[1]
|
Li Z, Liu X, Gituru RW, Juntawong N, Zhou M, et al. 2010. Genetic diversity and classification of Nelumbo germplasm of different origins by RAPD and ISSR analysis. Scientia Horticulturae 125:724−32 doi: 10.1016/j.scienta.2010.05.005
CrossRef Google Scholar
|
[2]
|
Zhang Y, Lu X, Zeng S, Huang X, Guo Z, et al. 2015. Nutritional composition, physiological functions and processing of lotus (Nelumbo nucifera Gaertn.) seeds: A review. Phytochemistry Reviews 14:321−34 doi: 10.1007/s11101-015-9401-9
CrossRef Google Scholar
|
[3]
|
Limwachiranon J, Huang H, Shi Z, Li L, Luo Z. 2018. Lotus flavonoids and phenolic acids: Health promotion and safe consumption dosages. Comprehensive Reviews in Food Science and Food Safety 17:458−71 doi: 10.1111/1541-4337.12333
CrossRef Google Scholar
|
[4]
|
Hu P, Ge X, Gao MT, Wang XZ, Zhang YY, et al. 2022. Nelumbo nucifera Gaertn: An updated review of the antitumor activity and mechanisms of alkaloids. Pharmacological Research-Modern Chinese Medicine 5:100167 doi: 10.1016/j.prmcm.2022.100167
CrossRef Google Scholar
|
[5]
|
Pei H, Su W, Gui M, Dou M, Zhang Y, et al. 2021. Comparative analysis of chemical constituents in different parts of lotus by UPLC and QToF-MS. Molecules 26:1855 doi: 10.3390/molecules26071855
CrossRef Google Scholar
|
[6]
|
National Pharmacopoeia Committee. (Eds.) 2020. Pharmacopoeia of the People's Republic of China. Beijing: China Pharmaceutical Science and Technology Press. pp. 285−87
|
[7]
|
Chen S, Li X, Wu J, Li J, Xiao M, et al. 2021. Plumula Nelumbinis: A review of traditional uses, phytochemistry, pharmacology, pharmacokinetics and safety. Journal of Ethnopharmacology 266:113429 doi: 10.1016/j.jep.2020.113429
CrossRef Google Scholar
|
[8]
|
Lin S, Wang Z, Lin Y, Ge S, Hamzah SS, et al. 2019. Bound phenolics from fresh lotus seeds exert anti-obesity effects in 3T3-L1 adipocytes and high-fat diet-fed mice by activation of AMPK. Journal of Functional Foods 58:74−84 doi: 10.1016/j.jff.2019.04.054
CrossRef Google Scholar
|
[9]
|
Wang Z, Hu J, Hamzah SS, Ge S, Lin Y, et al. 2019. n-Butanol extract of lotus seeds exerts antiobesity effects in 3T3-L1 preadipocytes and high-fat diet-fed mice via activating adenosine monophosphate-activated protein kinase. Journal of Agricultural and Food Chemistry 67:1092−103 doi: 10.1021/acs.jafc.8b05281
CrossRef Google Scholar
|
[10]
|
Ziegler J, Facchini PJ. 2008. Alkaloid biosynthesis: Metabolism and trafficking. Annual Review of Plant Biology 59:735−69 doi: 10.1146/annurev.arplant.59.032607.092730
CrossRef Google Scholar
|
[11]
|
Hudzik TJ, Patel M, Brown A. 2021. β2-Adrenoceptor agonist activity of higenamine. Drug Testing And Analysis 13:261−67 doi: 10.1002/dta.2992
CrossRef Google Scholar
|
[12]
|
Wen J, Li M, Zhang W, Wang H, Bai Y, et al. 2022. Role of higenamine in heart diseases: A mini-review. Frontiers in Pharmacology 12:798495 doi: 10.3389/fphar.2021.798495
CrossRef Google Scholar
|
[13]
|
