[1]
|
Smaczniak C, Immink RGH, Angenent GC, Kaufmann K. 2012. Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Development 139:3081−98 doi: 10.1242/dev.074674
CrossRef Google Scholar
|
[2]
|
Zhu C, Perry SE. 2005. Control of expression and autoregulation of AGL15, a member of the MADS-box family. The Plant Journal 41:583−94 doi: 10.1111/j.1365-313X.2004.02320.x
CrossRef Google Scholar
|
[3]
|
Riechmann JL, Meyerowitz EM. 1997. MADS domain proteins in plant development. Biological Chemistry 378:1079−101 doi: 10.1515/bchm.1997.378.10.1079
CrossRef Google Scholar
|
[4]
|
Yang Y, Fanning L, Jack T. 2003. The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins, APETALA3 and PISTILLATA. The Plant Journal 33:47−59 doi: 10.1046/j.0960-7412.2003.01473.x
CrossRef Google Scholar
|
[5]
|
Cho S, Jang S, Chae S, Chung KM, Moon YH, et al. 1999. Analysis of the C-terminal region of Arabidopsis thaliana APETALA1 as a transcription activation domain. Plant Molecular Biology 40:419−29 doi: 10.1023/A:1006273127067
CrossRef Google Scholar
|
[6]
|
Martel C, Vrebalov J, Tafelmeyer P, Giovannoni JJ. 2011. The tomato MADS-box transcription factor RIPENING INHIBITOR interacts with promoters involved in numerous ripening processes in a COLORLESS NONRIPENING-dependent manner. Plant Physiology 157:1568−79 doi: 10.1104/pp.111.181107
CrossRef Google Scholar
|
[7]
|
Liu J, Xu B, Hu L, Li M, Su W, et al. 2009. Involvement of a banana MADS-box transcription factor gene in ethylene-induced fruit ripening. Plant Cell Reports 28:103−11 doi: 10.1007/s00299-008-0613-y
CrossRef Google Scholar
|
[8]
|
Liu JH, Liu MT, Jia CH, Zhang J, Miao HX, et al. 2021. Elucidating the mechanism of MaGWD1-mediated starch degradation cooperatively regulated by MaMADS36 and MaMADS55 in banana. Postharvest Biology and Technology 179:111587 doi: 10.1016/j.postharvbio.2021.111587
CrossRef Google Scholar
|
[9]
|
Liu JH, Liu MT, Wang JY, Zhang J, Miao HX, et al. 2021. Transcription factor MaMADS36 plays a central role in regulating banana fruit ripening. Journal of Experimental Botany 72:7078−91 doi: 10.1093/jxb/erab341
CrossRef Google Scholar
|
[10]
|
Wang S, Chang Y, Guo J, Chen JG. 2007. Arabidopsis Ovate Family Protein 1 is a transcriptional repressor that suppresses cell elongation. Plant Journal 50:858−72 doi: 10.1111/j.1365-313X.2007.03096.x
CrossRef Google Scholar
|
[11]
|
Li E, Wang S, Liu Y, Chen JG, Douglas CJ. 2011. OVATE FAMILY PROTEIN4 (OFP4) interaction with KNAT7 regulates secondary cell wall formation in Arabidopsis thaliana. The Plant Jouranl 67:328−41 doi: 10.1111/j.1365-313X.2011.04595.x
CrossRef Google Scholar
|
[12]
|
Liu J, Van Eck J, Cong B, Tanksley SD. 2002. A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proceedings of the National Academy of Sciences of the United States of America 99:13302−6 doi: 10.1073/pnas.162485999
CrossRef Google Scholar
|
[13]
|
Tsaballa A, Pasentsis K, Darzentas N, Tsaftaris AS. 2011. Multiple evidence for the role of an Ovate-like gene in determining fruit shape in pepper. BMC Plant Biology 11:46 doi: 10.1186/1471-2229-11-46
CrossRef Google Scholar
|
[14]
|
Yang Z, Li C, Wang Y, Zhang C, Wu Z, et al. 2014. GhAGL15s, preferentially expressed during somatic embryogenesis, promote embryogenic callus formation in cotton (Gossypium hirsutum L. ). Molecular Genetics and Genomics 289:873−83 doi: 10.1007/s00438-014-0856-y
CrossRef Google Scholar
|
[15]
|
Liu J, Zhang J, Hu W, Miao H, Zhang J, et al. 2015. Banana Ovate family protein MaOFP1 and MADS-box protein MuMADS1 antagonistically regulated banana fruit ripening. PLoS One 10:e0123870 doi: 10.1371/journal.pone.0123870
CrossRef Google Scholar
|
[16]
|
Liu JH, Zhang J, Wang JY, Zhang JB, Miao HX, et al. 2018. MuMADS1 and MaOFP1 regulate fruit quality in a tomato ovate mutant. Plant Biotechnology Journal 16:989−1001 doi: 10.1111/pbi.12843
CrossRef Google Scholar
|
[17]
|
Hu DG, Sun CH, Zhang QY, An JP, You CX, et al. 2016. Glucose sensor MdHXK1 phosphorylates and stabilizes MdbHLH3 to promote anthocyanin biosynthesis in apple. PLoS Genetics 12:e1006273 doi: 10.1371/journal.pgen.1006273
CrossRef Google Scholar
|
[18]
|
Schweiger R, Schwenkert S. 2014. Protein-protein interactions visualized by bimolecular fluorescence complementation in tobacco protoplasts and leaves. Journal of Visualized Experiments 85:51327 doi: 10.3791/51327
CrossRef Google Scholar
|
[19]
|
Zhang J, Miao HX, Xie BY, Wang JY, Jia CH, et al. 2020. Genomic and transcriptional analysis of banana ovate family proteins reveals their relationship with fruit development and ripening. Biochemical Genetics 58:412−29 doi: 10.1007/s10528-020-09951-4
CrossRef Google Scholar
|
[20]
|
Brambilla V, Battaglia R, Colombo M, Masiero S, Bencivenga S, et al. 2007. Genetic and molecular interactions between BELL1 and MADS box factors support ovule development in Arabidopsis. The Plant Cell 19:2544−56 doi: 10.1105/tpc.107.051797
CrossRef Google Scholar
|
[21]
|
Liu JH, Zhang J, Jia CH, Zhang JB, Wang JS, et al. 2013. The interaction of banana MADS-box protein MuMADS1 and ubiquitin-activating enzyme E-MuUBA in post-harvest banana fruit. Plant Cell Reports 32:129−37 doi: 10.1007/s00299-012-1347-4
CrossRef Google Scholar
|
[22]
|
Sridhar VV, Surendrarao A, Liu Z. 2006. APETALA1 and SEPALLATA3 interact with SEUSS to mediate transcription repression during flower development. Development 133:3159−66 doi: 10.1242/dev.02498
CrossRef Google Scholar
|
[23]
|
Masiero S, Imbriano C, Ravasio F, Favaro R, Pelucchi N, et al. 2002. Ternary complex formation between MADS-box transcription factors and the histone fold protein NF-YB. The Journal of Biological Chemistry 277:26429−35 doi: 10.1074/jbc.M202546200
CrossRef Google Scholar
|
[24]
|
Snouffer A, Kraus C, van der Knaap E. 2020. The shape of things to come: ovate family proteins regulate plant organ shape. Current Opinion in Plant Biology 53:98−105 doi: 10.1016/j.pbi.2019.10.005
CrossRef Google Scholar
|