[1]
|
Chen C, Deng C, Zhao Y, Han Z. 2015. Textual research on medicine origin of wild Chrysanthemum. Journal of Hunan University of Chinese Medicine 35:69−72 doi: 10.3969/j.issn.1674-070X.2015.05.023
CrossRef Google Scholar
|
[2]
|
Shao Y, Sun Y, Li D, Chen Y. 2020. Chrysanthemum indicum L.: A comprehensive review of its botany, phytochemistry and pharmacology. The American Journal of Chinese Medicine 48:871−97 doi: 10.1142/S0192415X20500421
CrossRef Google Scholar
|
[3]
|
Li J, Wan Q, Abbott RJ, Rao GY. 2013. Geographical distribution of cytotypes in the Chrysanthemum indicum complex as evidenced by ploidy level and genome-size variation: Cytotype distribution of Chrysanthemum indicum complex. Journal of Systematics and Evolution 51:196−204 doi: 10.1111/j.1759-6831.2012.00241.x
CrossRef Google Scholar
|
[4]
|
Liu Q, Zhang H, Jia W, Yang D. 1983. The investigation on geographical distribution, ecological habit and storage quantity on a new resource plant of Hubei, Dendranthema indicum (L.) Des monl. var. aromaticum. Journal of Wuhan Botanical Research 1(2):239−45
Google Scholar
|
[5]
|
Zhou C, Dai S. 2002. AFLP analyses of some Dendranthema spp. Journal of Beijing Forestry University 24:71−75 doi: 10.3321/j.issn:1000-1522.2002.05.014
CrossRef Google Scholar
|
[6]
|
Yang W, Glover BJ, Rao GY, Yang J. 2006. Molecular evidence for multiple polyploidization and lineage recombination in the Chrysanthemum indicum polyploid complex (Asteraceae). New Phytologist 171:875−86 doi: 10.1111/j.1469-8137.2006.01779.x
CrossRef Google Scholar
|
[7]
|
Li J, Wan Q, Guo YP, Abbott RJ, Rao GY. 2014. Should I stay or should I go: biogeographic and evolutionary history of a polyploid complex (Chrysanthemum indicum complex) in response to Pleistocene climate change in China. New Phytologist 201:1031−44 doi: 10.1111/nph.12585
CrossRef Google Scholar
|
[8]
|
Kim SJ, Lee CH, Kim J, Kim KS. 2014. Phylogenetic analysis of Korean native Chrysanthemum species based on morphological characteristics. Scientia Horticulturae 175:278−89 doi: 10.1016/j.scienta.2014.06.018
CrossRef Google Scholar
|
[9]
|
Masuda Y, Yukawa T, Kondo K. 2009. Molecular phylogenetic analysis of members of Chrysanthemum and its related genera in the tribe Anthemideae, the Asteraceae in East Asia on the basis of the internal transcribed spacer (ITS) region and the external transcribed spacer (ETS) region of nrDNA. Chromosome Botany 4:25−36 doi: 10.3199/iscb.4.25
CrossRef Google Scholar
|
[10]
|
Bremer K, Humphries CJ. 1993. Generic monograph of the Asteraceae-Anthemideae. Bulletin of the Natural History Museum. Botany Series 23:71−177. https://www.biodiversitylibrary.org/part/224587
|
[11]
|
Watson LE, Bates PL, Evans TM, Unwin MM, Estes JR. 2002. Molecular phylogeny of Subtribe Artemisiinae (Asteraceae), including Artemisia and its allied and segregate genera. BMC Evolutionary Biology 2:17 doi: 10.1186/1471-2148-2-17
CrossRef Google Scholar
|
[12]
|
Ohashi H, Yonekura K. 2004. New combinations in Chrysanthemum (Compositae-Anthemideae) of Asia with a list of Japanese species. Journal of Japanese Botany 79:186−95
Google Scholar
|
[13]
|
