[1]
|
Sun XY, Sun FY. (Eds.) 1984. Shen Nong's Classic of the Materia Medica. Beijing: People's Medical Publishing House. pp. 180−80
|
[2]
|
National Pharmacopoeia Committee. 2020. Pharmacopoeia of the People's Republic of China. Beijing: China Pharmaceutical Science and Technology Press. pp. 293−93
|
[3]
|
Wu P, Shang ZJ. (Eds.) 1987. Wu Pu Ben Cao. Beijing: People's Medical Publishing House. pp. 17−17
|
[4]
|
Zhai C, Wang X, Cheng F, Ma C, Yu C, et al. 2016. The effect of Chaihu's historical evolution relationship between medicine species and medicinal parts. World Chinese Medicine 11(5):906−9
Google Scholar
|
[5]
|
Sun X, Zhang L. 2017. Radix Bupleuri research progress of pharmacological effects. China Medical Herald 14(10):52−55
Google Scholar
|
[6]
|
Zhong LLD, Lam WC, Yang W, Chan KW, Sze SCW, et al. 2020. Potential targets for treatment of coronavirus disease 2019 (COVID-19): A review of Qing-Fei-Pai-Du-Tang and its major herbs. The American Journal of Chinese Medicine 48:1051−71 doi: 10.1142/S0192415X20500512
CrossRef Google Scholar
|
[7]
|
Kim HK, Yoon EK, Jang J, Hwang M, Kim J, et al. 2009. Assessment of heavy metal exposure via the intake of oriental medicines in Korea. Journal of Toxicology and Environmental Health, Part A 72:1336−42 doi: 10.1080/15287390903212485
CrossRef Google Scholar
|
[8]
|
Ikegami F, Fujii Y, Ishihara K, Satoh T. 2003. Toxicological aspects of Kampo medicines in clinical use. Chemico-Biological Interactions 145:235−50 doi: 10.1016/S0009-2797(03)00004-8
CrossRef Google Scholar
|
[9]
|
Zhou Y, Jia T, Lin G. 2013. Research progress on the influence of processing on the pharmacological properties of traditional Chinese medicine. China Pharmacy 24:1822−24
Google Scholar
|
[10]
|
Zhu J, Zhong L, Liu L, Gong Q, Lu H, et al. 2015. Optimization of processing technology for Bupleuri Radix by rice wine moistening to stir-baking with bran in Zhangbang. Chinese Journal of Experimental Traditional Medical Formulae 21(20):9−12
Google Scholar
|
[11]
|
Jiang H, Li J, Shi R, Yin W. 2009. Influence of processing on four saikosaponins in Radix Bupleuri. Chinese Pharmaceutical Journal 44(21):1618−21
Google Scholar
|
[12]
|
Bai L, Wang Y, Jia T. 2009. GC-MS Analysis of volatile oil components in Chaihu before and after vinegar processing. Chinese Traditional Patent Medicine 31:1397−98
Google Scholar
|
[13]
|
Yu H, Zhong L, Yang Q, Ning X, Zhang J, et al. 2015. Determination of amino acids in Bupleuri Radix before and after processing by HPLC with pre-column derivatization. Chinese Journal of Experimental Traditional Medical Formulae 21(14):25−27 doi: 10.13422/j.cnki.syfjx.2015140025
CrossRef Google Scholar
|
[14]
|
Wang Q, Wang D. 2003. Affect of different preparation on efficacy of Chinese Thorowax root. Guiding Journal of Traditional Chinese Medicine and Pharmacy 9:42
Google Scholar
|
[15]
|
Liu W, Guo B, Liang S, Zhang Y. 1998. The influence of different processing methods on the anti-inflammatory activity of Chaihu. Acta Chinese Medicine 13:12−14
Google Scholar
|
[16]
|
Tao HJ, Shang ZJ. (Eds.) 2013. Miscellaneous Records of Famous Physician. Beijing: China Traditional Chinese Medicine Press. pp. 34−34
|
[17]
|
Li SZ, Li CS. (Eds). 2018. Compendium of Materia Medica. Tianjin: Zhonghua Book Company. pp. 198−98
|
[18]
|
Tang SW. 1993. ZhengLei BenCao. Beijing: Huaxia Publishing House. pp. 162−63
|
[19]
|
Ni ZM. 2005. Bencao Huiyan. Beijing: Publishing House of Ancient Chinese Medical Books. pp. 43−45
|
[20]
|
Miao XY. 2011. Bencao Jingshu. Beijing: China Medical Science and Technology Press. pp. 99−100
|
[21]
|
Zhao XM. 1983. Bencao Gangmu Shiyi. Beijing: China Press of Traditional Chinese Medicine. pp. 72−72
|
[22]
|
Shu P, She ML. 2001. Pollen atlas of umbelliferae in China. Shanghai: Shanghai Science and Technology Press. pp. 68−75
|
[23]
|
Neves SS, Watson MF. 2004. Phylogenetic relationships in Bupleurum (Apiaceae) based on nuclear ribosomal DNA ITS sequence data. Annals of Botany 93:379−98 doi: 10.1093/aob/mch052
CrossRef Google Scholar
|
[24]
|
Wang Q, Yu Y, He X, Wang C. 2014. Prediction of origin and dispersal of the Chinese genus Bupleurum using RASP software. Bulletin of Botanical Research 34(1):14−24
Google Scholar
|
[25]
|
Zhao J, Weng Q, Zhang Y, Zhang W, Peng S, et al. 2020. Textual research on Bupleuri Radix in Chinese classical prescriptions. China Journal of Chinese Materia Medica 45:697−703 doi: 10.19540/j.cnki.cjcmm.20191223.102
CrossRef Google Scholar
|
[26]
|
Wang X, Li Y, Li H, Zhang Y, Zhao L, et al. 2003. RAPD analysis of genuiness on source of Bupleurum Chinense. Journal of Chinese Medicinal Materials 26:855−56
Google Scholar
|
[27]
|
Zhao G, Nan X, Hao Y, Liu X, Qin X. 2010. Genetic relationship of RAPD and AFLP among Bupleurum cultivars. Chinese Traditional and Herbal Drugs 41:113−17
Google Scholar
|
[28]
|
Liang Z, Qin M, Wang Z, Huang Y, Wang N. 2002. Identification of Bupleurum L. plants by RAPD technology. Chinese Traditional and Herbal Drugs 33:1117−19
Google Scholar
|
[29]
|
Zhang G, Wang H, Liu Y, Yao R, Jiang J, et al. 2021. Survey and analysis of cultivated Bupleurum spp. germplasm resources in China. Modern Chinese Medicine 23:772−780+799 doi: 10.13313/j.issn.1673-4890.20200905002
CrossRef Google Scholar
|
[30]
|
Wang S. 2021. Advances in traditional identification techniques for Chinese medicinal materials. Guangming Journal of Chinese Medicine 36:1733−34
Google Scholar
|
[31]
|
Shan R, Li Y. 1974. On the Chinese species of Bupleurum L. Acta Phytotaxonomica Sinica 12:261−94
Google Scholar
