[1]
|
Chen C, Huang X, Sun W, Tan L. 2014. Impact of metal obstacles on wireless power transmission system based coupled resonance. Transactions of China Electrotechnical Society 29(9):22−26
Google Scholar
|
[2]
|
Zhao ZM, Zhang YM, Chen KN. 2013. New progress of magnetically-coupled resonant wireless power transfer technology. Proceedings of the Chinese Society of Electrical Engineering 33:1−13 doi: 10.1201/b15548-3
CrossRef Google Scholar
|
[3]
|
Azad A, Kulyukin V, Pantic Z. 2019. Misalignment tolerant DWPT charger for EV roadways with integrated foreign object detection and driver feedback system. 2019 IEEE Transportation Electrification Conference and Expo (ITEC), Detroit, MI, USA, 19−21 June, 2019. Detroit, MI, USA: IEEE. pp. 1−5. doi: 10.1109/ITEC.2019.8790600
|
[4]
|
Jeong SY, Kwak HG, Jang GC, Choi SY, Rim CT. 2018. Dual-purpose nonoverlapping coil sets as metal object and vehicle position detections for wireless stationary EV chargers. IEEE Transactions on Power Electronics 33:7387−97 doi: 10.1109/TPEL.2017.2765521
CrossRef Google Scholar
|
[5]
|
Sonnenberg T, Stevens A, Dayerizadeh A, Lukic S. 2019. Combined foreign object detection and live object protection in wireless power transfer systems via real-time thermal camera analysis. 2019 IEEE Applied Power Electronics Conference and Exposition (APEC). Anaheim, CA, USA, 17−21 March, 2019. USA: IEEE. pp. 1547−52. doi: 10.1109/APEC.2019.8721804
|
[6]
|
Liou CY, Kuo CJ, Mao SG. 2016. Wireless powering system with backside metallic plates using electric- and magnetic-coupling mechanisms. 2016 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Taipei, China, 24−26 August, 2016. USA: IEEE. pp. 1−3. doi: 10.1109/RFIT.2016.7578158
|
[7]
|
Liu X, Liu C, Han W, Pong PWT. 2019. Design and implementation of a multi-purpose TMR sensor matrix for wireless electric vehicle charging. IEEE Sensors Journal 19:1683−92 doi: 10.1109/JSEN.2018.2883708
CrossRef Google Scholar
|
[8]
|
Kikuchi H. 2013. Metal-loop effects in wireless power transfer systems analyzed by simulation and theory. 2013 IEEE Electrical Design of Advanced Packaging Systems Symposium (EDAPS), Nara, Japan, 12−15 December, 2013. USA: IEEE. pp. 201−4. doi: 10.1109/EDAPS.2013.6724424
|
[9]
|
Low ZN, Casanova JJ, Maier PH, Taylor JA, Chinga RA, et al. 2010. Method of load/fault detection for loosely coupled planar wireless power transfer system with power delivery tracking. IEEE Transactions on Industrial Electronics 57:1478−86 doi: 10.1109/TIE.2009.2030821
CrossRef Google Scholar
|
[10]
|
Kuyvenhoven N, Dean C, Melton J, Schwannecke J, Umenei AE. 2011. Development of a foreign object detection and analysis method for wireless power systems. 2011 IEEE Symposium on Product Compliance Engineering Proceedings, San Diego, CA, USA, 10-12 October 2011. USA: IEEE. pp. 1−6. doio: 10.1109/PSES.2011.6088250
|
[11]
|
Lan L, Ting NM, Aldhaher S, Kkelis G, Kwan CH, et al. 2018. Foreign object detection for wireless power transfer. 2018 2 nd URSI Atlantic Radio Science Meeting (AT-RASC), Gran Canaria, Spain, 28 May − 1 June 2018. USA: IEEE. pp. 1−2. doi: 10.23919/URSI-AT-RASC.2018.8471551
|
[12]
|
Liu X, Pong PWT, Liu C. 2018. Dual measurement of current and temperature using a single tunneling magnetoresistive sensor. 2018 IEEE SENSORS, New Delhi, India, 28−31 October 2018. USA: IEEE. pp. 1−4. doi: 10.1109/ICSENS.2018.8589743
|
[13]
|
Sonapreetha MR, Jeong SY, Choi SY, Rim CT. 2015. Dual-purpose non-overlapped coil sets as foreign object and vehicle location detections for wireless stationary EV chargers. 2015 IEEE PELS Workshop on Emerging Technologies: Wireless Power (2015 WoW), Daejeon, Korea (South), 5−6 June, 2015. USA: IEEE. pp. 1−7. doi: 10.1109/WoW.2015.7132803