Liu PL, Wan Q, Guo YP, Yang J, Rao GY. 2012. Phylogeny of the genus Chrysanthemum L.: Evidence from single-copy nuclear gene and chloroplast DNA sequences. PLoS ONE 7:e48970 doi: 10.1371/journal.pone.0048970
CrossRef Google Scholar
|
[14]
|
Zhao HE, Liu ZH, Hu X, Yin JL, Li W, et al. 2009. Chrysanthemum genetic resources and related genera of Chrysanthemum collected in China. Genetic Resources and Crop Evolution 56:937−46 doi: 10.1007/s10722-009-9412-8
CrossRef Google Scholar
|
[15]
|
Zhao HB, Chen FD, Chen SM, Wu GS, Guo WM. 2010. Molecular phylogeny of Chrysanthemum, Ajania and its allies (Anthemideae, Asteraceae) as inferred from nuclear ribosomal ITS and chloroplast trnL-F IGS sequences. Plant Systematics and Evolution 284:153−69 doi: 10.1007/s00606-009-0242-0
CrossRef Google Scholar
|
[16]
|
Han Z, Ma X, Wei M, Zhao T, Zhan R, et al. 2018. SSR marker development and intraspecific genetic divergence exploration of Chrysanthemum indicum based on transcriptome analysis. BMC Genomics 19:291 doi: 10.1186/s12864-018-4702-1
CrossRef Google Scholar
|
[17]
|
Ma YP, Wei JX, Yu ZY, Qin B, Dai SL. 2015. Characterization of ploidy levels in Chrysanthemum L. by flow cytometry. Journal of Forestry Research 26:771−75 doi: 10.1007/s11676-015-0071-7
CrossRef Google Scholar
|
[18]
|
Sumei C, Fadi C, Hongbo Z, Weimin F. 2007. Study on the genetic relationships of several taxa of the genus Chrysanthemum genus based on rpl16-rpl14 and GS sequences. Jiangsu Agricultural Sciences 6:111−15
Google Scholar
|
[19]
|
Kondo K, Abd El-Twab MH, Idesawa R, Kimura S, Tanaka R. 2003. Genome phylogenetics in Chrysanthemum sensu lato. In Plant Genome: Biodiversity and Evolution, eds. Sharma AK, Sharma A. Enfield, New Hampshire, UK: Science Publisher. pp. 117–200
|
[20]
|
Qi S, Twyford AD, Ding JY, Borrell JS, Wang LZ, et al. 2022. Natural interploidy hybridization among the key taxa involved in the origin of horticultural chrysanthemums. Journal of Systematics and Evolution 60:1281−90 doi: 10.1111/jse.12810
CrossRef Google Scholar
|
[21]
|
Yuan RS, Wang X, Zhang JJ, Sen L, Dong GQ, et al. 2022. Population genetic analysis and core collection construction of Chrysanthemum indicum var. aromaticum natural populations. Modernization of Traditional Chinese Medicine and Materia Medica - World Science and Technology 24:1325−34 doi: 10.11842/wst.20211110020
CrossRef Google Scholar
|
[22]
|
Fukai S, Nagira T, Goi M. 2000. Cross compatibility between chrysanthemum (Dendranthema grandiflorum) and dendranthema species native to Japan. Acta Horticulturae 508:337−40 doi: 10.17660/ActaHortic.2000.508.63
CrossRef Google Scholar
|
[23]
|
Ma YP, Zhao L, Zhang WJ, Zhang HY, Xing X, et al. 2020. Origins of cultivars of Chrysanthemum—Evidence from the chloroplast genome and nuclear LFY gene. Journal of Systematics and Evolution 58:925−944 doi: 10.1111/jse.12682
CrossRef Google Scholar
|
[24]
|
Dai SL, Chen JY. 1997. Cladistic study on some Dendranthema spp. in China. Wuhan Botanical Research 15:27−34
Google Scholar
|
[25]
|
Dai SL, Chen JY, Li WB. 1998. Application of RAPD analysis in the study on the origin of Chinese cultivated chrysanthemum. Acta Botanica Sinica 40:1053−59
Google Scholar