|
[32]
|
Zhang C. 2016. Analysis of identification and testing methods for common counterfeit products of Radix Bupleuri. Guangming Journal of Chinese Medicine 31:1339−1340+1343
Google Scholar
|
[33]
|
Xiao R, Zhang Z, Han X, Li D, Zhang L. 2006. GC-MS fingerprints of Radix Bupleuri from various habitats. Chinese Traditional and Herbal Drugs 37(8):1248−52
Google Scholar
|
[34]
|
Ye Y, Shi Y, Zhang B, Chen W, Ma Y, et al. 2019. Fingerprint analysis of Bupleurum Chinense roots from different origins by UPLC/Q-TOF-MS. Chinese Journal of Experimental Traditional Medical Formulae 25(18):124−29 doi: 10.13422/j.cnki.syfjx.20190748
CrossRef Google Scholar
|
[35]
|
Zhou L, Yang X, Wang Y, Zhang C, Wang Y, et al. 2022. Quality analysis of Bupleurum Chinense from different origins by HPLC-CAD fingerprint combined with chemometric. Central South Pharmacy 20(10):2253−58
Google Scholar
|
[36]
|
Liu X, Hu J, Li Z, Qin X, Zhang L, et al. 2011. Species classification and quality assessment of Chaihu (Radix Bupleuri) based on high-performance liquid chromatographic fingerprint and combined chemometrics methods. Archives of Pharmacal Research 34:961−69 doi: 10.1007/s12272-011-0613-2
CrossRef Google Scholar
|
[37]
|
Jin W, Wan C, Cheng C. 2015. Study on the identification of Radix Bupleuri from its unofficial varieties based on discrete wavelet transformation feature extraction of ATR-FTIR spectroscopy combined with probability neural network. International Journal of Analytical Chemistry 2015:950209 doi: 10.1155/2015/950209
CrossRef Google Scholar
|
[38]
|
Ren B, Chen Z. 2010. DNA barcoding plant life. Bulletin of Botany 45:1−12
Google Scholar
|
[39]
|
Chen S, Yao H, Han J, Xin T, Pang X, et al. 2013. Principles for molecular identification of traditional Chinese materia medica using DNA barcoding. China Journal of Chinese Materia Medica 38:141−48
Google Scholar
|
[40]
|
Chen S, Yao H, Song J, Li W, Liu C, et al. 2007. Use of DNA barcoding to identify Chinese medicinal materials. Modernization of Traditional Chinese Medicine and Materia Medica - World Science and Technology 9(3):7−12
Google Scholar
|
[41]
|
Wu Y, Liu C, Liu Y, Yan Y. 2005. ITS sequence identification of Radix Bupleuri. China Journal of Chinese Materia Medica 30:732−34
Google Scholar
|
[42]
|
Chao Z, Zeng W, Liao J, Liu L, Liang Z, et al. 2014. DNA barcoding Chinese medicinal Bupleurum. Phytomedicine 21:1767−73 doi: 10.1016/j.phymed.2014.09.001
CrossRef Google Scholar
|
[43]
|
Yang ZY, Chao Z, Huo KK, Xie H, Tian ZP, et al. 2007. ITS sequence analysis used for molecular identification of the Bupleurum species from northwestern China. Phytomedicine 14:416−23 doi: 10.1016/j.phymed.2007.04.009
CrossRef Google Scholar
|
[44]
|
Xie H, Huo KK, Chao Z, Pan SL. 2009. Identification of crude drugs from Chinese medicinal plants of the genus Bupleurum using ribosomal DNA ITS sequences. Planta Medica 75:89−93 doi: 10.1055/s-0028-1088334
CrossRef Google Scholar
|
[45]
|
Zhan Q, Sui C, Wei J, Fan S, Zhang J. 2010. Construction of genetic linkage map of Bupleurum Chinense DC. using ISSR and SSR markers Acta Pharmaceutica Sinica 45:517−23
Google Scholar
|
[46]
|
Wu S, Gao K, Zhao L, Yu M, Yang X, et al. 2015. Studies on identification of Bupleurum cultivated germplasm using SSR molecular markers. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology 17:1806−12
Google Scholar
|
[47]
|
Li X, Yang Y, Henry RJ, Rossetto M, Wang Y, et al. 2015. Plant DNA barcoding: from gene to genome. Biological Reviews of the Cambridge Philosophical Society 90:157−66 doi: 10.1111/brv.12104
CrossRef Google Scholar
|
[48]
|
Chen X. 2016. Barcoding chinese herbal medicines: from Gene to Genome. Thesis. Peking Union Medical College, Beijing.
|
[49]
|
Zhang G, Wang H, Shi L, Liu Y, Yao R, et al. 2022. Identification of the original plants of cultivated Bupleuri Radix based on DNA barcoding and chloroplast genome analysis. PeerJ 10:e13208 doi: 10.7717/peerj.13208
CrossRef Google Scholar
|
[50]
|
Huang R, Xie X, Li F, Tian E, Chao Z. 2021. Chloroplast genomes of two Mediterranean Bupleurum species and the phylogenetic relationship inferred from combined analysis with East Asian species. Planta 253:1−17 doi: 10.1007/s00425-021-03602-7
CrossRef Google Scholar
|
[51]
|
Huang CC, Huang CL, Hsu TW, Chang LH, Hung KH, et al. 2022. Complete chloroplast genome and phylogenetic analysis of Bupleurum kaoi Liu, Chao, and Chuang, 1977: an endemic species in Taiwan. Mitochondrial DNA Part B, Resources 7:1507−09 doi: 10.1080/23802359.2022.2082892
CrossRef Google Scholar
|
[52]
|
Li J, Xie DF, Guo XL, Zheng ZY, He XJ, et al. 2020. Comparative analysis of the complete plastid genome of five Bupleurum species and new insights into DNA barcoding and phylogenetic relationship. Plants 9:543 doi: 10.3390/plants9040543
CrossRef Google Scholar
|
[53]
|
Zhang MY, Zhang YQ, Li YM, Gao J, Shen X, et al. 2021. Complete plastid genomes of Bupleurum chinense DC. and B. boissieuanum H. Wolff, with comparative and phylogenetic analyses of medicinal Bupleurum species. Acta Pharmaceutica Sinica 56:618−29 doi: 10.16438/j.0513-4870.2020-1419
CrossRef Google Scholar
|
[54]
|
Xie X, Huang R, Li F, Tian E, Li C, et al. 2021. Phylogenetic position of Bupleurum sikangense inferred from the complete chloroplast genome sequence. Gene 798:145801 doi: 10.1016/j.gene.2021.145801
CrossRef Google Scholar
|
[55]
|
Li X, Li X, Huang N, Liu R, Sun R. 2018. A comprehensive review and perspectives on pharmacology and toxicology of saikosaponins. Phytomedicine 50:73−87 doi: 10.1016/j.phymed.2018.09.174