|
[14]
|
Jeong SY, Thai VX, Park JH, Rim CT. 2019. Self-inductance-based metal object detection with mistuned resonant circuits and nullifying induced voltage for wireless EV chargers. IEEE Transactions on Power Electronics 34:748−58 doi: 10.1109/TPEL.2018.2813437
CrossRef Google Scholar
|
[15]
|
Xiang L, Zhu Z, Tian J, Tian Y. 2019. Foreign object detection in a wireless power transfer system using symmetrical coil sets. IEEE Access 7:44622−31 doi: 10.1109/ACCESS.2019.2908866
CrossRef Google Scholar
|
[16]
|
Thai VX, Jang GC, Jeong SY, Park JH, Kim YS, et al. 2020. Symmetric sensing coil design for the blind-zone free metal object detection of a stationary wireless electric vehicles charger. IEEE Transactions on Power Electronics 35:3466−77 doi: 10.1109/TPEL.2019.2936249
CrossRef Google Scholar
|
[17]
|
Thai VX, Park JH, Jeong SY, Rim CT, Kim YS. 2020. Equivalent-circuit-based design of symmetric sensing coil for self-inductance-based metal object detection. IEEE Access 8:94190−203 doi: 10.1109/ACCESS.2020.2995210
CrossRef Google Scholar
|
[18]
|
Cheng B, Lu J, Zhang Y, Pan G, Chabaan R, et al. 2020. A metal object detection system with multilayer detection coil layouts for electric vehicle wireless charging. Energies 13:2960 doi: 10.3390/en13112960
CrossRef Google Scholar
|
[19]
|
Tan L, Li J, Chen C, Yan C, Guo J, et al. 2016. Analysis and performance improvement of WPT systems in the environment of single non-ferromagnetic metal plates. Energies 9:576 doi: 10.3390/en9080576
CrossRef Google Scholar
|
[20]
|
Li C, Cao J, Zhang H. 2015. Modeling and analysis for magnetic resonance coupling wireless power transmission systems under influence of non-ferromagnetic metal. Automation of Electric Power Systems 39:152−57 doi: 10.7500/AEPS20150319007
CrossRef Google Scholar
|
[21]
|
Nguyen DH, Chapman A. 2021. The potential contributions of universal and ubiquitous wireless power transfer systems towards sustainability. International Journal of Sustainable Engineering 14:1780−90 doi: 10.1080/19397038.2021.1988187
CrossRef Google Scholar
|
[22]
|
Team CAI. 2017. Europe and the future for WPT: European contributions to wireless power transfer technology. IEEE Microwave Magazine 18:56−87 doi: 10.1109/MMM.2017.2680078
CrossRef Google Scholar
|
[23]
|
Jawad AM, Nordin R, Gharghan SK, Jawad HM, Ismail M. 2017. Opportunities and challenges for near-field wireless power transfer: a review. Energies 10:1022 doi: 10.3390/en10071022
CrossRef Google Scholar
|
[24]
|
Barman SD, Reza AW, Kumar N, Karim ME, Munir AB. 2015. Wireless powering by magnetic resonant coupling: recent trends in wireless power transfer system and its applications. Renewable and Sustainable Energy Reviews 51:1525−52 doi: 10.1016/j.rser.2015.07.031
CrossRef Google Scholar
|
[25]
|
Mohsan SAH, Khan MA, Mazinani A, Alsharif MH, Cho HS. 2022. Enabling underwater wireless power transfer towards sixth generation (6G) wireless networks: opportunities, recent advances, and technical challenges. Journal of Marine Science and Engineering 10:1282 doi: 10.3390/jmse10091282
CrossRef Google Scholar
|
[26]
|
Chhawchharia S, Sahoo SK, Balamurugan M, Sukchai S, Yanine F. 2018. Investigation of wireless power transfer applications with a focus on renewable energy. Renewable and Sustainable Energy Reviews 91:888−902 doi: 10.1016/j.rser.2018.04.101
CrossRef Google Scholar
|
[27]
|
