[1]
|
Zhu Q, Xu Y, Yang Y, Guan C, Zhang Q, et al. 2019. The persimmon (Diospyros oleifera Cheng) genome provides new insights into the inheritance of astringency and ancestral evolution. Horticulture Research 6:138 doi: 10.1038/s41438-019-0227-2
CrossRef Google Scholar
|
[2]
|
Direito R, Rocha J, Sepodes B, Eduardo-Figueira M. 2021. From Diospyros kaki L. (persimmon) phytochemical profile and health impact to new product perspectives and waste valorization. Nutrients 13:3283 doi: 10.3390/nu13093283
CrossRef Google Scholar
|
[3]
|
Kawase M, Motohashi N, Satoh K, Sakagami H, Nakashima H, et al. 2003. Biological activity of persimmon (Diospyros kaki) peel extracts. Phytotherapy Research 17:495−500 doi: 10.1002/ptr.1183
CrossRef Google Scholar
|
[4]
|
Liu F, Zhou Z, Li G. 2021. Persimmon tannin functionalized polyacrylonitrile fiber for highly efficient and selective recovery of Au(III) from aqueous solution. Chemosphere 264:128469 doi: 10.1016/j.chemosphere.2020.128469
CrossRef Google Scholar
|
[5]
|
Gorinstein S, Bartnikowska E, Kulasek G, Zemser M, Trakhtenberg S. 1998. Dietary persimmon improves lipid metabolism in rats fed diets containing cholesterol. Journal of Nutrition 128:2023−27 doi: 10.1093/jn/128.11.2023
CrossRef Google Scholar
|
[6]
|
Furukawa R, Kitabatake M, Ouji-Sageshima N, Suzuki Y, Nakano A, et al. 2021. Persimmon-derived tannin has antiviral effects and reduces the severity of infection and transmission of SARS-CoV-2 in a Syrian hamster model. Scientific Reports 11:23695 doi: 10.1038/s41598-021-03149-3
CrossRef Google Scholar
|
[7]
|
Itamura H, Sun N, Nimura M, Shimosaki S, Nakatsuka A, et al. 2011. Effect of ingestion of the Japanese persimmon ‘Saijo’ fruit on ethanol levels in the blood of humans and rats. Food Preservation Science 37:155−65 doi: 10.5891/jafps.37.155
CrossRef Google Scholar
|
[8]
|
Wang Z, Li X, Liang H, Ning J, Zhou Z, et al. 2017. Equilibrium, kinetics and mechanism of Au3+, Pd2+ and Ag+ ions adsorption from aqueous solutions by graphene oxide functionalized persimmon tannin. Materials Science and Engineering 79:227−36 doi: 10.1016/j.msec.2017.05.038
CrossRef Google Scholar
|
[9]
|
Chen W, Zheng Q, Li J, Liu Y, Xu L, et al. 2021. DkMYB14 is a bifunctional transcription factor that regulates the accumulation of proanthocyanidin in persimmon fruit. The Plant Journal 106:1708−27 doi: 10.1111/tpj.15266
CrossRef Google Scholar
|
[10]
|
Sato A, Yamada M. 2016. Persimmon breeding in Japan for pollination-constant non-astringent (PCNA) type with marker-assisted selection. Breeding Science 66:60−68 doi: 10.1270/jsbbs.66.60
CrossRef Google Scholar
|
[11]
|
Yin X, Shi Y, Min T, Luo Z, Yao Y, et al. 2012. Ferguson I, Chen KS. Expression of ethylene response genes during persimmon fruit astringency removal. Planta 235:895−906 doi: 10.1007/s00425-011-1553-2
CrossRef Google Scholar
|
[12]
|
Chen Y, Zhang X, Luo Z, Sun J, Li L, et al. 2021. Effects of inside-out heat-shock via microwave on the fruit softening and quality of persimmon during postharvest storage. Food Chemistry 349:129161 doi: 10.1016/j.foodchem.2021.129161
CrossRef Google Scholar
|
[13]
|