CrossRef Google Scholar
|
[56]
|
Ashour ML, Wink M. 2011. Genus Bupleurum: a review of its phytochemistry, pharmacology and modes of action. Journal of pharmacy and pharmacology 63:305−21 doi: 10.1111/j.2042-7158.2010.01170.x
CrossRef Google Scholar
|
[57]
|
Qin X, Dai Y, Liu NQ, Li Z, Liu X, et al. 2012. Metabolic fingerprinting by 1HNMR for discrimination of the two species used as Radix Bupleuri. Planta Medica 78:926−33 doi: 10.1055/s-0031-1298496
CrossRef Google Scholar
|
[58]
|
Ren S, Liu J, Xue Y, Zhang M, Liu Q, et al. 2021. Comparative permeability of three saikosaponins and corresponding saikogenins in Caco-2 model by a validated UHPLC-MS/MS method. Journal of Pharmaceutical Analysis 11:435−43 doi: 10.1016/j.jpha.2020.06.006
CrossRef Google Scholar
|
[59]
|
Zhao X, Liu C. 2015. Research overview and development trend of Bupleurum herb. Lishizhen Medicine and Materia Medica Research 26:963−66
Google Scholar
|
[60]
|
Sui C, Han WJ, Zhu CR, Wei JH. 2021. Recent progress in saikosaponin biosynthesis in Bupleurum. Current Pharmaceutical Biotechnology 22:329−40 doi: 10.2174/1389201021999200918101248
CrossRef Google Scholar
|
[61]
|
Abe H, Sakaguchi M, Yamada M, Arichi S, Odashima S. 1980. Pharmacological actions of saikosaponins isolated from Bupleurum falcatum. Planta Medica 40:366−72 doi: 10.1055/s-2008-1074987
CrossRef Google Scholar
|
[62]
|
Wei XM, Guo SS, Yan H, Cheng XL, Wei F, et al. 2018. Contact toxicity and repellency of the essential oil from Bupleurum bicaule helm against two stored product insects. Journal of Chemistry 2018:5830864 doi: 10.1155/2018/5830864
CrossRef Google Scholar
|
[63]
|
Li XQ, He ZG, Bi KS, Song ZH, Xu L. 2007. Essential oil analyses of the root oils of 10 Bupleurum species from China. Journal of Essential oil research 19:234−38 doi: 10.1080/10412905.2007.9699268
CrossRef Google Scholar
|
[64]
|
Meng J, Chen X, Yang W, Song J, Zhang Y, et al. 2014. Gas chromatography-mass spectrometry analysis of essential oils from five parts of Chaihu (Radix Bupleuri Chinensis). Journal of Traditional Chinese Medicine 34:741−48 doi: 10.1016/S0254-6272(15)30090-X
CrossRef Google Scholar
|
[65]
|
Tykheev ZA, Taraskin VV, Zhigzhitzhapova SV, Chimitov DG, Radnaeva LD. 2021. Variation of the content of biologically active compounds in Bupleurum scorzonerifolium Willd. aerial parts at different phenological phases. Russian Journal of Bioorganic Chemistry 47:1432−38 doi: 10.1134/S1068162021070153
CrossRef Google Scholar
|
[66]
|
Li X, Jia Y, Song A, Chen X, Bi K. 2005. Analysis of the essential oil from Radix Bupleuri using capillary gas chromatography. Yakugaku Zasshi 125:815−19 doi: 10.1248/yakushi.125.815
CrossRef Google Scholar
|
[67]
|
Wang Z, Zhao H, Tian L, Zhao M, Xiao Y, et al. 2022. Quantitative analysis and differential evaluation of Radix Bupleuri cultivated in different regions based on HPLC-MS and GC-MS combined with multivariate statistical analysis. Molecules 27:4830 doi: 10.3390/molecules27154830
CrossRef Google Scholar
|
[68]
|
Roma Marzio F, Najar B, Nardi V, Pistelli L, Peruzzi L. 2020. Volatile chemical composition does not support a native status of the cryptogenic Bupleurum fruticosum (Apiaceae) in peninsular Italy. Biochemical Systematics and Ecology 88:103966 doi: 10.1016/j.bse.2019.103966
CrossRef Google Scholar
|
[69]
|
Xie JY, Di HY, Li H, Cheng XQ, Zhang YY, et al. 2012. Bupleurum chinense DC polysaccharides attenuates lipopolysaccharide-induced acute lung injury in mice. Phytomedicine 19:130−37 doi: 10.1016/j.phymed.2011.08.057
CrossRef Google Scholar
|
[70]
|
Tong H, Zheng X, Song J, Liu J, Ren T, et al. 2018. Radical scavenging activity of sulfated Bupleurum chinense polysaccharides and their effects against oxidative stress-induced senescence. Carbohydrate Polymers 192:143−49 doi: 10.1016/j.carbpol.2018.03.061
CrossRef Google Scholar
|
[71]
|
Sakurai MH, Matsumoto T, Kiyohara H, Yamada H. 1996. Detection and tissue distribution of anti-ulcer pectic polysaccharides from Bupleurum falcatum by a polyclonal antibody. Planta Medica 62:341−46 doi: 10.1055/s-2006-957898
CrossRef Google Scholar
|
[72]
|
Shi S, Chang M, Liu H, Ding S, Yan Z, et al. 2022. The structural characteristics of an acidic water-soluble polysaccharide from Bupleurum Chinense DC. and its in vivo anti-tumor activity on H22 tumor-bearing mice. Polymers 14:1119 doi: 10.3390/polym14061119
CrossRef Google Scholar
|
[73]
|
Sakurai MH, Matsumoto T, Kiyohara H, Yamada H. 1999. B-cell proliferation activity of pectic polysaccharide from a medicinal herb, the roots of Bupleurum falcatum L. and its structural requirement. Immunology 97:540−47 doi: 10.1046/j.1365-2567.1999.00774.x
CrossRef Google Scholar
|
[74]
|
Sun L, Feng K, Jiang R, Chen J, Zhao Y, et al. 2010. Water-soluble polysaccharide from Bupleurum chinense DC: Isolation, structural features and antioxidant activity. Carbohydrate Polymers 79:180−83 doi: 10.1016/j.carbpol.2009.07.044
CrossRef Google Scholar
|
[75]
|
Jiang P, Ji X, Xia J, Xu M, Hao F, et al. 2023. Structure and potential anti-fatigue mechanism of polysaccharides from Bupleurum chinense DC. Carbohydrate Polymers 306:120608 doi: 10.1016/j.carbpol.2023.120608
CrossRef Google Scholar
|
[76]
|
Cai L, Zou S, Liang D, Luan L. 2018. Structural characterization, antioxidant and hepatoprotective activities of polysaccharides from Sophorae tonkinensis Radix. Carbohydrate polymers 184:354−65 doi: 10.1016/j.carbpol.2017.12.083
CrossRef Google Scholar
|
[77]
|