Nakamura S, Nakashima S, Tanabe G, Oda Y, Yokota N, et al. 2013. Alkaloid constituents from flower buds and leaves of sacred lotus (Nelumbo nucifera, Nymphaeaceae) with melanogenesis inhibitory activity in B16 melanoma cells. Bioorganic & Medicinal Chemistry 21:779−87 doi: 10.1016/j.bmc.2012.11.038
CrossRef Google Scholar
|
[14]
|
Bharathi Priya L, Huang CY, Hu RM, Balasubramanian B, Baskaran R. 2021. An updated review on pharmacological properties of neferine-A bisbenzylisoquinoline alkaloid from Nelumbo nucifera. Journal of Food Biochemistry 45:e13986 doi: 10.1111/jfbc.13986
CrossRef Google Scholar
|
[15]
|
Cheng Y, Li HL, Zhou ZW, Long HZ, Luo HY, et al. 2021. Isoliensinine: A natural compound with "drug-like" potential. Frontiers in Pharmacology 12:630385 doi: 10.3389/fphar.2021.630385
CrossRef Google Scholar
|
[16]
|
He CL, Huang LY, Wang K, Gu CJ, Hu J, et al. 2021. Identification of bis-benzylisoquinoline alkaloids as SARS-CoV-2 entry inhibitors from a library of natural products. Signal Transduction and Targeted Therapy 6:131 doi: 10.1038/s41392-021-00531-5
CrossRef Google Scholar
|
[17]
|
Bai X, Liu X, Li S, An H, Kang X, et al. 2022. Nuciferine Inhibits TMEM16A in Dietary Adjuvant Therapy for Lung Cancer. Journal of Agricultural and Food Chemistry 70:3687−96 doi: 10.1021/acs.jafc.1c08375
CrossRef Google Scholar
|
[18]
|
Kang EJ, Lee SK, Park KK, Son SH, Kim KR, et al. 2017. Liensinine and nuciferine, bioactive components of Nelumbo nucifera, inhibit the growth of breast cancer cells and breast cancer-associated bone loss. Evidence-based Complementary and Alternative Medicine 2017:1583185 doi: 10.1155/2017/1583185
CrossRef Google Scholar
|
[19]
|
Wan Y, Xia J, Xu JF, Chen L, Yang Y, et al. 2022. Nuciferine, an active ingredient derived from lotus leaf, lights up the way for the potential treatment of obesity and obesity-related diseases. Pharmacological Research 175:106002 doi: 10.1016/j.phrs.2021.106002
CrossRef Google Scholar
|
[20]
|
Zhang L, Gao J, Tang P, Chong L, Liu Y, et al. 2018. Nuciferine inhibits LPS-induced inflammatory response in BV2 cells by activating PPAR-γ. International Immunopharmacology 63:9−13 doi: 10.1016/j.intimp.2018.07.015
CrossRef Google Scholar
|
[21]
|
Singh A, Menéndez-Perdomo IM, Facchini PJ. 2019. Benzylisoquinoline alkaloid biosynthesis in opium poppy: An update. Phytochemistry Reviews 18:1457−82 doi: 10.1007/s11101-019-09644-w
CrossRef Google Scholar
|
[22]
|
Stadler R, Kutchan TM, Zenk MH. 1989. (S)-Norcoclaurine is the central intermediate in benzylisoquinoline alkaloid biosynthesis. Phytochemistry 28:1083−86 doi: 10.1016/0031-9422(89)80187-6
CrossRef Google Scholar
|
[23]
|
Minami H, Dubouzet E, Iwasa K, Sato F. 2007. Functional analysis of norcoclaurine synthase in Coptis japonica. Journal of Biological Chemistry 282:6274−82 doi: 10.1074/jbc.M608933200
CrossRef Google Scholar
|
[24]
|
Lee EJ, Facchini P. 2010. Norcoclaurine synthase is a member of the pathogenesis-related 10/Bet v1 protein family. The Plant Cell 22:3489−3503 doi: 10.1105/tpc.110.077958
CrossRef Google Scholar
|
[25]
|