Dong Y, Wang P, Jiang M, Qu S. 2019. Antioxidant and the dwarfing candidate gene of “Nantongxiaofangshi” (Diospyros kaki Thunb. ). Oxidative Medicine and Cellular Longevity 2019:1629845 doi: 10.1155/2019/1629845
CrossRef Google Scholar
|
[14]
|
Guan C, Chen L, Chen W, Mo R, Zhang Q, et al. 2015. SSAP analysis reveals candidate genes associated with deastringency in persimmon (Diospyros kaki Thunb.) treated with 40 °C water. Tree Genetics & Genomes 11:20 doi: 10.1007/s11295-015-0841-6
CrossRef Google Scholar
|
[15]
|
Li X, Jiang Z, Shen Y, Li F, Yu X, et al. 2018. In vitro regeneration and Agrobacterium tumefaciens-mediated genetic transformation of D. lotus (Diospyros lotus L. ). Scientia Horticulturae 236:229−37 doi: 10.1016/j.scienta.2018.03.054
CrossRef Google Scholar
|
[16]
|
Luo Z, Wang R. 2008. Persimmon in China: domestication and traditional utilizations of genetic resources. Advances in Horticultural Science 22:239−243 doi: 10.1400/100648
CrossRef Google Scholar
|
[17]
|
Akagi T, Katayama-Ikegami A, Yonemori K. 2011. Proanthocyanidin biosynthesis of persimmon (Diospyros kaki Thunb. ) fruit. Scientia Horticulturae 130:373−80 doi: 10.1016/j.scienta.2011.07.021
CrossRef Google Scholar
|
[18]
|
Luo Z, Zhang Q, Guo D, Gu Q. 2005. General situation on science and industry of persimmon in China mainland. Acta Horticulturae 685:29−36 doi: 10.17660/actahortic.2005.685.2
CrossRef Google Scholar
|
[19]
|
Yuan L, Zhang Q, Guo D, Luo Z. 2011. Characteristics of Chinese PCNA types and their roles in science and industry of oriental persimmon. Acta Horticulturae Sinica 38:361−70 doi: 10.16420/j.issn.0513-353x.2011.02.022
CrossRef Google Scholar
|
[20]
|
Kanzaki S, Yonemori K, Sato A, Yamada M, Sugiura A. 2000. Analysis of the genetic relationships among pollination-constant and non-astringent (PCNA) cultivars of persimmon (Diospyros kaki Thunb. ) from Japan and China using amplified fragment length polymorphism (AFLP). Journal of the Japanese Society for Horticultural Science 69:665−70 doi: 10.2503/jjshs.69.665
CrossRef Google Scholar
|
[21]
|
Hu M, Chen L, Zhang Q, Luo Z. 2017. Potential of Xiaoguo Tianshi and Niuyanshi (Diospyros kaki Thunb. ) as novel rootstocks for PCNA persimmon. Journal of Fruit Science 34:50−58 doi: 10.13925/j.cnki.gsxb.20160181
CrossRef Google Scholar
|
[22]
|
Li H, Zhang H, Yu C, Ma L, Wang Y, et al. 2012. Possible roles of auxin and zeatin for initiating the dwarfing effect of M9 used as apple rootstock or interstock. Acta Physiologiae Plantarum 34:235−44 doi: 10.1007/s11738-011-0822-9
CrossRef Google Scholar
|
[23]
|
Webster AD. 2004. Vigour mechanisms in dwarfing rootstocks for temperate fruit trees. Acta Horticulturae 658:29−41 doi: 10.17660/actahortic.2004.658.1
CrossRef Google Scholar
|
[24]
|
Tang D, Jiang X, Gong B, Liu T, Xu Y, et al. 2017. Early selection of interstocks for improving grafting compatibility in Diospyros kaki ‘Fuyu’. Scientia Silvae Sinicae 53:54−62 doi: 10.11707/j.1001-7488.20170507
CrossRef Google Scholar
|
[25]
|
Wu C. 2018. Screening and utilization of suitable stocks for the ‘Taishuu’ persimmon. Thesis. Yangzhou University, China. pp. 19−24