Zong A, Cao H, Wang F. 2012. Anticancer polysaccharides from natural resources: A review of recent research. Carbohydrate Polymers 90:1395−410 doi: 10.1016/j.carbpol.2012.07.026
CrossRef Google Scholar
|
[78]
|
Minto RE, Blacklock BJ. 2008. Biosynthesis and function of polyacetylenes and allied natural products. Progress in Lipid Research 47:233−306 doi: 10.1016/j.plipres.2008.02.002
CrossRef Google Scholar
|
[79]
|
Horikawa K, Yagyu T, Yoshioka Y, Fujiwara T, Kanamoto A, et al. 2013. Petrosiols A–E, neurotrophic diyne tetraols isolated from the Okinawan sponge Petrosia strongylata. Tetrahedron 69:101−06 doi: 10.1016/j.tet.2012.10.063
CrossRef Google Scholar
|
[80]
|
Liu J, Fang Y, Yang L, Qin X, Du G, et al. 2015. A qualitative, and quantitative determination and pharmacokinetic study of four polyacetylenes from Radix Bupleuri by UPLC-PDA–MS. Journal of Pharmaceutical and Biomedical Analysis 111:257−65 doi: 10.1016/j.jpba.2015.04.002
CrossRef Google Scholar
|
[81]
|
Matsunaga H, Saita T, Nagumo F, Mori M, Katano M. 1995. A possible mechanism for the cytotoxicity of a polyacetylenic alcohol, panaxytriol: inhibition of mitochondrial respiration. Cancer Chemotherapy and Pharmacology 35:291−96 doi: 10.1007/BF00689447
CrossRef Google Scholar
|
[82]
|
Choi BK, Cha BY, Yagyu T, Woo JT, Ojika M. 2013. Sponge-derived acetylenic alcohols, petrosiols, inhibit proliferation and migration of platelet-derived growth factor (PDGF)-induced vascular smooth muscle cells. Bioorganic & Medicinal Chemistry 21:1804−10 doi: 10.1016/j.bmc.2013.01.039
CrossRef Google Scholar
|
[83]
|
Huang HQ, Zhang X, Shen YH, Su J, Liu XH, et al. 2009. Polyacetylenes from Bupleurum longiradiatum. Journal of Natural Products 72:2153−57 doi: 10.1021/np900534v
CrossRef Google Scholar
|
[84]
|
Lin M, Zhang W, Su J. 2016. Toxic polyacetylenes in the genus Bupleurum (Apiaceae) – Distribution, toxicity, molecular mechanism and analysis. Journal of Ethnopharmacology 193:566−73 doi: 10.1016/j.jep.2016.09.052
CrossRef Google Scholar
|
[85]
|
Zhang Z, Lu C, Liu X, Su J, Dai W, et al. 2014. Global and targeted metabolomics reveal that Bupleurotoxin, a toxic type of polyacetylene, induces cerebral lesion by inhibiting GABA receptor in mice. Journal of Proteome Research 13:925−33 doi: 10.1021/pr400968c
CrossRef Google Scholar
|
[86]
|
Yamauchi S, Hayashi Y, Nakashima Y, Kirikihira T, Yamada K, et al. 2005. Effect of benzylic oxygen on the antioxidant activity of phenolic lignans. Journal of Natural Products 68:1459−70 doi: 10.1021/np050089s
CrossRef Google Scholar
|
[87]
|
Yamauchi S, Sugahara T, Matsugi J, Someya T, Masuda T, et al. 2007. Effect of the benzylic structure of lignan on antioxidant activity. Bioscience, Biotechnology, and Biochemistry 71:2283−90 doi: 10.1271/bbb.70275
CrossRef Google Scholar
|
[88]
|
Agati G, Azzarello E, Pollastri S, Tattini M. 2012. Flavonoids as antioxidants in plants: location and functional significance. Plant Science 196:67−76 doi: 10.1016/j.plantsci.2012.07.014
CrossRef Google Scholar
|
[89]
|
Olennikov DN, Partilkhaev VV. 2013. Flavonoids and phenylpropanoids from several species of Bupleurum growing in Buryatia. Chemistry of Natural Compounds 48:1078−82 doi: 10.1007/s10600-013-0471-x
CrossRef Google Scholar
|
[90]
|
Liu W, Feng Y, Yu S, Fan Z, Li X, et al. 2021. The flavonoid biosynthesis network in plants. International Journal of Molecular Sciences 22:12824 doi: 10.3390/ijms222312824
CrossRef Google Scholar
|
[91]
|
Yang L, Yang L, Yang X, Zhang T, Lan Y, et al. 2020. Drought stress induces biosynthesis of flavonoids in leaves and saikosaponins in roots of Bupleurum chinense DC. Phytochemistry 177:112434 doi: 10.1016/j.phytochem.2020.112434
CrossRef Google Scholar
|
[92]
|
Zhang T, Zhou J, Wang Q. 2007. Flavonoids from aerial part of Bupleurum chinense DC. Biochemical Systematics and Ecology 35(11):801−4 doi: 10.1016/j.bse.2007.03.023
CrossRef Google Scholar
|
[93]
|
Du ZA, Sun MN, Hu ZS. 2018. Saikosaponin a ameliorates LPS-induced acute lung injury in mice. Inflammation 41:193−98 doi: 10.1007/s10753-017-0677-3
CrossRef Google Scholar
|
[94]
|
Zhu J, Luo C, Wang P, He Q, Zhou J, et al. 2013. Saikosaponin A mediates the inflammatory response by inhibiting the MAPK and NF-κB pathways in LPS-stimulated RAW 264.7 cells. Experimental and Therapeutic Medicine 5:1345−50 doi: 10.3892/etm.2013.988
CrossRef Google Scholar
|
[95]
|
Shin JS, Im HT, Lee KT. 2019. Saikosaponin B2 suppresses inflammatory responses through IKK/IκBα/NF-κB signaling inactivation in LPS-induced RAW 264.7 macrophages. Inflammation 42:342−53 doi: 10.1007/s10753-018-0898-0
CrossRef Google Scholar
|
[96]
|
Lu CN, Yuan ZG, Zhang XL, Yan R, Zhao YQ, et al. 2012. Saikosaponin a and its epimer saikosaponin d exhibit anti-inflammatory activity by suppressing activation of NF-κB signaling pathway. International Immunopharmacology 14:121−26 doi: 10.1016/j.intimp.2012.06.010
CrossRef Google Scholar
|
[97]
|
Fu Y, Hu X, Cao Y, Zhang Z, Zhang N. 2015. Saikosaponin a inhibits lipopolysaccharide-oxidative stress and inflammation in human umbilical vein endothelial cells via preventing TLR4 translocation into lipid rafts. Free Radical Biology and Medicine 89:777−85 doi: 10.1016/j.freeradbiomed.2015.10.407
CrossRef Google Scholar
|
[98]
|
Wang X, Yang G. 2020. Saikosaponin A attenuates neural injury caused by ischemia/reperfusion. Translational Neuroscience 11:227−35 doi: 10.1515/tnsci-2020-0129
CrossRef Google Scholar
|
[99]
|