|
[26]
|
Dai SL, Wang WK, Li MX, Xu YX. 2005. Phylogenetic relationship of Dendranthema (DC.) Des Moul. revealed by fluorescent in situ hybridization. Journal of Integrative Plant Biology 47:783−91 doi: 10.1111/j.1744-7909.2005.00068.x
CrossRef Google Scholar
|
[27]
|
Xu Y, Liao B, Ostevik KL, Zhou H, Wang F, et al. 2022. The maternal donor of Chrysanthemum cultivars revealed by comparative analysis of the chloroplast genome. Frontiers in Plant Science 13:923442 doi: 10.3389/fpls.2022.923442
CrossRef Google Scholar
|
[28]
|
Fang HL, Guo QS, Shen HJ, Shao QS. 2010. Phylogeography of Chrysanthemum indicum L. (Compositae) in China based on trnL-F sequences. Biochemical Systematics and Ecology 38:1204−11 doi: 10.1016/j.bse.2010.12.011
CrossRef Google Scholar
|
[29]
|
Qi X, Wang H, Ning Y, Sun H, Jiang J, et al. 2017. Genetic diversity and methylation polymorphism analysis of Chrysanthemum nankingense. Biochemical Systematics and Ecology 72:1−7 doi: 10.1016/j.bse.2017.03.006
CrossRef Google Scholar
|
[30]
|
Nguyen TK, Ha STT, Lim JH. 2020. Analysis of chrysanthemum genetic diversity by genotyping-by-sequencing. Horticulture, Environment, and Biotechnology 61:903−13 doi: 10.1007/s13580-020-00274-2
CrossRef Google Scholar
|
[31]
|
Liu YX, Li PT, Chi TH, Wang HB, Guan ZY, et al. 2019. Identification and genetic diversity analysis of interspecific F1 hybrids between Chrysanthemum nankingense × C. lavandulifolium. Acta Horticulturae Sinica 46(8):1553−64 doi: 10.16420/j.issn.0513-353x.2018-1056
CrossRef Google Scholar
|
[32]
|
Song X, Xu Y, Gao K, Fan G, Zhang F, et al. 2020. High-density genetic map construction and identification of loci controlling flower-type traits in Chrysanthemum (Chrysanthemum × morifolium Ramat.). Horticulture Research 7:108 doi: 10.1038/s41438-020-0333-1
CrossRef Google Scholar
|
[33]
|
Shen CZ, Zhang CJ, Chen J, Guo YP. 2021. Clarifying recent adaptive diversification of the Chrysanthemum-Group on the basis of an updated multilocus phylogeny of subtribe Artemisiinae (Asteraceae: Anthemideae). Frontiers in Plant Science 12:648026 doi: 10.3389/fpls.2021.648026
CrossRef Google Scholar
|
[34]
|
Chen X, Wang H, Jiang J, Jiang Y, Zhang W, et al. 2022. Biogeographic and metabolic studies support a glacial radiation hypothesis during Chrysanthemum evolution. Horticulture Research 9:uhac153 doi: 10.1093/hr/uhac153
CrossRef Google Scholar
|
[35]
|
Chen X, Wang H, Yang X, Jiang J, Ren G, et al. 2020. Small-scale alpine topography at low latitudes and high altitudes: refuge areas of the genus Chrysanthemum and its allies. Horticulture Research 7:184 doi: 10.1038/s41438-020-00407-9
CrossRef Google Scholar
|
[36]
|
Zhang F, Chen F, Schwarzacher T, Heslop-Harrison JS, Teng N. 2023. The nature and genomic landscape of repetitive DNA classes in Chrysanthemum nankingense shows recent genomic changes. Annals of Botany 131:215−28 doi: 10.1093/aob/mcac066
CrossRef Google Scholar
|
[37]
|
Song C, Liu Y, Song A, Dong G, Zhao H, et al. 2018. The Chrysanthemum nankingense genome provides insights into the evolution and diversification of chrysanthemum flowers and medicinal traits. Molecular Plant 11:1482−91 doi: 10.1016/j.molp.2018.10.003