|
[26]
|
Wang M, Zhu Q, Deng C, Luo Z, Sun N, et al. 2017. Hypoxia-responsive ERFs involved in postdeastringency softening of persimmon fruit. Plant Biotechnology Journal 15:1409−19 doi: 10.1111/pbi.12725
CrossRef Google Scholar
|
[27]
|
Wu W, Wang M, Gong H, Liu X, Guo D, et al. 2020. 2020. High CO2/hypoxia-induced softening of persimmon fruit is modulated by DkERF8/16 and DkNAC9 complexes. Journal of Experimental Botany 71:2690−700 doi: 10.1093/jxb/eraa009
CrossRef Google Scholar
|
[28]
|
Guan C, Wang M, Zhang Y, Ruan X, Zhang Q, et al. 2020. DkWRKY interacts with pyruvate kinase gene DkPK1 and promotes natural deastringency in C-PCNA persimmon. Plant Science 290−110285 doi: 10.1016/j.plantsci.2019.110285
CrossRef Google Scholar
|
[29]
|
Liang B, Zheng Y, Wang J, Zhang W, Fu Y, et al. 2020. Overexpression of the persimmon abscisic acid β-glucosidase gene (DkBG1) alters fruit ripening in transgenic tomato. The Plant Journal 102:1220−33 doi: 10.1111/tpj.14695
CrossRef Google Scholar
|
[30]
|
Dong Y, Ye X, Xiong A, Zhu N, Jiang L, et al. 2021. The regulatory role of gibberellin related genes DKGA2ox1 and MIR171f_3 in persimmon dwarfism. Plant Science 310:110958 doi: 10.1016/j.plantsci.2021.110958
CrossRef Google Scholar
|
[31]
|
Shen Y, Zhuang W, Tu X, Gao Z, Xiong A, et al. 2019. Transcriptomic analysis of interstock-induced dwarfism in sweet persimmon (Diospyros kaki Thunb. ). Horticulture Research 6:51 doi: 10.1038/s41438-019-0133-7
CrossRef Google Scholar
|
[32]
|
Persic M, Jakopic J, Hudina M. 2018. The effect of post-harvest technologies on selected metabolites in persimmon (Diospyros kaki Thunb. ) fruit. Journal of the Science of Food and Agriculture 99:854−60 doi: 10.1002/jsfa.9255
CrossRef Google Scholar
|
[33]
|
Min T, Wang M, Wang H, Liu X, Fang F, et al. 2015. Grierson D, Yin XR, Chen KS. Isolation and expression of NAC genes during persimmon fruit postharvest astringency removal. International Journal of Molecular Sciences 16:1894−906 doi: 10.3390/ijms16011894
CrossRef Google Scholar
|
[34]
|
Jamil W, Wu W, Gong H, Huang J, Ahmad M, et al. 2019. C2H2-Type zinc finger proteins (DkZF1/2) synergistically control persimmon fruit deastringency. International Journal of Molecular Sciences 20:5611 doi: 10.3390/ijms20225611
CrossRef Google Scholar
|
[35]
|
Luo Y, Zhang X, Luo Z, Zhang Q, Liu J. 2015. Identification and characterization of microRNAs from Chinese pollination constant non-astringent persimmon using high-throughput sequencing. BMC Plant Biology 15:11 doi: 10.1186/s12870-014-0400-6
CrossRef Google Scholar
|
[36]
|
Yang S, Zhang M, Xu L, Luo Z, Zhang Q. 2020. MiR858b inhibits proanthocyanidin accumulation by the repression of DkMYB19 and DkMYB20 in persimmon. Frontiers in Plant Science 11:576378 doi: 10.3389/fpls.2020.576378
CrossRef Google Scholar
|
[37]
|
Yonemori K, Honsho C, Kanzaki S, Ino H, Ikegami A, et al. 2008. Sequence analyses of the ITS regions and the matK gene for determining phylogenetic relationships of Diospyros kaki (persimmon) with other wild Diospyros (Ebenaceae) species. Tree Genetics & Genomes 4:149−58 doi: 10.1007/s11295-007-0096-y