Li J, Lee EJ, Chang L, Facchini PJ. 2016. Genes encoding norcoclaurine synthase occur as tandem fusions in the Papaveraceae. Scientific Reports 6:39256 doi: 10.1038/srep39256
CrossRef Google Scholar
|
[26]
|
Sheng X, Himo F. 2019. Enzymatic Pictet-Spengler reaction: Computational study of the mechanism and enantioselectivity of norcoclaurine synthase. Journal of The American Chemical Society 141:11230−38 doi: 10.1021/jacs.9b04591
CrossRef Google Scholar
|
[27]
|
Kashiwada Y, Aoshima A, Ikeshiro Y, Chen YP, Furukawa H, et al. 2005. Anti-HIV benzylisoquinoline alkaloids and flavonoids from the leaves of Nelumbo nucifera, and structure-activity correlations with related alkaloids. Bioorganic & Medicinal Chemistry 13:443−48 doi: 10.1016/j.bmc.2004.10.020
CrossRef Google Scholar
|
[28]
|
Koshiyama H, Ohkuma H, Kawaguchi H, Hsu H, Chen Y. 1970. Isolation of 1-(p-hydroxybenzyl)-6,7-dihydroxy-1 2,3,4-tetrahydroisoquinoline (demethylcoclaurine), an active alkaloid from Nelumbo nucifera. Chemical and Pharmaceutical Bulletin 18:2564−68 doi: 10.1248/cpb.18.2564
CrossRef Google Scholar
|
[29]
|
Lin Z, Yang R, Guan Z, Chen A, Li W. 2014. Ultra-performance LC separation and quadrupole time-of-flight MS identification of major alkaloids in plumula nelumbinis. Phytochemical Analysis 25:485−94 doi: 10.1002/pca.2517
CrossRef Google Scholar
|
[30]
|
Hong HX, Lee YI, Jin DR. 2010. Determination of R-(+)-higenamine enantiomer in Nelumbo nucifera by high-performance liquid chromatography with a fluorescent chiral tagging reagent. Microchemical Journal 96:374−79 doi: 10.1016/j.microc.2010.06.011
CrossRef Google Scholar
|
[31]
|
Morikawa T, Kitagawa N, Tanabe G, Ninomiya K, Okugawa S, et al. 2016. Quantitative determination of alkaloids in lotus flower (flower buds of Nelumbo nucifera) and their melanogenesis inhibitory activity. Molecules 21:930 doi: 10.3390/molecules21070930
CrossRef Google Scholar
|
[32]
|
Wang Z, Li Y, Ma D, Zeng M, Wang Z, et al. 2021. Alkaloids from lotus (Nelumbo nucifera): recent advances in biosynthesis, pharmacokinetics, bioactivity, safety, and industrial applications. Critical Reviews in Food Science and Nutrition 30:4867−900 doi: 10.1080/10408398.2021.2009436
CrossRef Google Scholar
|
[33]
|
Maneenet J, Omar AM, Sun S, Kim MJ, Daodee S, et al. 2021. Benzylisoquinoline alkaloids from Nelumbo nucifera Gaertn. petals with antiausterity activities against the HeLa human cervical cancer cell line. Zeitschrift Fur Naturforschung Section C 76:401−6 doi: 10.1515/znc-2020-0304
CrossRef Google Scholar
|
[34]
|
Kunitomo J, Yoshikawa Y, Tanaka S, Imori Y, Isoi K, et al. 1973. Alkaloids of Nelumbo nucifera. Phytochemistry 12:699−701 doi: 10.1016/S0031-9422(00)84467-2
CrossRef Google Scholar
|
[35]
|
Do TCMV, Nguyen TD, Tran H, Stuppner H, Ganzera M. 2013. Analysis of alkaloids in Lotus (Nelumbo nucifera Gaertn.) leaves by non-aqueous capillary electrophoresis using ultraviolet and mass spectrometric detection. Journal of Chromatography A 1302:174−80 doi: 10.1016/j.chroma.2013.06.002
CrossRef Google Scholar
|
[36]
|
