Arabidopsis thaliana RD29A and RD29B genes and evaluation of transgenes. Planta 234:97−107 doi: 10.1007/s00425-011-1387-y
CrossRef Google Scholar
|
[50]
|
Hallouin M, Ghelis T, Brault M, Bardat F, Cornel D, et al. 2002. Plasmalemma abscisic acid perception leads to RAB18 expression via phospholipase D activation in Arabidopsis suspension cells. Plant Physiology 130:265−72 doi: 10.1104/pp.004168
CrossRef Google Scholar
|
[51]
|
Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, et al. 2001. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. The Plant Journal 27:325−33 doi: 10.1046/j.1365-313x.2001.01096.x
CrossRef Google Scholar
|
[52]
|
Zhou D, Zhao S, Zhou H, Chen J, Huang L. 2023. A lncRNA bra-miR156HG regulates flowering time and leaf morphology as a precursor of miR156 in Brassica campestris and Arabidopsis thaliana. Plant Science 337:111889 doi: 10.1016/j.plantsci.2023.111889
CrossRef Google Scholar
|
[53]
|
Mao J, Wei S, Chen Y, Yang Y, Yin T. 2023. The proposed role of MSL-lncRNAs in causing sex lability of female poplars. Horticulture Research 10(5):uhad042 doi: 10.1093/hr/uhad042
CrossRef Google Scholar
|