[1]
|
Tripathi SC, Sayre KD, Kaul JN, Narang RS. 2003. Growth and morphology of spring wheat (Triticum aestivum L. ) culms and their association with lodging: effects of genotypes, N levels and ethephon. Field Crops Research 84:271−90 doi: 10.1016/S0378-4290(03)00095-9
CrossRef Google Scholar
|
[2]
|
Boerjan W, Ralph J, Baucher M. 2003. Lignin biosynthesis. Annual Review of Plant Biology 54:519−46 doi: 10.1146/annurev.arplant.54.031902.134938
CrossRef Google Scholar
|
[3]
|
Vanholme R, Demedts BB, Morreel K, Ralph J, Boerjan W. 2010. Lignin biosynthesis and structure. Plant Physiology 153:895−905 doi: 10.1104/pp.110.155119
CrossRef Google Scholar
|
[4]
|
Alejandro S, Lee Y, Tohge T, Sudre D, Osorio S, et al. 2012. AtABCG29 is a monolignol transporter involved in lignin biosynthesis. Current Biology 22:1207−12 doi: 10.1016/j.cub.2012.04.064
CrossRef Google Scholar
|
[5]
|
Huang J, Gu M, Lai Z, Fan B, Shi K, et al. 2010. Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiology 153:1526−38 doi: 10.1104/pp.110.157370
CrossRef Google Scholar
|
[6]
|
Salvador VH, Lima RB, dos Santos WD, Soares AR, Böhm PA, et al. 2013. Cinnamic acid increases lignin production and inhibits soybean root growth. PLoS ONE 8:e69105 doi: 10.1371/journal.pone.0069105
CrossRef Google Scholar
|
[7]
|
Xu B, Escamilla-Treviño LL, Sathitsuksanoh N, Shen Z, Shen H, et al. 2011. Silencing of 4-coumarate: coenzyme A ligase in switchgrass leads to reduced lignin content and improved fermentable sugar yields for biofuel production. New Phytologist 192:611−25 doi: 10.1111/j.1469-8137.2011.03830.x
CrossRef Google Scholar
|
[8]
|
Ruegger M, Meyer K, Cusumano JC, Chapple C. 1999. Regulation of ferulate-5-hydroxylase expression in Arabidopsis in the context of sinapate ester biosynthesis. Plant Physiology 119:101−10 doi: 10.1104/pp.119.1.101
CrossRef Google Scholar
|
[9]
|
Vignols F, Rigau J, Torres MA, Capellades M, Puigdomènech P. 1995. The brown midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase. The Plant Cell 7:407−16 doi: 10.1105/tpc.7.4.407
CrossRef Google Scholar
|
[10]
|
Do CT, Pollet B, Thévenin J, Sibout R, Denoue D, et al. 2007. Both caffeoyl Coenzyme A 3-O-methyltransferase 1 and caffeic acid O-methyltransferase 1 are involved in redundant functions for lignin, flavonoids and sinapoyl malate biosynthesis in Arabidopsis. Planta 226:1117−29 doi: 10.1007/s00425-007-0558-3
CrossRef Google Scholar
|
[11]
|
Zhang K, Qian Q, Huang Z, Wang Y, Li M, et al. 2006. GOLD HULL AND INTERNODE2 encodes a primarily multifunctional cinnamyl-alcohol dehydrogenase in rice. Plant Physiology 140:972−83 doi: 10.1104/pp.105.073007
CrossRef Google Scholar
|
[12]
|
Franke R, Hemm MR, Denault JW, Ruegger MO, Humphreys JM, et al. 2002. Changes in secondary metabolism and deposition of an unusual lignin in the ref8 mutant of Arabidopsis. The Plant Journal 30:47−59 doi: 10.1046/j.1365-313x.2002.01267.x
CrossRef Google Scholar
|
[13]
|
Vanholme B, Cesarino I, Goeminne G, Kim H, Marroni F, et al. 2013. Breeding with rare defective alleles (BRDA): a natural Populus nigra HCT mutant with modified lignin as a case study. New Phytologist 198:765−76 doi: 10.1111/nph.12179
CrossRef Google Scholar
|
[14]
|
Piquemal J, Lapierre C, Myton K, O’connell A, Schuch W, et al. 1998. Down-regulation of Cinnamoyl-CoA Reductase induces significant changes of lignin profiles in transgenic tobacco plants. The Plant Journal 13:71−83 doi: 10.1046/j.1365-313x.1998.00014.x
CrossRef Google Scholar
|
[15]
|
Hu D, Liu X, She H, Gao Z, Ruan R, et al. 2017. The lignin synthesis related genes and lodging resistance of Fagopyrum esculentum. Biologia Plantarum 61:138−46 doi: 10.1007/s10535-016-0685-4
CrossRef Google Scholar
|
[16]
|
Zhao D, Luan Y, Xia X, Shi W, Tang Y, et al. 2020. Lignin provides mechanical support to herbaceous peony (Paeonia lactiflora Pall.) stems. Horticulture Research 7:213 doi: 10.1038/s41438-020-00451-5