Ka SM, Kuo YC, Ho PJ, Tsai PY, Hsu YJ, et al. 2010. (S)-armepavine from Chinese medicine improves experimental autoimmune crescentic glomerulonephritis. Rheumatology 49:1840−51 doi: 10.1093/rheumatology/keq164
CrossRef Google Scholar
|
[37]
|
Guo Y, Chen X, Qi J, Yu B. 2016. Simultaneous qualitative and quantitative analysis of flavonoids and alkaloids from the leaves of Nelumbo nucifera Gaertn. using high-performance liquid chromatography with quadrupole time-of-flight mass spectrometry. Journal of Separation Science 39:2499−507 doi: 10.1002/jssc.201501315
CrossRef Google Scholar
|
[38]
|
Liu CM, Kao CL, Wu HM, Li WJ, Huang CT, et al. 2014. Antioxidant and anticancer aporphine alkaloids from the leaves of Nelumbo nucifera Gaertn. cv. Rosa-plena. Molecules 19:17829−38 doi: 10.3390/molecules191117829
CrossRef Google Scholar
|
[39]
|
Grienke U, Mair CE, Saxena P, Baburin I, Scheel O, et al. 2015. Human ether-à-go-go related gene (hERG) channel blocking aporphine alkaloids from lotus leaves and their quantitative analysis in dietary weight loss supplements. Journal of Agricultural and Food Chemistry 63:5634−39 doi: 10.1021/acs.jafc.5b01901
CrossRef Google Scholar
|
[40]
|
Zhou M, Jiang M, Ying X, Cui Q, Han Y, et al. 2013. Identification and comparison of anti-inflammatory ingredients from different organs of Lotus nelumbo by UPLC/Q-TOF and PCA coupled with a NF-κB reporter gene assay. PLoS ONE 8:81971 doi: 10.1371/journal.pone.0081971
CrossRef Google Scholar
|
[41]
|
Deng X, Zhu L, Fang T, Vimolmangkang S, Yang D, et al. 2016. Analysis of isoquinoline alkaloid composition and wound-induced variation in Nelumbo using HPLC-MS/MS. Journal of Agricultural and Food Chemistry 64:1130−36 doi: 10.1021/acs.jafc.5b06099
CrossRef Google Scholar
|
[42]
|
Agnihotri VK, ElSohly HN, Khan SI, Jacob MR, Joshi VC, et al. 2008. Constituents of Nelumbo nucifera leaves and their antimalarial and antifungal activity. Phytochemistry Letters 1:89−93 doi: 10.1016/j.phytol.2008.03.003
CrossRef Google Scholar
|
[43]
|
Itoh A, Saitoh T, Tani K, Uchigaki M, Sugimoto Y, et al. 2011. Bisbenzylisoquinoline alkaloids from Nelumbo nucifera. Chemical Pharmaceutical Bulletin 59:947−51 doi: 10.1248/cpb.59.947
CrossRef Google Scholar
|
[44]
|
Yang GM, Sun J, Pan Y, Zhang JL, Xiao M, et al. 2018. Isolation and identification of a tribenzylisoquinoline alkaloid from Nelumbo nucifera Gaertn, a novel potential smooth muscle relaxant. Fitoterapia 124:58−65 doi: 10.1016/j.fitote.2017.10.020
CrossRef Google Scholar
|
[45]
|
Zhao X, Shen J, Chang KJ, Kim SH. 2014. Comparative analysis of antioxidant activity and functional components of the ethanol extract of lotus (Nelumbo nucifera) from various growing regions. Journal of Agricultural and Food Chemistry 62:6227−35 doi: 10.1021/jf501644t
CrossRef Google Scholar
|
[46]
|
Khan S, Khan HU, Khan FA, Shah A, Wadood A, et al. 2022. Anti-Alzheimer and antioxidant effects of Nelumbo nucifera L. alkaloids, nuciferine and norcoclaurine in alloxan-Induced diabetic albino rats. Pharmaceuticals 15:1205 doi: 10.3390/ph15101205
CrossRef Google Scholar
|
[47]
|