Xu Y, Yu Y, Wang Q, Li W, Zhang S, et al. 2021. Active components of Bupleurum Chinense and Angelica biserrata showed analgesic effects in formalin induced pain by acting on Nav1.7. Journal of Ethnopharmacology 269:113736 doi: 10.1016/j.jep.2020.113736
CrossRef Google Scholar
|
[100]
|
Ahn SS, Lee YH, Yeo H, Jung E, Lim Y, et al. 2022. Saikosaponin A and saikosaponin C reduce TNF-α-induced TSLP expression through inhibition of MAPK-mediated EGR1 expression in HaCaT keratinocytes. International Journal of Molecular Sciences 23:4857 doi: 10.3390/ijms23094857
CrossRef Google Scholar
|
[101]
|
Li P, Wu M, Xiong W, Li J, An Y, et al. 2020. Saikosaponin-d ameliorates dextran sulfate sodium-induced colitis by suppressing NF-κB activation and modulating the gut microbiota in mice. International Immunopharmacology 81:106288 doi: 10.1016/j.intimp.2020.106288
CrossRef Google Scholar
|
[102]
|
Liu X, Latkolik S, Atanasov AG, Kunert O, Pferschy Wenzig EM, et al. 2017. Bupleurum chinense roots: a bioactivity-guided approach toward saponin-type NF-κB inhibitors. Planta Medica 83:1242−50 doi: 10.1055/s-0043-118226
CrossRef Google Scholar
|
[103]
|
Zhao M, Xiao L, Linghu KG, Zhao G, Chen Q, et al. 2022. Comprehensive comparison on the anti-inflammation and GC-MS-based metabolomics discrimination between Bupleuri chinense DC. and B. scorzonerifolium Willd. Frontiers in Pharmacology 13:1005011 doi: 10.3389/fphar.2022.1005011
CrossRef Google Scholar
|
[104]
|
Liu M, Zhang G, Naqvi S, Zhang F, Kang T, et al. 2020. Cytotoxicity of Saikosaponin A targets HEKa cell through apoptosis induction by ROS accumulation and inflammation suppression via NF-κB pathway. Int Immunopharmacol 86:106751 doi: 10.1016/j.intimp.2020.106751
CrossRef Google Scholar
|
[105]
|
Yu LQ, Jia AM, Song YY. 2020. Progress in the study of saikosaponins on anti-inflammation, anti-oxidation and lipidlowering effects. Chinese Journal of Arteriosclerosis 28:87−92
Google Scholar
|
[106]
|
Chen RJ, Guo XY, Cheng BH, Gong YQ, Ying BY, et al. 2018. Saikosaponin a inhibits cigarette smoke-induced oxidant stress and inflammatory responses by activation of Nrf2. Inflammation 41:1297−303 doi: 10.1007/s10753-018-0778-7
CrossRef Google Scholar
|
[107]
|
Ren QQ, Gao P, Ma ZJ, Zhao M. 2023. Optimization of ultrasonic assisted extraction of flavonoids from Bupleurum chinense by response surface methodology and its antioxidant activity. Northern Horticulture 42:191−98
Google Scholar
|
[108]
|
Hao C, Qu H, Chen S, Han W, Sun R. 2018. Ultrasound-assisted extraction of polysaccharide from Radix bupleuri using response surface methodology and antioxidant research of the polysaccharide. Natural Product Communications 13:1934578X1801300420 doi: 10.1177/1934578x1801300420
CrossRef Google Scholar
|
[109]
|
Wang N, Li Q. 2022. Study on extraction and antioxidant activity of polysaccharides from Radix Bupleuri by natural deep eutectic solvents combined with ultrasound-assisted enzymolysis. Sustainable Chemistry and Pharmacy 30:100877 doi: 10.1016/j.scp.2022.100877
CrossRef Google Scholar
|
[110]
|
Wang T, Song Y, Xu H, Liu Y, He H, et al. 2022. Study on the mechanism of reducing biofilm toxicity and increasing antioxidant activity in vinegar processing phytomedicines containing pentacyclic triterpenoid saponins. Journal of Ethnopharmacology 290:115112 doi: 10.1016/j.jep.2022.115112
CrossRef Google Scholar
|
[111]
|
Seo MK, Cho HY, Lee CH, Koo KA, Park YK, et al. 2013. Antioxidant and proliferative activities of Bupleuri Radix extract against serum deprivation in SH-SY5Y cells. Psychiatry Investigation 10:81−81 doi: 10.4306/pi.2013.10.1.81
CrossRef Google Scholar
|
[112]
|
Zou C, Tan X, Ye H, Sun Z, Chen S, et al. 2018. The hepatoprotective effects of Radix Bupleuri extracts against D-galactosamine/lipopolysaccharide induced liver injury in hybrid grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀). Fish & Shellfish Immunology 83:8−17 doi: 10.1016/j.fsi.2018.08.047
CrossRef Google Scholar
|
[113]
|
Jia R, Gu Z, He Q, Du J, Cao L, et al. 2019. Anti-oxidative, anti-inflammatory and hepatoprotective effects of Radix Bupleuri extract against oxidative damage in tilapia (Oreochromis niloticus) via Nrf2 and TLRs signaling pathway. Fish & Shellfish Immunology 93:395−405 doi: 10.1016/j.fsi.2019.07.080
CrossRef Google Scholar
|
[114]
|
Kim SM, Kim SC, Chung IK, Cheon WH, Ku SK. 2012. Antioxidant and protective effects of Bupleurum falcatum on the L-thyroxine-induced hyperthyroidism in rats. Evidence-Based Complementary and Alternative Medicine 2012:578497 doi: 10.1155/2012/578497
CrossRef Google Scholar
|
[115]
|
Zhao L, Li J, Sun ZB, Sun C, Yu ZH, et al. 2019. Saikosaponin D inhibits proliferation of human osteosarcoma cells via the p53 signaling pathway. Experimental and Therapeutic Medicine 17:488−94 doi: 10.3892/etm.2018.6969
CrossRef Google Scholar
|
[116]
|
Gao T, Zhao P, Yu X, Cao S, Zhang B, et al. 2019. Use of Saikosaponin D and JNK inhibitor SP600125, alone or in combination, inhibits malignant properties of human osteosarcoma U2 cells. American Journal of Translational Research 11:2070−80
Google Scholar
|
[117]
|
Li H, Tang Y, Wang Y, Wei W, Yin C, et al. 2020. Effects of saikosaponin D on CYP1A2 and CYP2D6 in HepaRG cells. Drug Design, Development and Therapy 14:5251−58 doi: 10.2147/DDDT.S268358
CrossRef Google Scholar
|
[118]
|
Chiang LC, Ng LT, Liu LT, Shieh DE, Lin CC. 2003. Cytotoxicity and anti-hepatitis B virus activities of saikosaponins from Bupleurum species. Planta Medica 69:705−09 doi: 10.1055/s-2003-42797
CrossRef Google Scholar
|
[119]
|