Suja S, Sathish Kumar T. 2013. Solar based wireless power transfer system. 2013 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC), Chennai, India, 17−18 April 2013. USA: IEEE. pp. 93−99. doi: 10.1109/ICCPEIC.2013.6778505
|
[28]
|
Khalid R, Naeem M, Ejaz W. 2022. Autonomous aerial networks with wireless power transfer: resource optimization, standardization, and challenges. IEEE Communications Standards Magazine 6:24−31 doi: 10.1109/MCOMSTD.0001.2200022
CrossRef Google Scholar
|
[29]
|
Yoo S, Lee J, Joo H, Sunwoo SH, Kim S, et al. 2021. Wireless power transfer and telemetry for implantable bioelectronics. Advanced Healthcare Materials 10(17):2100614 doi: 10.1002/adhm.202100614
CrossRef Google Scholar
|
[30]
|
El-Shahat A, Ayisire E, Wu Y, Rahman M, Nelms D. 2019. Electric vehicles wireless power transfer state-of-the-art. Energy Procedia 162:24−37 doi: 10.1016/j.egypro.2019.04.004
CrossRef Google Scholar
|
[31]
|
Panchal C, Stegen S, Lu J. 2018. Review of static and dynamic wireless electric vehicle charging system. Engineering Science and Technology, an International Journal 21:922−37 doi: 10.1016/j.jestch.2018.06.015
CrossRef Google Scholar
|
[32]
|
Moyssides PG. 2014. The anticipated longitudinal forces by the Biot-Savart-Grassmann-Lorentz force law are in complete agreement with the longitudinal Ampère forces. The European Physical Journal Plus 129:34 doi: 10.1140/epjp/i2014-14034-2
CrossRef Google Scholar
|
[33]
|
Angurala M. 2023. A review on energy efficient techniques for wireless sensor networks. International Journal of Intelligent Systems and Applications in Engineering 11:171−82
Google Scholar
|
[34]
|
Giuliani G. 2008. A general law for electromagnetic induction. Europhysics Letters 81(6):60002 doi: 10.1209/0295-5075/81/60002
CrossRef Google Scholar
|
[35]
|
Coufal O. 2017. Faraday's law of electromagnetic induction in two parallel conductors. International Journal of Applied Electromagnetics and Mechanics 54:263−80 doi: 10.3233/jae-160123
CrossRef Google Scholar
|
[36]
|
Okasili I, Elkhateb A, Littler T. 2022. A review of wireless power transfer systems for electric vehicle battery charging with a focus on inductive coupling. Electronics 11:1355 doi: 10.3390/electronics11091355
CrossRef Google Scholar
|
[37]
|
Degen C. 2021. Inductive coupling for wireless power transfer and near-field communication. EURASIP Journal on Wireless Communications and Networking 2021:121 doi: 10.1186/s13638-021-01994-4
CrossRef Google Scholar
|
[38]
|
Thiagarajan K, Deepa T. 2023. A comprehensive review of high-frequency transmission inverters for magnetic resonance inductive wireless charging applications in electric vehicles. IETE Journal of Research 69:2761−71 doi: 10.1080/03772063.2021.1905089
CrossRef Google Scholar
|
[39]
|
Tran MT, Thekkan S, Polat H, Tran DD, El Baghdadi M, et al. 2023. Inductive wireless power transfer systems for low-voltage and high-current electric mobility applications: review and design example. Energies 16:2953 doi: 10.3390/en16072953
CrossRef Google Scholar
|
[40]
|
Kamarudin SI, Ismail A, Sali A, Ahmad MY, Ismail I, et al. 2022. 5G magnetic resonance coupling planar spiral coil wireless power transfer. Trends in Sciences 20:3444 doi: 10.48048/tis.2023.3444
CrossRef Google Scholar
|
[41]
|
Uddin MK, Ramasamy G, Mekhilef S, Ramar K, Lau YC. 2014. A review on high frequency resonant inverter technologies for wireless power transfer using magnetic resonance coupling. 2014 IEEE Conference on Energy Conversion (CENCON). Johor Bahru, Malaysia, 13−14 October 2014. USA: IEEE. pp. 412−17. doi: 10.1109/CENCON.2014.6967539
|
[42]
|