Liu CP, Tsai WJ, Shen CC, Lin YL, Liao JF, et al. 2006. Inhibition of (S)-armepavine from Nelumbo nucifera on autoimmune disease of MRL/MpJ-lpr/lpr mice. European Journal Of Pharmacology 531:270−79 doi: 10.1016/j.ejphar.2005.11.062
CrossRef Google Scholar
|
[48]
|
Xu J, Zhang X, Yan L, Zhang Z, Wei J, et al. 2022. Insight into Lotusine and Puerarin in Repairing Alcohol-Induced Metabolic Disorder Based on UPLC-MS/MS. International Journal of Molecular Sciences 23:10385 doi: 10.3390/ijms231810385
CrossRef Google Scholar
|
[49]
|
Ryu TK, Roh E, Shin HS, Kim JE. 2022. Inhibitory effect of lotusine on solar UV-induced matrix metalloproteinase-1 expression. Plants 11:773 doi: 10.3390/plants11060773
CrossRef Google Scholar
|
[50]
|
Yu Y, Lu J, Sun L, Lyu X, Chang XY, et al. 2021. Akkermansia muciniphila: A potential novel mechanism of nuciferine to improve hyperlipidemia. Biomedicine & Pharmacotherapy 133:111014 doi: 10.1016/j.biopha.2020.111014
CrossRef Google Scholar
|
[51]
|
Pan Y, Cai B, Wang K, Wang S, Zhou S, et al. 2009. Neferine enhances insulin sensitivity in insulin resistant rats. Journal of Ethnopharmacology 124:98−102 doi: 10.1016/j.jep.2009.04.008
CrossRef Google Scholar
|
[52]
|
Xiao M, Xian C, Wang Y, Qi X, Zhang R, et al. 2023. Nuciferine attenuates atherosclerosis by regulating the proliferation and migration of VSMCs through the Calm4/MMP12/AKT pathway in ApoE(−/−) mice fed with High-Fat-Diet. Phytomedicine 108:154536 doi: 10.1016/j.phymed.2022.154536
CrossRef Google Scholar
|
[53]
|
Yang ZD, Zhang X, Du J, Ma ZJ, Guo F, et al. 2012. An aporphine alkaloid from Nelumbo nucifera as an acetylcholinesterase inhibitor and the primary investigation for structure-activity correlations. Natural Product Research 26:387−92 doi: 10.1080/14786419.2010.487188
CrossRef Google Scholar
|
[54]
|
Yano M, Nakashima S, Oda Y, Nakamura S, Matsuda H. 2020. BBB-permeable aporphine-type alkaloids in Nelumbo nucifera flowers with accelerative effects on neurite outgrowth in PC-12 cells. Journal of Natural Medicines 74:212−18 doi: 10.1007/s11418-019-01368-7
CrossRef Google Scholar
|
[55]
|
Sengking J, Oka C, Yawoot N, Tocharus J, Chaichompoo W, et al. 2022. Protective effect of neferine in permanent cerebral ischemic rats via anti-oxidative and anti-apoptotic mechanisms. Neurotoxicity Research 40:1348−59 doi: 10.1007/s12640-022-00568-6
CrossRef Google Scholar
|
[56]
|
Lin TY, Hung CY, Chiu KM, Lee MY, Lu CW, et al. 2022. Neferine, an alkaloid from lotus seed embryos, exerts antiseizure and neuroprotective effects in a kainic acid-induced seizure model in rats. International Journal of Molecular Sciences 23:4130 doi: 10.3390/ijms23084130
CrossRef Google Scholar
|
[57]
|
Zhong Y, He S, Huang K, Liang M. 2020. Neferine suppresses vascular endothelial inflammation by inhibiting the NF-κB signaling pathway. Archives of Biochemistry and Biophysics 696:108595 doi: 10.1016/j.abb.2020.108595
CrossRef Google Scholar
|
[58]
|
Poornima P, Weng CF, Padma VV. 2014. Neferine, an alkaloid from lotus seed embryo, inhibits human lung cancer cell growth by MAPK activation and cell cycle arrest. Biofactors 40:121−31 doi: 10.1002/biof.1115