CrossRef Google Scholar
|
[38]
|
Guan C, Liu S, Wang M, Ji H, Ruan X, et al. 2019. Comparative transcriptomic analysis reveals genetic divergence and domestication genes in Diospyros. BMC Plant Biology 19:227 doi: 10.1186/s12870-019-1839-2
CrossRef Google Scholar
|
[39]
|
Guan C, Chachar S, Zhang P, Hu C, Wang R, et al. 2020. Inter- and intra-specific genetic diversity in Diospyros using SCoT and IRAP markers. Horticultural Plant Journal 6:71−80 doi: 10.1016/j.hpj.2019.12.005
CrossRef Google Scholar
|
[40]
|
Guo D, Luo Z. 2006. Genetic relationships of some PCNA persimmons (Diospyros kaki Thunb. ) from China and Japan revealed by SRAP analysis. Genetic Resources and Crop Evolution 53:1597 doi: 10.1007/s10722-005-8717-5
CrossRef Google Scholar
|
[41]
|
Du X, Zhang Q, Luo Z. 2009. Identification of a chinese PVNA type of Japanese persimmon discovered from dabieshan region in central China. Acta Horticulturae 833:97−102 doi: 10.17660/actahortic.2009.833.14
CrossRef Google Scholar
|
[42]
|
Thompson JD, Lumaret R. 1992. The evolutionary dynamics of polyploid plants: origins, establishment and persistence. Trends in Ecology & Evolution 7:302−7 doi: 10.1016/0169-5347(92)90228-4
CrossRef Google Scholar
|
[43]
|
Sugiura A, Ohkuma T, Choi YA, Tao R, Tamura M. 2000. Production of nonaploid (2n = 9x) Japanese persimmons (Diospyros kaki) by pollination with unreduced (2n = 6x) pollen and embryo rescue culture. Journal of the American Society for Horticultural Science 125:609−14 doi: 10.21273/jashs.125.5.609
CrossRef Google Scholar
|
[44]
|
Zhuang D, Kitajima A, Ishida M. 1990. Chromosome number of the original tree and open-pollinated progenies of Japanese persimmon. Journal of the Japanese Society for Horticultural Science 59:479−85 doi: 10.2503/jjshs.59.479
CrossRef Google Scholar
|
[45]
|
Akagi T, Shirasawa K, Nagasaki H, Hirakawa H, Tao R, et al. 2020. The persimmon genome reveals clues to the evolution of a lineage-specific sex determination system in plants. PLoS Genetics 16:e1008566 doi: 10.1371/journal.pgen.1008566
CrossRef Google Scholar
|
[46]
|
Zhang P, Yang S, Liu Y, Zhang Q, Xu L, et al. 2016. Validation of a male-linked gene locus (OGI) for sex identification in persimmon (Diospyros kaki Thunb. ) and its application in F1 progeny. Plant Breeding 135:721−27 doi: 10.1111/pbr.12427
CrossRef Google Scholar
|
[47]
|
Akagi T, Henry IM, Tao R, Comai L. 2014. A Y-chromosome-encoded small RNA acts as a sex determinant in persimmons. Science 346:646−50 doi: 10.1126/science.1257225
CrossRef Google Scholar
|
[48]
|
Akagi T, Henry IM, Kawai T, Comai L, Tao R. 2016. Epigenetic regulation of the sex determination gene MeGI in polyploid persimmon. The Plant Cell 28:2905−15 doi: 10.1105/tpc.16.00532
CrossRef Google Scholar
|
[49]
|
Masuda K, Yamamoto E, Shirasawa K, Onoue N, Kono A, et al. 2020. Genome-wide study on the polysomic genetic factors conferring plasticity of flower sexuality in hexaploid persimmon. DNA Research 27:dsaa012 doi: 10.1093/dnares/dsaa012
CrossRef Google Scholar
|
[50]
|