Butler JC, Vigliotti AJ, Verdi FW, Walsh SM. 2002. Wireless, passive, resonant-circuit, inductively coupled, inductive strain sensor. Sensors and Actuators A: Physical 102:61−66 doi: 10.1016/s0924-4247(02)00342-4
CrossRef Google Scholar
|
[43]
|
Zheng Y, Wei Z, Yan H, Huang L, Gao Y. 2022. Impedance matching method for magnetic resonance coupling human body communication. 2022 IEEE 10 th Asia-Pacific Conference on Antennas and Propagation (APCAP), Xiamen, China, 4−7 November 2022. USA: IEEE. pp. 1−2. doi: 10.1109/APCAP56600.2022.10069779
|
[44]
|
Fisher TM, Farley KB, Gao Y, Bai H, Tse ZTH. 2014. Electric vehicle wireless charging technology: a state-of-the-art review of magnetic coupling systems. Wireless Power Transfer 1:87−96 doi: 10.1017/wpt.2014.8
CrossRef Google Scholar
|
[45]
|
Huang Z, Guan T, Wang Z, Wei J, Wang S, et al. 2022. Maximum efficiency tracking design of wireless power transmission system based on machine learning. Energy Reports 8:447−55 doi: 10.1016/j.egyr.2022.10.139
CrossRef Google Scholar
|
[46]
|
Choi BG, Kim YS. 2021. New structure design of ferrite cores for wireless electric vehicle charging by machine learning. IEEE Transactions on Industrial Electronics 68:12162−72 doi: 10.1109/TIE.2020.3047041
CrossRef Google Scholar
|
[47]
|
Ma F, Liu X, Ansari N. 2022. Electromagnetic radiation safety on far-field wireless power transfer in IoT. GLOBECOM 2022 - 2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 4−8 December 2022. USA: IEEE. pp. 4995−5000. doi: 10.1109/GLOBECOM48099.2022.10001490
|
[48]
|
He S, Hu K, Li S, Fu L, Gu C, et al. 2024. A robust RF-based wireless charging system for dockless bike-sharing. IEEE Transactions on Mobile Computing 23:2395−406 doi: 10.1109/TMC.2023.3255980
CrossRef Google Scholar
|
[49]
|
Katsidimas I, Kerimakis E, Nikoletseas S. 2019. Placement optimization in wireless charging systems under the vector model. 15 th International Conference on Distributed Computing in Sensor Systems (DCOSS). Santorini, Greece, 29−31 May 2019. USA: IEEE. pp. 473−80. doi: 10.1109/DCOSS.2019.00093
|
[50]
|
Ahmad A, Alam MS, Chabaan R. 2018. A comprehensive review of wireless charging technologies for electric vehicles. IEEE Transactions on Transportation Electrification 4:38−63 doi: 10.1109/TTE.2017.2771619
CrossRef Google Scholar
|
[51]
|
Joseph PK, Elangovan D. 2018. A review on renewable energy powered wireless power transmission techniques for light electric vehicle charging applications. Journal of Energy Storage 16:145−55 doi: 10.1016/j.est.2017.12.019
CrossRef Google Scholar
|
[52]
|
Zeng Y, Clerckx B, Zhang R. 2017. Communications and signals design for wireless power transmission. IEEE Transactions on Communications 65:2264−90 doi: 10.1109/TCOMM.2017.2676103
CrossRef Google Scholar
|
[53]
|
Huda SMA, Arafat MY, Moh S. 2022. Wireless power transfer in wirelessly powered sensor networks: a review of recent progress. Sensors 22:2952 doi: 10.3390/s22082952
CrossRef Google Scholar
|
[54]
|
Ding J, Liu W, Chih-Lin I, Zhang H, Mei H. 2020. Advanced progress of optical wireless technologies for power industry: an overview. Applied Sciences 10:6463 doi: 10.3390/app10186463
CrossRef Google Scholar
|
[55]
|
Lu X, Wang P, Niyato D, Kim DI, Han Z. 2016. Wireless charging technologies: fundamentals, standards, and network applications. IEEE Communications Surveys & Tutorials 18:1413−52 doi: 10.1109/COMST.2015.2499783
CrossRef Google Scholar
|
[56]
|
Bidkar R. 2012. Space Based Solar Power (SBSP): an emerging technology. 2012 IEEE 5 th India International Conference on Power Electronics (IICPE), Delhi, India, 6−8 December 2012. USA: IEEE. pp. 1−4. doi: 10.1109/IICPE.2012.6450440
|
[57]
|