CrossRef Google Scholar
|
[59]
|
Menéndez-Perdomo IM, Facchini PJ. 2023. Elucidation of the (R)-enantiospecific benzylisoquinoline alkaloid biosynthetic pathways in sacred lotus (Nelumbo nucifera). Scientific Reports 13:2955 doi: 10.1038/s41598-023-29415-0
CrossRef Google Scholar
|
[60]
|
Facchini PJ, St-Pierre B. 2005. Synthesis and trafficking of alkaloid biosynthetic enzymes. Current Opinion In Plant Biology 8:657−66 doi: 10.1016/j.pbi.2005.09.008
CrossRef Google Scholar
|
[61]
|
Stadler R, Zenk MH. 1990. A revision of the generally accepted pathway for the biosynthesis of the benzyltetrahydroisoquinoline alkaloid reticuline. Liebigs Annalen der Chemie 6:555−62 doi: 10.1002/jlac.1990199001104
CrossRef Google Scholar
|
[62]
|
Liscombe DK, Louie GV, Noel JP. 2012. Architectures, mechanisms and molecular evolution of natural product methyltransferases. Natural Product Reports 29:1238−50 doi: 10.1039/c2np20029e
CrossRef Google Scholar
|
[63]
|
Yang, M, Zhu L, Li L, Li J, Xu L, et al. 2017. Digital gene expression analysis provides insight into the transcript profile of the genes involved in aporphine alkaloid biosynthesis in lotus (Nelumbo nucifera). Frontiers in Plant Science 8:80 doi: 10.3389/fpls.2017.00080
CrossRef Google Scholar
|
[64]
|
Meelaph T, Kobtrakul K, Chansilpa NN, Han Y, Rani D, et al. 2018. Coregulation of biosynthetic genes and transcription factors for aporphine-type alkaloid production in wounded lotus provides insight into the biosynthetic pathway of nuciferine. ACS Omega 3:8794−802 doi: 10.1021/acsomega.8b00827
CrossRef Google Scholar
|
[65]
|
Deng X, Zhao L, Fang T, Xiong Y, Ogutu C, et al. 2018. Investigation of benzylisoquinoline alkaloid biosynthetic pathway and its transcriptional regulation in lotus. Horticulture Research 5:29 doi: 10.1038/s41438-018-0035-0
CrossRef Google Scholar
|
[66]
|
Menéndez-Perdomo IM, Facchini PJ. 2020. Isolation and characterization of two O-methyltransferases involved in benzylisoquinoline alkaloid biosynthesis in sacred lotus (Nelumbo nucifera). Journal Of Biological Chemistry 295:1598−612 doi: 10.1074/jbc.RA119.011547
CrossRef Google Scholar
|
[67]
|
Yu Y, Liu Y, Dong G, Jiang J, Leng L, et al. 2023. Functional characterization and key residues engineering of a regiopromiscuity O-methyltransferase involved in benzylisoquinoline alkaloid biosynthesis in Nelumbo nucifera. Horticulture Research 10:uhac276 doi: 10.1093/hr/uhac276
CrossRef Google Scholar
|
[68]
|
Esau K, Kosakai H. 1975. Laticifers in Nelumbo nucifera Gaertn.: Distribution and structure. Annals of Botany 39:713−19 doi: 10.1093/oxfordjournals.aob.a084985
CrossRef Google Scholar
|
[69]
|
Nelson DR. 2009. The cytochrome P450 homepage. Human Genomics 4:59 doi: 10.1186/1479-7364-4-1-59
CrossRef Google Scholar
|
[70]
|
Nelson DR, Schuler MA. 2013. Cytochrome P450 genes from the sacred lotus genome. Tropical Plant Biology 6:138−51 doi: 10.1007/s12042-013-9119-z
CrossRef Google Scholar
|