Chijiwa H, Asakuma H, Ishizaka A. 2013. Development of seedless PCNA persimmon (Diospyros kaki Thunb. ) cv. 'Fukuoka K1 Gou' and the effect of gibberellin spray and/or disbudding on fruit set. Horticultural Research (Japan) 12:263−67 doi: 10.2503/hrj.12.263
CrossRef Google Scholar
|
[51]
|
Zhang N, Xu J, Mo R, Zhang Q, Luo Z. 2016. Androecious genotype ‘Male 8’ carries the CPCNA gene locus controlling natural deastringency of Chinese PCNA persimmons. Horticultural Plant Journal 6:309−14 doi: 10.1016/j.hpj.2016.11.006
CrossRef Google Scholar
|
[52]
|
Wang R, Yang Y, Ruan X, Li G. 2005. Native non-astringent persimmons in China. Acta Horticulturae 685:99−102 doi: 10.17660/actahortic.2005.685.10
CrossRef Google Scholar
|
[53]
|
Sun P, Li J, Du G, Han W, Fu J, et al. 2017. Endogenous phytohormone profiles in male and female floral buds of the persimmons (Diospyros kaki Thunb. ) during development. Scientia Horticulturae 218:213−21 doi: 10.1016/j.scienta.2017.02.022
CrossRef Google Scholar
|
[54]
|
Wang L, Han W, Diao S, Suo Y, Li H, et al. 2021. Study of sexual-linked genes (OGI and MeGI) on the performance of androecious persimmons (Diospyros kaki Thunb. ). Plants (Basel) 10:390 doi: 10.3390/plants10020390
CrossRef Google Scholar
|
[55]
|
Wang L, Li H, Sun P, Fu J, Suo Y, et al. 2018. Genetic diversity among wild androecious germplasms of Diospyros kaki in China based on SSR markers. Scientia Horticulturae 242:1−9 doi: 10.1016/j.scienta.2018.07.020
CrossRef Google Scholar
|
[56]
|
Guan C, Zhang P, Wu M, Zeng M, Chachar S, et al. 2020. Discovery of a millennial androecious germplasm and its potential in persimmon (Diospyros kaki Thunb. ) breeding. Scientia Horticulturae 269:109392 doi: 10.1016/j.scienta.2020.109392
CrossRef Google Scholar
|
[57]
|
Xia L, Chen Y, Feng Y, Zhang F, Qiao S, et al. 2017. Breeding report of a new persimmon cultivar 'Heishi No. 1'. Agricultural Science & Technology 18:632−34 doi: 10.16175/j.cnki.1009-4229.2017.04.016
CrossRef Google Scholar
|
[58]
|
Diao S, Han W, Li F, Sun P, Suo Y, et al. 2018. A new cultivar of persimmon ‘Zhongshi 2’. Acta Horticulturae Sinica 45:1009−10 doi: 10.16420/j.issn.0513-353x.2017-0641
CrossRef Google Scholar
|
[59]
|
Wu K, Gong B, Xu Y, Zhang P. 2021. Effects of different plant growth regulators on hardwood cuttage of persimmon rootstock Yalin 6. Acta Agriculturae Zhejiangensis 33:1256−63 doi: 10.3969/j.issn.1004-1524.2021.07.11
CrossRef Google Scholar
|
[60]
|
Zhang Y, Yang Y, Guo J, Hu C, Zhu R. 2016. Taxonomic status of Deyangshi based on chromosome number and SRAP markers. Scientia Horticulturae 207:57−64 doi: 10.1016/j.scienta.2016.05.006
CrossRef Google Scholar
|
[61]
|
Xu J, Gan J, Xiang J, Zhang Q, Xu L, et al. 2017. Advance of genetic improvement technology for Chinese PCNA persimmon. Acta Horticulturae Sinica 44:987−98 doi: 10.16420/j.issn.0513-353x.2016-0805
CrossRef Google Scholar
|
[62]
|
Giordani E, Naval M, Benelli C. 2013. In vitro propagation of persimmon (Diospyros kaki Thunb. ). In Protocols for Micropropagation of Selected Economically-important Horticultural Plants, eds. Lambardi M , Ozudogru E, Jain S. 994:XVI, 490. Totowa, NJ: Humana Press. pp. 89−93 https://doi.org/10.1007/978-1-62703-074-8_7
|