CrossRef Google Scholar
|
[17]
|
Liu Q, Luo L, Zheng L. 2018. Lignins: biosynthesis and biological functions in plants. International Journal of Molecular Sciences 19:335 doi: 10.3390/ijms19020335
CrossRef Google Scholar
|
[18]
|
Schultz CJ, Johnson KL, Currie G, Bacic A. 2000. The classical arabinogalactan protein gene family of Arabidopsis. The Plant Cell 12:1751−67 doi: 10.1105/tpc.12.9.1751
CrossRef Google Scholar
|
[19]
|
Ma Y, Yan C, Li H, Wu W, Liu Y, et al. 2017. Bioinformatics prediction and evolution analysis of arabinogalactan proteins in the plant kingdom. Frontiers in Plant Science 8:66 doi: 10.3389/fpls.2017.00066
CrossRef Google Scholar
|
[20]
|
Mareri L, Romi M, Cai G. 2018. Arabinogalactan proteins: actors or spectators during abiotic and biotic stress in plants? Plant Biosystems 153:173−85 doi: 10.1080/11263504.2018.1473525
CrossRef Google Scholar
|
[21]
|
Sun W, Kieliszewski MJ, Showalter AM. 2004. Overexpression of tomato LeAGP-1 arabinogalactan-protein promotes lateral branching and hampers reproductive development. The Plant Journal 40:870−81 doi: 10.1111/j.1365-313X.2004.02274.x
CrossRef Google Scholar
|
[22]
|
van Hengel AJ, Roberts K. 2003. AtAGP30, an arabinogalactan-protein in the cell walls of the primary root, plays a role in root regeneration and seed germination. The Plant Journal 36:256−70 doi: 10.1046/j.1365-313X.2003.01874.x
CrossRef Google Scholar
|
[23]
|
Suzuki Y, Kitagawa M, Knox JP, Yamaguchi I. 2002. A role for arabinogalactan proteins in gibberellin-induced α-amylase production in barley aleurone cells. The Plant Journal 29:733−41 doi: 10.1046/j.1365-313X.2002.01259.x
CrossRef Google Scholar
|
[24]
|
Nguema-Ona E, Coimbra S, Vicré-Gibouin M, Mollet JC, Driouich A. 2012. Arabinogalactan proteins in root and pollen-tube cells: distribution and functional aspects. Annals of Botany 110:383−404 doi: 10.1093/aob/mcs143
CrossRef Google Scholar
|
[25]
|
Motose H, Sugiyama M, Fukuda H. 2004. A proteoglycan mediates inductive interaction during plant vascular development. Nature 429:873−78 doi: 10.1038/nature02613
CrossRef Google Scholar
|
[26]
|
Ma T, Ma H, Zhao H, Qi H, Zhao J. 2014. Identification, characterization, and transcription analysis of xylogen-like arabinogalactan proteins in rice (Oryza sativa L.). BMC Plant Biology 14:299 doi: 10.1186/s12870-014-0299-y
CrossRef Google Scholar
|
[27]
|
Kobayashi Y, Motose H, Iwamoto K, Fukuda H. 2011. Expression and genome-wide analysis of the xylogen-type gene family. Plant and Cell Physiology 52:1095−106 doi: 10.1093/pcp/pcr060
CrossRef Google Scholar
|
[28]
|
Wang C, Chen L, Yang H, Yang S, Wang J. 2019. Genome-wide identification, expression and functional analysis of Populus xylogen-like genes. Plant Science 287:110191 doi: 10.1016/j.plantsci.2019.110191
CrossRef Google Scholar
|
[29]
|
Motose H, Sugiyama M, Fukuda H. 2001. An arabinogalactan protein(s) is a key component of a fraction that mediates local intercellular communication involved in tracheary element differentiation of zinnia mesophyll cells. Plant and Cell Physiology 42:129−37 doi: 10.1093/pcp/pce014
CrossRef Google Scholar
|
[30]
|
Li T, Chen G, Zhang Q. 2021. VvXYLP02 confers gray mold resistance by amplifying jasmonate signaling pathway in Vitis vinifera. Plant Signaling & Behavior 16:1940019 doi: 10.1080/15592324.2021.1940019
CrossRef Google Scholar
|
[31]
|
Zhou Y, Deng Y, Liu D, Wang H, Zhang X, et al. 2021. Promoting virus-induced gene silencing of pepper genes by a heterologous viral silencing suppressor. Plant Biotechnology Journal 19:2398−400 doi: 10.1111/pbi.13724
CrossRef Google Scholar
|
[32]
|
Cuzens JC, Miller JR. 1997. Acid hydrolysis of bagasse for ethanol production. Renewable Energy 10:285−90 doi: 10.1016/0960-1481(96)00079-1