CrossRef Google Scholar
|
[38]
|
Hirakawa H, Sumitomo K, Hisamatsu T, Nagano S, Shirasawa K, et al. 2019. De novo whole-genome assembly in Chrysanthemum seticuspe, a model species of Chrysanthemums, and its application to genetic and gene discovery analysis. DNA Research 26:195−203 doi: 10.1093/dnares/dsy048
CrossRef Google Scholar
|
[39]
|
van Lieshout N, van Kaauwen M, Kodde L, Arens P, Smulders MJM, et al. 2022. De novo whole-genome assembly of Chrysanthemum makinoi, a key wild chrysanthemum. G3 Genes| Genomes| Genetics 12:jkab358 doi: 10.1093/g3journal/jkab358
CrossRef Google Scholar
|
[40]
|
Nakano M, Hirakawa H, Fukai E, Toyoda A, Kajitani R, et al. 2021. A chromosome-level genome sequence of Chrysanthemum seticuspe, a model species for hexaploid cultivated chrysanthemum. Communications Biology 4:1167 doi: 10.1038/s42003-021-02704-y
CrossRef Google Scholar
|
[41]
|
Wen X, Li J, Wang L, Lu C, Gao Q, et al. 2022. The Chrysanthemum lavandulifolium genome and the molecular mechanism underlying diverse capitulum types. Horticulture Research 9:uhab022 doi: 10.1093/hr/uhab022
CrossRef Google Scholar
|
[42]
|
Song A, Su J, Wang H, Zhang Z, Zhang X, et al. 2023. Analyses of a chromosome-scale genome assembly reveal the origin and evolution of cultivated chrysanthemum. Nature Communications 14:2021 doi: 10.1038/s41467-023-37730-3
CrossRef Google Scholar
|
[43]
|
Wang S, Song Q, Li S, Hu Z, Dong G, et al. 2018. Assembly of a complete mitogenome of Chrysanthemum nankingense using Oxford Nanopore long reads and the diversity and evolution of Asteraceae Mitogenomes. Genes 9:547 doi: 10.3390/genes9110547
CrossRef Google Scholar
|
[44]
|
Wen X, Qi S, Huang H, Wu X, Zhang B, et al. 2019. The expression and interactions of ABCE-class and CYC2-like genes in the capitulum development of Chrysanthemum lavandulifolium and C. × morifolium. Plant Growth Regulation 88:205−14 doi: 10.1007/s10725-019-00491-5
CrossRef Google Scholar
|
[45]
|
Li J, Zhang Q, Kong D, Pu Y, Wen X, et al. 2023. Genome-wide identification of the MIKCc-type MADS-box gene family in Chrysanthemum lavandulifolium reveals their roles in the capitulum development. Frontiers in Plant Science 14:1153490 doi: 10.3389/fpls.2023.1153490
CrossRef Google Scholar
|
[46]
|
Zuellig MP, Kenney AM, Sweigart AL. 2014. Evolutionary genetics of plant adaptation: insights from new model systems. Current Opinion in Plant Biology 18:44−50 doi: 10.1016/j.pbi.2014.01.001
CrossRef Google Scholar
|
[47]
|
SharathKumar M, Heuvelink E, Marcelis LFM, van Ieperen W. 2021. Floral induction in the short-day plant chrysanthemum under blue and red extended long-days. Frontiers in Plant Science 11:610041 doi: 10.3389/fpls.2020.610041
CrossRef Google Scholar
|
[48]
|
Liu L, Xue Y, Luo J, Han M, Liu X, et al. 2023. Developing a UV–visible reporter-assisted CRISPR/Cas9 gene editing system to alter flowering time in Chrysanthemum indicum. Plant Biotechnology Journal 21:1519−21 doi: 10.1111/pbi.14062
CrossRef Google Scholar
|
[49]
|
Fu J, Wang L, Wang Y, Yang L, Yang Y, et al. 2014. Photoperiodic control of FT-like gene ClFT initiates flowering in Chrysanthemum lavandulifolium. Plant Physiology and Biochemistry 74:230−38 doi: 10.1016/j.plaphy.2013.11.004