Ren M, McGowan E, Li Y, Zhu X, Lu X, et al. 2019. Saikosaponin-d suppresses COX2 through p-STAT3/C/EBPβ signaling pathway in liver cancer: a novel mechanism of action. Frontiers in Pharmacology 10:623 doi: 10.3389/fphar.2019.00623
CrossRef Google Scholar
|
[120]
|
Zhang CY, Jiang ZM, Ma XF, Li Y, Liu XZ, et al. 2019. Saikosaponin-d inhibits the hepatoma cells and enhances chemosensitivity through SENP5-dependent inhibition of Gli1 SUMOylation under hypoxia. Frontiers in Pharmacology 10:1039 doi: 10.3389/fphar.2019.01039
CrossRef Google Scholar
|
[121]
|
Wang BF, Dai ZJ, Wang XJ, Bai MH, Lin S, et al. 2013. Saikosaponin-d increases the radiosensitivity of smmc-7721 hepatocellular carcinoma cells by adjusting the g0/g1 and g2/m checkpoints of the cell cycle. BMC Complementary and Alternative Medicine 13:263 doi: 10.1186/1472-6882-13-263
CrossRef Google Scholar
|
[122]
|
Fu R, Zhang L, Li Y, Li B, Ming Y, et al. 2020. Saikosaponin D inhibits autophagosome-lysosome fusion and induces autophagy-independent apoptosis in MDA-MB-231 breast cancer cells. Molecular Medicine Reports 22:1026−34 doi: 10.3892/mmr.2020.11155
CrossRef Google Scholar
|
[123]
|
Sun K, Yu W, Ji B, Chen C, Yang H, et al. 2020. Saikosaponin D loaded macrophage membrane-biomimetic nanoparticles target angiogenic signaling for breast cancer therapy. Applied Materials Today 18:100505 doi: 10.1016/j.apmt.2019.100505
CrossRef Google Scholar
|
[124]
|
Zhao X, Liu J, Ge S, Chen C, Li S, et al. 2019. Saikosaponin A inhibits breast cancer by regulating Th1/Th2 balance. Frontiers in Pharmacology 10:624 doi: 10.3389/fphar.2019.00624
CrossRef Google Scholar
|
[125]
|
Song X, Ren T, Zheng Z, Lu T, Wang Z, et al. 2017. Anti-tumor and immunomodulatory activities induced by an alkali-extracted polysaccharide BCAP-1 from Bupleurum chinense via NF-κB signaling pathway. International Journal of Biological Macromolecules 95:357−62 doi: 10.1016/j.ijbiomac.2016.10.112
CrossRef Google Scholar
|
[126]
|
Ye RP, Chen ZD. 2017. Saikosaponin A, an active glycoside from Radix bupleuri, reverses P-glycoprotein-mediated multidrug resistance in MCF-7/ADR cells and HepG2/ADM cells. Xenobiotica 47:176−84 doi: 10.3109/00498254.2016.1171932
CrossRef Google Scholar
|
[127]
|
Li C, Guan X, Xue H, Wang P, Wang M, et al. 2017. Reversal of P-glycoprotein-mediated multidrug resistance is induced by saikosaponin D in breast cancer MCF-7/adriamycin cells. Pathology-Research and Practice 213:848−53 doi: 10.1016/j.prp.2017.01.022
CrossRef Google Scholar
|
[128]
|
Feng L, Liu L, Zhao Y, Zhao R. 2017. Saikosaponins A, C and D enhance liver-targeting effects of anticancer drugs by modulating drug transporters. Oncotarget 8:110092−102 doi: 10.18632/oncotarget.22639
CrossRef Google Scholar
|
[129]
|
Zhao Y, Feng L, Liu L, Zhao R. 2019. Saikosaponin b2 enhances the hepatotargeting effect of anticancer drugs through inhibition of multidrug resistance-associated drug transporters. Life Sciences 231:116557 doi: 10.1016/j.lfs.2019.116557
CrossRef Google Scholar
|
[130]
|
Liu A, Tanaka N, Sun L, Guo B, Kim JH, et al. 2014. Saikosaponin d protects against acetaminophen-induced hepatotoxicity by inhibiting NF-κB and STAT3 signaling. Chemico-Biological Interactions 223:80−86 doi: 10.1016/j.cbi.2014.09.012
CrossRef Google Scholar
|
[131]
|
Yoshikawa M, Murakami T, Hirano K, Inadzuki M, Ninomiya K, et al. 1997. Scorzonerosides A, B, and C, Novel triterpene oligoglycosides with hepatoprotective effect from Chinese Bupleuri Radix, the roots of Bupleurum scorzonerifolium WILLD. Tetrahedron Letters 38:7395−98 doi: 10.1016/S0040-4039(97)01733-4
CrossRef Google Scholar
|
[132]
|
Wang YX, Du Y, Liu XF, Yang FX, Wu X, et al. 2019. A hepatoprotection study of Radix Bupleuri on acetaminophen-induced liver injury based on CYP450 inhibition. Chinese Journal of Natural Medicines 17:517−24 doi: 10.1016/S1875-5364(19)30073-1
CrossRef Google Scholar
|
[133]
|
Yen MH, Weng TC, Liu SY, Chai CY, Lin CC. 2005. The hepatoprotective effect of Bupleurum kaoi, an endemic plant to Taiwan, against dimethylnitrosamine-induced hepatic fibrosis in rats. Biological and Pharmaceutical Bulletin 28:442−48 doi: 10.1248/bpb.28.442
CrossRef Google Scholar
|
[134]
|
Tang WH, Yang QW, Xiao L, Zhang G, Hu ZW, et al. 2016. Protective effect of Radix Bupleuri extract against liver cirrhosis in rats. Tropical Journal of Pharmaceutical Research 15:2629−32 doi: 10.4314/tjpr.v15i12.13
CrossRef Google Scholar
|
[135]
|
Xing J, Sun HM, Jia JP, Qin XM, Li ZY. 2017. Integrative hepatoprotective efficacy comparison of raw and vinegar-baked Radix Bupleuri using nuclear magnetic resonance-based metabolomics. Journal of Pharmaceutical and Biomedical Analysis 138:215−22 doi: 10.1016/j.jpba.2017.02.015
CrossRef Google Scholar
|
[136]
|
Zhao Y, Wang J, Liu L, Wu Y, Hu Q, et al. 2022. Vinegar-baked Radix Bupleuri enhances the liver-targeting effect of rhein on liver injury rats by regulating transporters. Journal of Pharmacy and Pharmacology 74:1588−97 doi: 10.1093/jpp/rgac062
CrossRef Google Scholar
|
[137]
|
Chen C, Yin Q, Tian J, Gao X, Qin X, et al. 2020. Studies on the potential link between antidepressant effect of Xiaoyao San and its pharmacological activity of hepatoprotection based on multi-platform metabolomics. Journal of Ethnopharmacology 249:112432 doi: 10.1016/j.jep.2019.112432
CrossRef Google Scholar
|
[138]
|
Xu W, Du X, Li J, Zhang Z, Ma X, et al. 2022. SiNiSan alleviates liver injury by promoting hepatic stem cell differentiation via Wnt/β-catenin signaling pathway. Phytomedicine 99:153969 doi: 10.1016/j.phymed.2022.153969
CrossRef Google Scholar