Mishra RK, Mishra AK. 2023. Space based Solar Power: feasibility Microwave based wireless power system. Journal of Marine Science and Research 2:1−5 doi: 10.58489/2836-5933/005
CrossRef Google Scholar
|
[58]
|
Sabarish P, Hubert Tony Raj L, Ramprakash G, Karthick R. 2020. An energy efficient microwave based wireless solar power transmission system. IOP Conference Series: Materials Science and Engineering 937:012013 doi: 10.1088/1757-899x/937/1/012013
CrossRef Google Scholar
|
[59]
|
Li B, Liu S, Zhang HL, Hu BJ, Zhao D, et al. 2019. Wireless power transfer based on microwaves and time reversal for indoor environments. IEEE Access 7:114897−908 doi: 10.1109/ACCESS.2019.2936250
CrossRef Google Scholar
|
[60]
|
Karimi MJ, Schmid A, Dehollain C. 2021. Wireless power and data transmission for implanted devices via inductive links: a systematic review. IEEE Sensors Journal 21:7145−61 doi: 10.1109/JSEN.2021.3049918
CrossRef Google Scholar
|
[61]
|
Yeh ER, Choi J, Prelcic NG, Bhat CR, Heath RW Jr. 2016. Security in automotive radar and vehicular networks. Microwave Journal 60(5):148−64
Google Scholar
|
[62]
|
Zeng Y, Lu C, Liu R, He X, Rong C, et al. 2023. Wireless power and data transfer system using multidirectional magnetic coupler for swarm AUVs. IEEE Transactions on Power Electronics 38:1440−44 doi: 10.1109/TPEL.2022.3214318
CrossRef Google Scholar
|
[63]
|
Gu X, Hemour S, Wu K. 2022. Far-field wireless power harvesting: nonlinear modeling, rectenna design, and emerging applications. Proceedings of the IEEE 110:56−73 doi: 10.1109/JPROC.2021.3127930
CrossRef Google Scholar
|
[64]
|
Moisello E, Liotta A, Malcovati P, Bonizzoni E. 2023. Recent trends and challenges in near-field wireless power transfer systems. IEEE Open Journal of the Solid-State Circuits Society 3:197−213 doi: 10.1109/OJSSCS.2023.3313575
CrossRef Google Scholar
|
[65]
|
Albreem MA, Sheikh AM, Alsharif MH, Jusoh M, Mohd Yasin MN. 2021. Green Internet of Things (GIoT): applications, practices, awareness, and challenges. IEEE Access 9:38833−58 doi: 10.1109/ACCESS.2021.3061697
CrossRef Google Scholar
|
[66]
|
Pravin AMA, Narayanan AG, Balaganesh R, Manikandan P, Saravanan J. 2014. Wireless power transmission using indcutive coupling. International Journel of Emerging Technology and Computer Science 8(1):126−30
Google Scholar
|
[67]
|
Biswa R. 2012. Feasibility of wireless power transmission. Seminar Report. Electronics and Communication Engineering, College of Science and Technology, Rinchending, Phuentsholing. pp. 1−23
|
[68]
|
Soares L, Wang H. 2022. A study on renewed perspectives of electrified road for wireless power transfer of electric vehicles. Renewable and Sustainable Energy Reviews 158:112110 doi: 10.1016/j.rser.2022.112110
CrossRef Google Scholar
|
[69]
|
Liu W, Chau K, Tian X, Wang H, Hua Z. 2023. Smart wireless power transfer—opportunities and challenges. Renewable and Sustainable Energy Reviews 180:113298 doi: 10.1016/j.rser.2023.113298
CrossRef Google Scholar
|
[70]
|
Wang C, Ma Z. 2016. Design of wireless power transfer device for UAV. 2016 IEEE International Conference on Mechatronics and Automation, Harbin, China, 7−10 August, 2016. USA: IEEE. pp. 2449−54. doi: 10.1109/ICMA.2016.7558950
|
[71]
|
Suh IS, Kim J. 2013. Electric vehicle on-road dynamic charging system with wireless power transfer technology. 2013 International Electric Machines & Drives Conference, Chicago, IL, USA, 12−15 May 2013. USA: IEEE. pp. 234−40. doi: 10.1109/IEMDC.2013.6556258
|
[72]
|
Ullah MA, Keshavarz R, Abolhasan M, Lipman J, Esselle KP, et al. 2022. A review on antenna technologies for ambient RF energy harvesting and wireless power transfer: designs, challenges and applications. IEEE Access 10:17231−67 doi: 10.1109/ACCESS.2022.3149276