CrossRef Google Scholar
|
[50]
|
Fu J, Yang L, Dai S. 2015. Identification and characterization of the CONSTANS-like gene family in the short-day plant Chrysanthemum lavandulifolium. Molecular Genetics and Genomics 290:1039−54 doi: 10.1007/s00438-014-0977-3
CrossRef Google Scholar
|
[51]
|
Yang L, Fu J, Qi S, Hong Y, Huang H, et al. 2017. Molecular cloning and function analysis of ClCRY1a and ClCRY1b, two genes in Chrysanthemum lavandulifolium that play vital roles in promoting floral transition. Gene 617:32−43 doi: 10.1016/j.gene.2017.02.020
CrossRef Google Scholar
|
[52]
|
Yang LW, Wen XH, Fu JX, Dai SL. 2018. ClCRY2 facilitates floral transition in Chrysanthemum lavandulifolium by affecting the transcription of circadian clock-related genes under short-day photoperiods. Horticulture Research 5:58 doi: 10.1038/s41438-018-0063-9
CrossRef Google Scholar
|
[53]
|
Zhang Q, Yang X, Dai SL, Qiu D, Dong N, et al. 2020. Differential analysis of morphological characters of Chrysanthemum vestitum under different N levels. Journal of China Agricultural University 25:70−77
Google Scholar
|
[54]
|
Zhang Q, Li J, Wen X, Deng C, Yang X, et al. 2023. Genome-wide identification and characterization analysis of RWP-RK family genes reveal their role in flowering time of Chrysanthemum lavandulifolium. BMC Plant Biology 23:197 doi: 10.1186/s12870-023-04201-2
CrossRef Google Scholar
|
[55]
|
Zhang X, Zhang P, Wang G, Bao Z, Ma F. 2022. Chrysanthemum lavandulifolium homolog ClMAD1 modulates the floral transition during temperature shift. Environmental and Experimental Botany 194:104720 doi: 10.1016/j.envexpbot.2021.104720
CrossRef Google Scholar
|
[56]
|
Ma YP, Wang LL, Liu H, Dai SL. 2012. Comparative expression analysis of DFL, a LFY/FLO Homologue Gene in Dendranthema lavandulifolium responds to photoperiodic induction. Advanced Materials Research 518–523:154−58 doi: 10.4028/www.scientific.net/amr.518-523.154
CrossRef Google Scholar
|
[57]
|
Wang Y, Ma Y, Fu J, Qi S, Ma H, et al. 2013. Isolation and functional analysis of the ClM8-FRUITFULL-like MADS-box gene from Chrysanthemum lavandulifolium. Scientia Horticulturae 161:125−33 doi: 10.1016/j.scienta.2013.05.045
CrossRef Google Scholar
|
[58]
|
Shen CZ, Chen J, Zhang CJ, Rao GY, Guo YP. 2020. Dysfunction of CYC2g is responsible for the evolutionary shift from radiate to disciform flowerheads in the Chrysanthemum group (Asteraceae: Anthemideae). The Plant Journal 106:1024−38 doi: 10.1111/tpj.15216
CrossRef Google Scholar
|
[59]
|
Yin M, Hu R, Song A, Guan Z, Chen F, et al. 2023. Genome-wide identification and expression analysis of HSP70 gene family in Chrysanthemum lavandulifolium under heat stress. Horticulturae 9:238 doi: 10.3390/horticulturae9020238
CrossRef Google Scholar
|
[60]
|
Gao W, He M, Liu J, Ma X, Zhang Y, et al. 2018. Overexpression of Chrysanthemum lavandulifolium ClCBF1 in Chrysanthemum morifolium 'White Snow' improves the level of salinity and drought tolerance. Plant Physiology and Biochemistry 124:50−58 doi: 10.1016/j.plaphy.2018.01.004
CrossRef Google Scholar