|
[139]
|
Feng HL, Wang XX, Zhang FL. 2020. Mechanism of Sini Powder on protecting liver based on network pharmacology. Chinese Traditional and Herbal Drugs 51(24):6258−68
Google Scholar
|
[140]
|
Du P, Xu J, Jiang Y, Zhao J, Gao C, et al. 2022. Saikosaponin-d attenuates Hashimoto's Thyroiditis by regulating macrophage polarization. Journal of Immunology Research 2022:7455494 doi: 10.1155/2022/7455494
CrossRef Google Scholar
|
[141]
|
Pan A, Chen J, Lai S. 2022. Saikosaponin A attenuates autoimmune thyroiditis and inhibits NLRP3 inflammasome activation in the rats. Chinese Journal of Histochemistry and Cytochemistry 31(3):267−72 doi: 10.16705/j.cnki.1004-1850.2022.03.007
CrossRef Google Scholar
|
[142]
|
Liang Y, Cui R. 1998. Research progress on anti-inflammatory and immune function of saikosaponins and their homologues. Chinese Journal of Integrated Traditional and Western Medicine 18:446−48
Google Scholar
|
[143]
|
Zhang XQ, Chen HS. 1989. Immuno-pharmacological effects of Bupleurum Chinense polysaccharide. Chinese Journal of Pharmacology and Toxicology 3:30−33
Google Scholar
|
[144]
|
Cheng XQ, Li H, Yue XL, Xie JY, Zhang YY, et al. 2010. Macrophage immunomodulatory activity of the polysaccharides from the roots of Bupleurum smithii var. parvifolium. Journal of Ethnopharmacology 130:363−68 doi: 10.1016/j.jep.2010.05.019
CrossRef Google Scholar
|
[145]
|
Cholet J, Decombat C, Vareille-Delarbre M, Gainche M, Berry A, et al. 2019. In vitro anti-inflammatory and immunomodulatory activities of an extract from the roots of Bupleurum rotundifolium. Medicines 6:101 doi: 10.3390/medicines6040101
CrossRef Google Scholar
|
[146]
|
Chikhale R, Sinha SK, Wanjari M, Gurav NS, Ayyanar M, et al. 2021. Computational assessment of saikosaponins as adjuvant treatment for COVID-19: molecular docking, dynamics, and network pharmacology analysis. Molecular Diversity 25:1889−904 doi: 10.1007/s11030-021-10183-w
CrossRef Google Scholar
|
[147]
|
Xiong L, Liu Y, Zhao H, Wang Y, Sun Y, et al. 2022. The mechanism of Chaiyin Particles in the treatment of COVID-19 based on network pharmacology and experimental verification. Natural Product Communications 17:1934578X221114853 doi: 10.1177/1934578x221114853
CrossRef Google Scholar
|
[148]
|
Sun X, Li X, Pan R, Xu Y, Wang Q, et al. 2018. Total Saikosaponins of Bupleurum yinchowense reduces depressive, anxiety-like behavior and increases synaptic proteins expression in chronic corticosterine-treated mice. BMC Complementary and Alternative Medicine 18:117 doi: 10.1186/s12906-018-2186-9
CrossRef Google Scholar
|
[149]
|
Li ZY, Guo Z, Liu YM, Liu XM, Chang Q, et al. 2013. Neuroprotective effects of total saikosaponins of Bupleurum yinchowense on corticosterone-induced apoptosis in PC12 cells. Journal of Ethnopharmacology 148:794−803 doi: 10.1016/j.jep.2013.04.057
CrossRef Google Scholar
|
[150]
|
Guo J, Zhang F, Gao J, Guan X, Liu B, et al. 2020. Proteomics-based screening of the target proteins associated with antidepressant-like effect and mechanism of Saikosaponin A. Journal of Cellular and Molecular Medicine 24:174−88 doi: 10.1111/jcmm.14695
CrossRef Google Scholar
|
[151]
|
Wang A, Mi L, Zhang Z, Hu M, Zhao Z, et al. 2021. Saikosaponin A improved depression-like behavior and inhibited hippocampal neuronal apoptosis after cerebral ischemia through p-CREB/BDNF pathway. Behavioural Brain Research 403:113138 doi: 10.1016/j.bbr.2021.113138
CrossRef Google Scholar
|
[152]
|
Chang B, Liu Y, Hu J, Tang Z, Qiu Z, et al. 2022. Bupleurum chinense DC improves CUMS-induced depressive symptoms in rats through upregulation of the cAMP/PKA/CREB signalling pathway. Journal of Ethnopharmacology 289:115034 doi: 10.1016/j.jep.2022.115034
CrossRef Google Scholar
|
[153]
|
Wang P, Gao X, Liang M, Fang Y, Jia J, et al. 2021. Dose-Effect/Toxicity of Bupleuri Radix on chronic unpredictable mild stress and normal rats based on liver metabolomics. Frontiers in Pharmacology 12:627451 doi: 10.3389/fphar.2021.627451
CrossRef Google Scholar
|
[154]
|
Feng Y, Gao X, Meng M, Xue H, Qin X. 2020. Multi-omics reveals the mechanisms of antidepressant-like effects of the low polarity fraction of Bupleuri Radix. Journal of Ethnopharmacology 256:112806 doi: 10.1016/j.jep.2020.112806
CrossRef Google Scholar
|
[155]
|
Lv M, Wang Y, Qu P, Li S, Yu Z, et al. 2021. A combination of cecum microbiome and metabolome in CUMS depressed rats reveals the antidepressant mechanism of traditional Chinese medicines: A case study of Xiaoyaosan. Journal of Ethnopharmacology 276:114167 doi: 10.1016/j.jep.2021.114167
CrossRef Google Scholar
|
[156]
|
Liu X, Lv M, Wang Y, Qu P, Li S, et al. 2021. Anti-depressive effects of Xiaoyaosan, Shugan and Jianpi herbal treatments: Role on the gut microbiome of CUMS rats. Phytomedicine 87:153581 doi: 10.1016/j.phymed.2021.153581
CrossRef Google Scholar
|
[157]
|
Liu X, Wu X, Wang S, Qin X. 2023. Gut microbiome and tissue metabolomics reveal the compatibility effects of Xiaoyaosan on depression based on "gut-liver-kidney" axis. Phytomedicine 111:154628 doi: 10.1016/j.phymed.2022.154628
CrossRef Google Scholar
|
[158]
|
Yang L, Shergis JL, Di Y, Zhang AL, Lu C, et al. 2020. Managing depression with Bupleurum chinense herbal formula: a systematic review and meta-analysis of randomized controlled trials. The Journal of Alternative and Complementary Medicine 26:8−24 doi: 10.1089/acm.2019.0105
CrossRef Google Scholar
|
[159]
|