CrossRef Google Scholar
|
[73]
|
Lin HT, Wu YC, Hsieh PH, Yang CH. 2017. Integration of energy-recycling logic and wireless power transfer for ultra-low-power implantables. 2017 IEEE International Symposium on Circuits and Systems (ISCAS). Baltimore, MD, USA, 28−31 May, 2017. USA: IEEE. pp. 1−4. doi: 10.1109/ISCAS.2017.8050378
|
[74]
|
Lu C, Rong C, Huang X, Hu Z, Tao X, et al. 2019. Investigation of negative and near-zero permeability metamaterials for increased efficiency and reduced electromagnetic field leakage in a wireless power transfer system. IEEE Transactions on Electromagnetic Compatibility 61:1438−46 doi: 10.1109/TEMC.2018.2865520
CrossRef Google Scholar
|
[75]
|
Raza U, Salam A. 2020. Zenneck waves in decision agriculture: an empirical verification and application in EM-based underground wireless power transfer. Smart Cities 3:308−40 doi: 10.3390/smartcities3020017
CrossRef Google Scholar
|
[76]
|
La Rosa R, Livreri P, Trigona C, Di Donato L, Sorbello G. 2019. Strategies and techniques for powering wireless sensor nodes through energy harvesting and wireless power transfer. Sensors 19:2660 doi: 10.3390/s19122660
CrossRef Google Scholar
|
[77]
|
Hui SYR. 2018. Technical and safety challenges in emerging trends of near-field wireless power transfer industrial guidelines. IEEE Electromagnetic Compatibility Magazine 7:78−86 doi: 10.1109/MEMC.0.8339551
CrossRef Google Scholar
|
[78]
|
Lin JC. 2021. Safety of wireless power transfer. IEEE Access 9:125342−47 doi: 10.1109/ACCESS.2021.3108966
CrossRef Google Scholar
|
[79]
|
Bi Z, Kan T, Mi CC, Zhang Y, Zhao Z, et al. 2016. A review of wireless power transfer for electric vehicles: prospects to enhance sustainable mobility. Applied Energy 179:413−25 doi: 10.1016/j.apenergy.2016.07.003
CrossRef Google Scholar
|
[80]
|
Triviño A, González-González JM, Aguado JA. 2021. Wireless power transfer technologies applied to electric vehicles: a review. Energies 14:1547 doi: 10.3390/en14061547
CrossRef Google Scholar
|
[81]
|
Ron Hui SY. 2016. Past, present and future trends of non-radiative wireless power transfer. CPSS Transactions on Power Electronics and Applications 1:83−91 doi: 10.24295/cpsstpea.2016.00008
CrossRef Google Scholar
|
[82]
|
Xie L, Shi Y, Hou YT, Sherali HD. 2012. Making sensor networks immortal: an energy-renewal approach with wireless power transfer. IEEE/ACM Transactions on Networking 20:1748−61 doi: 10.1109/TNET.2012.2185831
CrossRef Google Scholar
|
[83]
|
St John SA. 2017. Investigating wireless power transfer. Physics Education 52(5):055008 doi: 10.1088/1361-6552/aa7f44
CrossRef Google Scholar
|
[84]
|
Delichte SD, Lu YJ, Bobowski JS. 2018. Non-radiative mid-range wireless power transfer: an experiment for senior physics undergraduates. American Journal of Physics 86:623−32 doi: 10.1119/1.5037705
CrossRef Google Scholar
|
[85]
|
Sridhar B, Kathirvel C, Balamurugan SB, Hariprasad P. 2023. Design of efficient wireless charging pad deployment and maximizing the power transfer technique for an autonomous electric vehicle charging. 2023 Second International Conference on Electronics and Renewable Systems (ICEARS), Tuticorin, India, 2−4 March, 2023. USA: IEEE. pp. 347−54. doi: 10.1109/ICEARS56392.2023.10085244
|
[86]
|
Gonzalez M, Xu P, Dekimpe R, Schramme M, Stupia I, et al. 2023. Technical and ecological limits of 2.45-GHz wireless power transfer for battery-less sensors. IEEE Internet of Things Journal 10:15431−42 doi: 10.1109/jiot.2023.3263976