|
[61]
|
Ren M, Yang W, Zhang J, Zhao L, Quan Y, et al. 2023. Overexpression of ClRAP2.4 in Chrysanthemum enhances tolerance to cold stress. Functional Plant Biology 50:470−81 doi: 10.1071/FP22310
CrossRef Google Scholar
|
[62]
|
Tian C, Zhai L, Zhu W, Qi X, Yu Z, et al. 2022. Characterization of the TCP gene family in Chrysanthemum nankingense and the role of CnTCP4 in cold tolerance. Plants 11:936 doi: 10.3390/plants11070936
CrossRef Google Scholar
|
[63]
|
Liu X, Xia B, Purente N, Chen B, Zhou Y, et al. 2021. Transgenic Chrysanthemum indicum overexpressing cin-miR396a exhibits altered plant development and reduced salt and drought tolerance. Plant Physiology and Biochemistry 168:17−26 doi: 10.1016/j.plaphy.2021.09.035
CrossRef Google Scholar
|
[64]
|
Zhang Z, Luan D, Chen G, Xiao F, Yin D, et al. 2018. Isolation and characterization of a waterlogging-responsive gene involved in ethylene biosynthesis in chrysanthemum. Acta Physiologiae Plantarum 40:100 doi: 10.1007/s11738-018-2667-y
CrossRef Google Scholar
|
[65]
|
Pichersky E, Raguso RA. 2018. Why do plants produce so many terpenoid compounds? New Phytologist 220:692−702 doi: 10.1111/nph.14178
CrossRef Google Scholar
|
[66]
|
Jia Q, Brown R, Köllner TG, Fu J, Chen X, et al. 2022. Origin and early evolution of the plant terpene synthase family. Proceedings of the National Academy of Sciences of the United States of America 119:e2100361119 doi: 10.1073/pnas.2100361119
CrossRef Google Scholar
|
[67]
|
Jian L, Sun M, Zhang QX. 2014. Analysis on aroma compositions in flowers, stems and leaves of Chrysanthemum indicum var. aromaticum. Journal of Northwest A&F University (Natural Science Edition) 42:87−92 doi: 10.13207/j.cnki.jnwafu.2014.11.100
CrossRef Google Scholar
|
[68]
|
Gao W, Meng Q, Wang X, Chen F, He M, et al. 2023. Overexpression of GPS and FPS from Chrysanthemum indicum var. aromaticum resulted in modified trichome formation and terpenoid biosynthesis in tobacco. Plant Growth Regulation 99:553−66 doi: 10.1007/s10725-022-00927-5
CrossRef Google Scholar
|
[69]
|
Liu Y, Ji W, Wang X, Xia B, He M, et al. 2023. Identification and functional characterization of a new terpene synthase gene from Chrysanthemum indicum var. aromaticum. Horticultural Science 50:61−71 doi: 10.17221/61/2022-HORTSCI
CrossRef Google Scholar
|
[70]
|
Zhu L, Liao J, Liu Y, Zhou C, Wang X, et al. 2022. Integrative metabolome and transcriptome analyses reveal the molecular mechanism underlying variation in floral scent during flower development of Chrysanthemum indicum var. aromaticum. Frontiers in Plant Science 13:919151 doi: 10.3389/fpls.2022.919151
CrossRef Google Scholar
|
[71]
|
Gao W, Meng Q, Wang X, Chen F, Zhou Y, et al. 2023. Overexpression of CiMYC2 transcription factor from Chrysanthemum indicum var. aromaticum resulted in modified trichome formation and terpenoid biosynthesis in transgenic tobacco. Journal of Plant Growth Regulation 42:4161−75 doi: 10.1007/s00344-022-10881-1
CrossRef Google Scholar
|
[72]
|
Feng L, Lin Y, Cai Y, Wei W, Yang J, et al. 2023. Terpenoid VOC profiles and functional characterization of terpene synthases in diploid and tetraploid cytotypes of Chrysanthemum indicum L. Plant Physiology and Biochemistry 200:107766 doi: 10.1016/j.plaphy.2023.107766