Zhang H, Zhang S, Hu M, Chen Y, Wang W, et al. 2020. An integrative metabolomics and network pharmacology method for exploring the effect and mechanism of Radix Bupleuri and Radix Paeoniae Alba on anti-depression. Journal of Pharmaceutical and Biomedical Analysis 189:113435 doi: 10.1016/j.jpba.2020.113435
CrossRef Google Scholar
|
[160]
|
Zhou Y, Li T, Zhu S, Gong W, Qin X, et al. 2021. Study on antidepressant mechanism of Radix Bupleuri–Radix Paeoniae Alba herb pair by metabonomics combined with 1H nuclear magnetic resonance and ultra-high-performance liquid chromatography-tandem mass spectrometry detection technology. Journal of Pharmacy and Pharmacology 73:1262−73 doi: 10.1093/jpp/rgab061
CrossRef Google Scholar
|
[161]
|
Li QF, Lu WT, Zhang Q, Zhao YD, Wu CY, et al. 2022. Proprietary medicines containing Bupleurum chinense DC. (Chaihu) for depression: Network meta-analysis and network pharmacology prediction. Frontiers in Pharmacology 13:773537 doi: 10.3389/fphar.2022.773537
CrossRef Google Scholar
|
[162]
|
Chen Y, Wang W, Fu X, Sun Y, Lv S, et al. 2021. Investigation of the antidepressant mechanism of combined Radix Bupleuri and Radix Paeoniae Alba treatment using proteomics analysis of liver tissue. Journal of Chromatography B 1179:122858 doi: 10.1016/j.jchromb.2021.122858
CrossRef Google Scholar
|
[163]
|
Yan ZY, Jiao HY, Chen JB, Zhang KW, Wang XH, et al. 2021. Antidepressant mechanism of traditional Chinese medicine formula Xiaoyaosan in CUMS-induced depressed mouse model via RIPK1-RIPK3-MLKL mediated necroptosis based on network pharmacology analysis. Frontiers in Pharmacology 12:773562 doi: 10.3389/fphar.2021.773562
CrossRef Google Scholar
|
[164]
|
Yang FR, Zhu XX, Kong MW, Zou XJ, Ma QY, et al. 2022. Xiaoyaosan exerts antidepressant-like effect by regulating autophagy involves the expression of GLUT4 in the mice hypothalamic neurons. Frontiers in Pharmacology 13:873646 doi: 10.3389/fphar.2022.873646
CrossRef Google Scholar
|
[165]
|
Shafaghat A. 2011. Antioxidant, antimicrobial activities and fatty acid components of leaf and seed of Bupleurum lancifolium Hornem. Journal of Medicinal Plants Research 5:3758−62
Google Scholar
|
[166]
|
Zuzarte M, Correia PMp, Alves-Silva JM, Gonçalves MJ, Cavaleiro C, et al. 2021. Antifungal and anti-inflammatory potential of Bupleurum rigidum subsp. paniculatum (Brot.) H. Wolff essential oil. Antibiotics 10:592 doi: 10.3390/antibiotics10050592
CrossRef Google Scholar
|
[167]
|
Laouer H, Hirèche Adjal Y, Prado S, Boulaacheb N, Akkal S, et al. 2009. Chemical composition and antimicrobial activity of essential oil of Bupleurum montanum and B. plantagineum. Natural Product Communications 4:1605−10
Google Scholar
|
[168]
|
González JA, Estévez-Braun A, Estévez-Reyes R, Bazzocchi IL, Moujir L, et al. 1995. Biological activity of secondary metabolites from Bupleurum salicifolium (Umbelliferae). Experientia 51:35−39
Google Scholar
|
[169]
|
Fernández Ocaña AM, Gómez Rodríguez MV, Velasco Negueruela A, Camacho Simarro AM, Fernández López C, et al. 2004. In vivo antifungal activity of the essential oil of Bupleurum gibraltarium against Plasmopara halstedii in sunflower. Journal of Agricultural and Food Chemistry 52:6414−17 doi: 10.1021/jf040219n
CrossRef Google Scholar
|
[170]
|
Wu SC, Chu XL, Su JQ, Wu ZM, Yu ZJ, et al. 2019. Saikosaponin A protects chickens against pullorum disease via modulation of cholesterol. Poultry Science 98:3539−47 doi: 10.3382/ps/pez197
CrossRef Google Scholar
|
[171]
|
Ter BS, Djearamane S, Fanne Yeoh FN, Antony Dhanapal ACT. 2022. Functional and bioactive properties of Bupleurum Chinense DC. and clematis Chinensis osbeck mediated biogenic synthesized silver nanoparticles. Sains Malaysiana 51(11):3663−76 doi: 10.17576/jsm-2022-5111-12
CrossRef Google Scholar
|
[172]
|
Baker S, Prudnikova SV, Shumilova AA, Perianova OV, Zharkov SM, et al. 2019. Bio-functionalization of phytogenic Ag and ZnO nanobactericides onto cellulose films for bactericidal activity against multiple drug resistant pathogens. Journal of Microbiological Methods 159:42−50 doi: 10.1016/j.mimet.2019.02.009
CrossRef Google Scholar
|
[173]
|
Ye M, Bi YF, Ding L, Zhu WW, Gao W. 2016. Saikosaponin a functions as anti-epileptic effect in pentylenetetrazol induced rats through inhibiting mTOR signaling pathway. Biomedicine & Pharmacotherapy 81:281−87 doi: 10.1016/j.biopha.2016.04.012
CrossRef Google Scholar
|
[174]
|
Liu Y, Wu H, Ge F. 2002. Chemical constituents analysis on anticonvulsive effect of three extracts from Radix Bupleuri. Journal of Chinese Medicinal Materials 9:635−37
Google Scholar
|
[175]
|
Liu ZZ, Weng HB, Zhang LJ, Pan LY, Sun W, et al. 2019. Bupleurum polysaccharides ameliorated renal injury in diabetic mice associated with suppression of HMGB1-TLR4 signaling. Chinese Journal of Natural Medicines 17:641−49 doi: 10.1016/S1875-5364(19)30078-0
CrossRef Google Scholar
|
[176]
|
Feng Y, Weng H, Ling L, Zeng T, Zhang Y, et al. 2019. Modulating the gut microbiota and inflammation is involved in the effect of Bupleurum polysaccharides against diabetic nephropathy in mice. International Journal of Biological Macromolecules 132:1001−11 doi: 10.1016/j.ijbiomac.2019.03.242
CrossRef Google Scholar
|
[177]
|
Zhang Z, Leng Y, Fu X, Yang C, Xie H, et al. 2022. The efficacy and safety of dachaihu decoction in the treatment of type 2 diabetes mellitus: A systematic review and meta-analysis. Frontiers in Pharmacology 13:918681 doi: 10.3389/fphar.2022.918681
CrossRef Google Scholar
|
[178]
|
Zhao BL. 2013. Differentiation of species of Bupleurum and its changes. Chinese Journal of Medical History 43:200−5
Google Scholar
|