CrossRef Google Scholar
|
[33]
|
Ma H, Zhao J. 2010. Genome-wide identification, classification, and expression analysis of the arabinogalactan protein gene family in rice (Oryza sativa L.). Journal of Experimental Botany 61:2647−68 doi: 10.1093/jxb/erq104
CrossRef Google Scholar
|
[34]
|
Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33:1870−74 doi: 10.1093/molbev/msw054
CrossRef Google Scholar
|
[35]
|
Wang Y, Tang H, Debarry JD, Tan X, Li J, et al. 2012. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research 40:e49 doi: 10.1093/nar/gkr1293
CrossRef Google Scholar
|
[36]
|
Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, et al. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research 30:325−27 doi: 10.1093/nar/30.1.325
CrossRef Google Scholar
|
[37]
|
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202 doi: 10.1016/j.molp.2020.06.009
CrossRef Google Scholar
|
[38]
|
de Oliveira Carvalho A, Gomes VM. 2007. Role of plant lipid transfer proteins in plant cell physiology—A concise review. Peptides 28:1144−53 doi: 10.1016/j.peptides.2007.03.004
CrossRef Google Scholar
|
[39]
|
Liu F, Yu H, Deng Y, Zheng J, Liu M, et al. 2017. PepperHub, an informatics hub for the chili pepper research community. Molecular Plant 10:1129−32 doi: 10.1016/j.molp.2017.03.005
CrossRef Google Scholar
|
[40]
|
Hu Y, Li W, Xu Y, Li G, Liao Y, et al. 2009. Differential expression of candidate genes for lignin biosynthesis under drought stress in maize leaves. Journal of Applied Genetics 50:213−23 doi: 10.1007/BF03195675
CrossRef Google Scholar
|
[41]
|
Fan L, Linker R, Gepstein S, Tanimoto E, Yamamoto R, et al. 2006. Progressive inhibition by water deficit of cell wall extensibility and growth along the elongation zone of maize roots is related to increased lignin metabolism and progressive stelar accumulation of wall phenolics. Plant Physiology 140:603−12 doi: 10.1104/pp.105.073130
CrossRef Google Scholar
|
[42]
|
Liu W, Jiang Y, Jin Y, Wang C, Yang J, et al. 2021. Drought-induced ABA, H2O2 and JA positively regulate CmCAD genes and lignin synthesis in melon stems. BMC Plant Biology 21:83 doi: 10.1186/s12870-021-02869-y
CrossRef Google Scholar
|
[43]
|
Hou D, Lu H, Zhao Z, Pei J, Yang H, et al. 2022. Integrative transcriptomic and metabolomic data provide insights into gene networks associated with lignification in postharvest Lei bamboo shoots under low temperature. Food Chemistry 368:130822 doi: 10.1016/j.foodchem.2021.130822
CrossRef Google Scholar
|
[44]
|
Shi M, Liu X, Zhang H, He Z, Yang H, et al. 2020. The IAA- and ABA-responsive transcription factor CgMYB58 upregulates lignin biosynthesis and triggers juice sac granulation in pummelo. Horticulture Research 7:139 doi: 10.1038/s41438-020-00360-7
CrossRef Google Scholar
|
[45]
|
Aloni R, Tollier MT, Monties B. 1990. The role of auxin and gibberellin in controlling lignin formation in primary phloem fibers and in xylem of Coleus blumei stems. Plant Physiology 94:1743−47 doi: 10.1104/pp.94.4.1743
CrossRef Google Scholar
|
[46]
|
Wang Y, Sheng L, Zhang H, Du X, An C, et al. 2017. CmMYB19 over-expression improves aphid tolerance in Chrysanthemum by promoting lignin synthesis. International Journal of Molecular Sciences 18:619 doi: 10.3390/ijms18030619
CrossRef Google Scholar
|
[47]
|
An C, Sheng L, Du X, Wang Y, Zhang Y, et al. 2019. Overexpression of CmMYB15 provides chrysanthemum resistance to aphids by regulating the biosynthesis of lignin. Horticulture Research 6:84 doi: 10.1038/s41438-019-0166-y
CrossRef Google Scholar
|
[48]
|
Geng D, Shen X, Xie Y, Yang Y, Bian R, et al. 2020. Regulation of phenylpropanoid biosynthesis by MdMYB88 and MdMYB124 contributes to pathogen and drought resistance in apple. Horticulture Research 7:102 doi: 10.1038/s41438-020-0324-2
CrossRef Google Scholar
|