CrossRef Google Scholar
|
[87]
|
Li T, Wu L, Chen Z. 2015. Research overview on wireless power transmission technology. MATEC Web of Conferences 22:02021 doi: 10.1051/matecconf/20152202021
CrossRef Google Scholar
|
[88]
|
Wang Q, Li H. 2011. Research on the wireless power transmission system based on coupled magnetic resonances. 2011 International Conference on Electronics, Communications and Control (ICECC), Ningbo, China, 2011. pp. 2255−58. doi: 10.1109/ICECC.2011.6067744
|
[89]
|
Yang Q, Chen H, Xu G, Sun M, Fu W. 2010. Research progress in contactless power transmission technology. Transactions of China Electrotechnical Society 25(7):6−13
Google Scholar
|
[90]
|
Liu C, Wang F, Shi K, Wang X, Sun Z. 2014. Robust H∞ control for satellite atti-tude control system with uncertainties and additive per-turbation. International Journal of Science 1(2):1−9
Google Scholar
|
[91]
|
Shi K, Sun Z, Liu C, Wang F. 2015. Design of microsatellite attitude control with multiplicative perturbation of controller. The 27 th Chinese Control and Decision Conference (2015 CCDC), Qingdao, China, 23−25 May 2015. USA: IEEE. pp. 491−95. doi: 10.1109/CCDC.2015.7161742
|
[92]
|
Li J. 2017. Research progress of wireless power transmission technology and the related problems. AIP Conference Proceedings 1820:090023 doi: 10.1063/1.4977407
CrossRef Google Scholar
|
[93]
|
Liu Y, Xiao J, Zhao X, Wu J, Du Y, et al. 2023. Development and application review on wireless power transmission technology. Technology of Electrical Engineering and Energy 42(2):48−67 doi: 10.12067/ATEEE2203007
CrossRef Google Scholar
|
[94]
|
Liu C, Wang F. 2014. In-orbit estimation of inertia parameters of target satellite after capturing the tracking satellite. Proceeding of the 11 th World Congress on Intelligent Control and Automation, Shenyang, China, 29 June − 4 July 2014. USA: IEEE. pp. 3942−47. doi: 10.1109/WCICA.2014.7053375
|
[95]
|
McSpadden JO, Mankins JC. 2002. Space solar power programs and microwave wireless power transmission technology. IEEE Microwave Magazine 3:46−57 doi: 10.1109/MMW.2002.1145675
CrossRef Google Scholar
|
[96]
|
Brown WC. 1996. The history of wireless power transmission. Solar Energy 56:3−21 doi: 10.1016/0038-092x(95)00080-b
CrossRef Google Scholar
|
[97]
|
Huang H, Huang X, Tan L, Ding X. 2011. Research on transmitter and receiver of wireless power transmission based on magnetic resonance coupling. Advanced Technology of Electrical Engineering and Energy 30(1):32−35
Google Scholar
|
[98]
|
Matsumoto H. 2002. Research on solar power satellites and microwave power transmission in Japan. IEEE Microwave Magazine 3:36−45 doi: 10.1109/MMW.2002.1145674
CrossRef Google Scholar
|
[99]
|
Fan X, Mo X, Zhang X. 2015. Research status and application of wireless power transmission technology. Proceedings of the Chinese Society of Electrical Engineering 35:2584−600 doi: 10.13334/j.0258-8013.pcsee.2015.10.026
CrossRef Google Scholar
|
[100]
|
Liu C, Shi K, Wang F. 2014. Mass and mass center identification of target satellite after rendezvous and docking. Proceeding of the 11 th World Congress on Intelligent Control and Automation, Shenyang, China, 29 June − 4 July, 2014. USA: IEEE. pp. 5802−7. doi: 10.1109/WCICA.2014.7053711
|
[101]
|
Tan L, Huang X, Huang H, Zou Y, Li H. 2011. Transfer efficiency optimal control of magnetic resonance coupled system of wireless power transfer based on frequency control. Science China Technological Sciences 54:1428−34 doi: 10.1007/s11431-011-4380-6
CrossRef Google Scholar
|
[102]
|