CrossRef Google Scholar
|
[73]
|
Wang X, Zhang J, Liu Z, Wang S, Huang B, et al. 2021. Comparative transcriptome analysis of three chrysanthemums provides insights into flavonoid and terpenoid biosynthesis. Journal of Plant Biology 64:389−401 doi: 10.1007/s12374-021-09304-7
CrossRef Google Scholar
|
[74]
|
Wu QW, Wei M, Feng LF, Ding L, Wei WK, et al. 2022. Rhamnosyltransferases involved in the biosynthesis of flavone rutinosides in Chrysanthemum species. Plant Physiology 190:2122−36 doi: 10.1093/plphys/kiac371
CrossRef Google Scholar
|
[75]
|
Jiang Y, Ji X, Duan L, Ye P, Yang J, et al. 2019. Gene mining and identification of a flavone synthase II involved in flavones biosynthesis by transcriptomic analysis and targeted flavonoid profiling in Chrysanthemum indicum L. Industrial Crops and Products 134:244−56 doi: 10.1016/j.indcrop.2019.04.009
CrossRef Google Scholar
|
[76]
|
Zhu L, Ding Y, Wang S, Wang Z, Dai L. 2022. Genome-wide identification, characterization, and expression analysis of CHS gene family members in Chrysanthemum nankingense. Genes 13:2145 doi: 10.3390/genes13112145
CrossRef Google Scholar
|
[77]
|
Kapli P, Yang Z, Telford MJ. 2020. Phylogenetic tree building in the genomic age. Nature Reviews Genetics 21:428−44 doi: 10.1038/s41576-020-0233-0
CrossRef Google Scholar
|
[78]
|
Mandel JR, Dikow RB, Siniscalchi CM, Thapa R, Watson LE, et al. 2019. A fully resolved backbone phylogeny reveals numerous dispersals and explosive diversifications throughout the history of Asteraceae. Proceedings of the National Academy of Sciences of the United States of America 116:14083−88 doi: 10.1073/pnas.1903871116
CrossRef Google Scholar
|
[79]
|
Wu GA, Terol J, Ibanez V, López-García A, Pérez-Román E, et al. 2018. Genomics of the origin and evolution of Citrus. Nature 554:311−16 doi: 10.1038/nature25447
CrossRef Google Scholar
|
[80]
|
Zhao Y, Liu G, Yang F, Liang Y, Gao Q, et al. 2023. Multilayered regulation of secondary metabolism in medicinal plants. Molecular Horticulture 3:11 doi: 10.1186/s43897-023-00059-y
CrossRef Google Scholar
|
[81]
|
Zheng H, Fu X, Shao J, Tang Y, Yu M, et al. 2023. Transcriptional regulatory network of high-value active ingredients in medicinal plants. Trends in Plant Science 28:429−46 doi: 10.1016/j.tplants.2022.12.007
CrossRef Google Scholar
|
[82]
|
Su J, Jiang J, Zhang F, Liu Y, Ding L, et al. 2019. Current achievements and future prospects in the genetic breeding of chrysanthemum: a review. Horticulture Research 6:109 doi: 10.1038/s41438-019-0193-8
CrossRef Google Scholar
|
[83]
|
Crossa J, Pérez-Rodríguez P, Cuevas J, Montesinos-López O, Jarquín D, et al. 2017. Genomic Selection in Plant Breeding: Methods, Models, and Perspectives. Trends in Plant Science 22:961−75 doi: 10.1016/j.tplants.2017.08.011
CrossRef Google Scholar
|
[84]
|
Xu Y, Zhang X, Li H, Zheng H, Zhang J, et al. 2022. Smart breeding driven by big data, artificial intelligence, and integrated genomic-enviromic prediction. Molecular Plant 15:1664−95 doi: 10.1016/j.molp.2022.09.001
CrossRef Google Scholar
|