[1]
|
Ajien A, Idris J, Md Sofwan N, Husen R, Seli H. 2023. Coconut shell and husk biochar: A review of production and activation technology, economic, financial aspect and application. Waste Management & Research 41:37−51 doi: 10.1177/0734242X221127167
CrossRef Google Scholar
|
[2]
|
Lin X, Song Z, Jiang H, Hao Y, Hu X, et al. 2022. Production of bacterial cellulose in the medium with yeasts pre-fermented coconut water or with addition of selected amino acids. Foods 11:3627 doi: 10.3390/foods11223627
CrossRef Google Scholar
|
[3]
|
Sun R, Gao L, Mi Z, Zheng Y, Li D. 2020. CnMADS1, a MADS transcription factor, positively modulates cell proliferation and lipid metabolism in the endosperm of coconut (Cocos nucifera L.). Planta 252:83 doi: 10.1007/s00425-020-03490-3
CrossRef Google Scholar
|
[4]
|
Dhanasekara CS, Nelson A, Spradley M, Wynn A, Robohm-Leavitt C, et al. 2022. Effects of consumption of coconut oil or coconut on glycemic control and insulin sensitivity: A systematic review and meta-analysis of interventional trials. Nutrition, Metabolism & Cardiovascular Diseases 32:53−68 doi: 10.1016/j.numecd.2021.09.014
CrossRef Google Scholar
|
[5]
|
Häkkinen ST, Nygren H, Nohynek L, Puupponen-Pimiä R, Heiniö RL, et al. 2020. Plant cell cultures as food − aspects of sustainability and safety. Plant Cell Reports 39:1655−68 doi: 10.1007/s00299-020-02592-2
CrossRef Google Scholar
|
[6]
|
Murugan T, Awasthi OP, Singh SK, Chawla G, Solanke AU, et al. 2023. Molecular and histological validation of modified in ovulo nucellus culture based high-competency direct somatic embryogenesis and amplitude true-to-the-type plantlet recovery in Kinnow mandarin. Frontiers in Plant Science 14:1116151 doi: 10.3389/fpls.2023.1116151
CrossRef Google Scholar
|
[7]
|
Beard KM, Boling AWH, Bargmann BOR. 2021. Protoplast isolation, transient transformation, and flow-cytometric analysis of reporter-gene activation in Cannabis sativa L. Industrial Crops and Products 164:113360 doi: 10.1016/j.indcrop.2021.113360
CrossRef Google Scholar
|
[8]
|
Ren R, Gao J, Yin D, Li K, Lu C, et al. 2021. Highly efficient leaf base protoplast isolation and transient expression systems for orchids and other important monocot crops. Frontiers in Plant Science 12:626015 doi: 10.3389/fpls.2021.626015
CrossRef Google Scholar
|
[9]
|
Ma W, Yi F, Xiao Y, Yang G, Chen F, et al. 2020. Isolation of leaf mesophyll protoplasts optimized by orthogonal design for transient gene expression in Catalpa bungei. Scientia Horticulturae 274:109684 doi: 10.1016/j.scienta.2020.109684
CrossRef Google Scholar
|
[10]
|
Deeken R, Ache P, Kajahn I, Klinkenberg J, Bringmann G, et al. 2008. Identification of Arabidopsis thaliana phloem RNAs provides a search criterion for phloem-based transcripts hidden in complex datasets of microarray experiments. The Plant Journal 55:746−59 doi: 10.1111/j.1365-313X.2008.03555.x
CrossRef Google Scholar
|
[11]
|
Zhang YL, Zhang CL, Wang GL, Wang YX, Qi CH, et al. 2019. The R2R3 MYB transcription factor MdMYB30 modulates plant resistance against pathogens by regulating cuticular wax biosynthesis. BMC Plant Biology 19:362 doi: 10.1186/s12870-019-1918-4
CrossRef Google Scholar
|
[12]
|
Malnoy M, Viola R, Jung MH, Koo OJ, Kim S, et al. 2016. DNA-Free Genetically Edited Grapevine and Apple Protoplast Using CRISPR/Cas9 Ribonucleoproteins. Frontiers in Plant Science 7:1904 doi: 10.3389/fpls.2016.01904
CrossRef Google Scholar
|
[13]
|
Liang Z, Zhang K, Chen K, Gao C. 2014. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. Journal of Genetics and Genomics 41:63−68 doi: 10.1016/j.jgg.2013.12.001
CrossRef Google Scholar
|
[14]
|
Planchais S, Camborde L, Jupin I. 2023. Protocols for studying protein stability in an Arabidopsis protoplast transient expression system. In Plant Proteostasis. Methods in Molecular Biology, eds. Lois LM, Trujillo M. vol 2581. New York: Humana. pp. 179−99. https://doi.org/10.1007/978-1-0716-2784-6_13
|
[15]
|
Zhang L, Yung WS, Wang Z, Li MW, Huang M. 2022. Optimization of an efficient protoplast transformation system for transient expression analysis using leaves of Torenia fournieri. Plants 11:2106 doi: 10.3390/plants11162106
CrossRef Google Scholar
|
[16]
|
Kang H, Naing AH, Park SK, Chung MY, Kim CK. 2023. Protoplast isolation and transient gene expression in different petunia cultivars. Protoplasma 260:271−80 doi: 10.1007/s00709-022-01776-9
CrossRef Google Scholar
|
[17]
|
Hyden B, Yuan G, Liu Y, Smart LB, Tuskan GA, et al. 2022. Protoplast-Based Transient Expression and Gene Editing in Shrub Willow (Salix purpurea L.). Plants 11:3490 doi: 10.3390/plants11243490
CrossRef Google Scholar
|
[18]
|
Dai D, Ma Z, Song R. 2021. Maize endosperm development. Journal of Integrative Plant Biology 63:613−27 doi: 10.1111/jipb.13069
CrossRef Google Scholar
|
[19]
|
Strobbe S, Verstraete J, Stove C, Van Der Straeten D. 2021. Metabolic engineering of rice endosperm towards higher vitamin B1 accumulation. Plant Biotechnology Journal 19:1253−67 doi: 10.1111/pbi.13545
CrossRef Google Scholar
|
[20]
|
Wang Y, Zou J, Zhao J, Zheng Y, Li D. 2021. EgmiR5179 regulates lipid metabolism by targeting EgMADS16 in the mesocarp of oil palm (Elaeis guineensis). Frontiers in Plant Science 12:722596 doi: 10.3389/fpls.2021.722596
CrossRef Google Scholar
|
[21]
|
Suda J, Trávnícek P. 2006. Reliable DNA ploidy determination in dehydrated tissues of vascular plants by DAPI flow cytometry-new prospects for plant research. Cytometry A 69:273−80 doi: 10.1002/cyto.a.20253
CrossRef Google Scholar
|
[22]
|
Shiba T, Mii M. 2005. Visual selection and maintenance of the cell lines with high plant regeneration ability and low ploidy level in Dianthus acicularis by monitoring with flow cytometry analysis. Plant Cell Reports 24:572−80 doi: 10.1007/s00299-005-0011-7
CrossRef Google Scholar
|
[23]
|
Xu X, Li M, Zou JX, Zheng YS, Li DD. 2022. EgMYB108 regulates very long-chain fatty acid (VLCFA) anabolism in the mesocarp of oil palm. Plant Cell Reports 41:1449−60 doi: 10.1007/s00299-022-02868-9
CrossRef Google Scholar
|