Amjad M, Farooq-i-Azam M, Ni Q, Dong M, Ahmad Ansari E. 2022. Wireless charging systems for electric vehicles. Renewable and Sustainable Energy Reviews 167:112730 doi: 10.1016/j.rser.2022.112730
CrossRef Google Scholar
|
[103]
|
Machura P, Li Q. 2019. A critical review on wireless charging for electric vehicles. Renewable and Sustainable Energy Reviews 104:209−34 doi: 10.1016/j.rser.2019.01.027
CrossRef Google Scholar
|
[104]
|
Zhou B, Pei J, Calautit JK, Zhang J, Guo F. 2021. Solar self-powered wireless charging pavement—a review on photovoltaic pavement and wireless charging for electric vehicles. Sustainable Energy & Fuels 5:5139−59 doi: 10.1039/d1se00739d
CrossRef Google Scholar
|
[105]
|
Urano M, Ata K, Takahashi A. 2017. Study on underwater wireless power transfer via electric coupling with a submerged electrode. 2017 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK). Kyoto, Japan, 29−30 June, 2017. USA: IEEE. pp. 36−37. doi: 10.1109/IMFEDK.2017.7998030
|
[106]
|
Ji L, Zhang C, Ge F, Qian B, Sun H. 2022. A parameter design method for a wireless power transmission system with a uniform magnetic field. Energies 15:8829 doi: 10.3390/en15238829
CrossRef Google Scholar
|
[107]
|
Van Mulders J, Delabie D, Lecluyse C, Buyle C, Callebaut G, et al. 2022. Wireless power transfer: systems, circuits, standards, and use cases. Sensors 22:5573 doi: 10.3390/s22155573
CrossRef Google Scholar
|
[108]
|
Xia J, Yuan X, Li J, Lu S, Cui X, et al. 2020. Foreign object detection for electric vehicle wireless charging. Electronics 9:805 doi: 10.3390/electronics9050805
CrossRef Google Scholar
|
[109]
|
Cai S, Liu Z, Luo X, Shi Z, Xie Y, et al. 2024. Research on metal and living foreign object detection method for electric vehicle wireless charging system. World Electric Vehicle Journal 15:34 doi: 10.3390/wevj15010034
CrossRef Google Scholar
|
[110]
|
Deng W, Pei W, Teng Y, Wu Q, Yi Y, et al. 2023. Coordinated control and application of multi-terminal DC distribution system. Energy Reports 9:11−21 doi: 10.1016/j.egyr.2022.12.106
CrossRef Google Scholar
|
[111]
|
Martel J, Chang SH, Chevalier G, Ojcius DM, Young JD. 2023. Influence of electromagnetic fields on the circadian rhythm: implications for human health and disease. Biomedical Journal 46:48−59 doi: 10.1016/j.bj.2023.01.003
CrossRef Google Scholar
|
[112]
|
Kumazawa A, Diao Y, Hirata A, Hirayama H. 2020. Reduction of human interaction with wireless power transfer system using shielded loop coil. Electronics 9:953 doi: 10.3390/electronics9060953
CrossRef Google Scholar
|
[113]
|
Rhee J, Shin Y, Woo S, Lee C, Kim D, et al. 2021. Wireless torque and power transfer using multiple coils with LCC-S topology for implantable medical drug pump. Sensors 21:8150 doi: 10.3390/s21238150
CrossRef Google Scholar
|
[114]
|
Özüpak Y. 2024. Analysis and experimental verification of efficiency parameters affecting inductively coupled wireless power transfer systems. Heliyon 10:e27420 doi: 10.1016/j.heliyon.2024.e27420
CrossRef Google Scholar
|
[115]
|
Detka K, Górecki K. 2022. Wireless power transfer—a review. Energies 15:7236 doi: 10.3390/en15197236
CrossRef Google Scholar
|
[116]
|
Shidujaman M, Samani H, Arif M. 2014. Wireless power transmission trends. 2014 International Conference on Informatics, Electronics & Vision (ICIEV), Dhaka, Bangladesh, 23−24 May, 2014. USA: IEEE. pp. 1−6 . doi: 10.1109/ICIEV.2014.6850770
|
[117]
|
Fusco F, Castrillo VU, Giannetta HMR, Albano M, Cavallini E. 2024. Methods, standards and components for wireless communications and power transfer aimed at intra-vehicular applications of launchers. Aerospace 11:132 doi: 10.3390/aerospace11020132
CrossRef Google Scholar
|