[1]
|
Li HJ, Meng JG, Yang WC. 2018. Multilayered signaling pathways for pollen tube growth and guidance. Plant Reproduction 31:31−41 doi: 10.1007/s00497-018-0324-7
CrossRef Google Scholar
|
[2]
|
Okuda S, Tsutsui H, Shiina K, Sprunck S, Takeuchi H, et al. 2009. Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature 458:357−61 doi: 10.1038/nature07882
CrossRef Google Scholar
|
[3]
|
Zhong S, Liu M, Wang Z, Huang Q, Hou S, et al. 2019. Cysteine-rich peptides promote interspecific genetic isolation in Arabidopsis. Science 364:eaau9564 doi: 10.1126/science.aau9564
CrossRef Google Scholar
|
[4]
|
Marshall E, Costa LM, Gutierrez-Marcos J. 2011. Cysteine-rich peptides (CRPs) mediate diverse aspects of cell-cell communication in plant reproduction and development. Journal of Experimental Botany 62:1677−86 doi: 10.1093/jxb/err002
CrossRef Google Scholar
|
[5]
|
Meng JG, Zhang MX, Yang WC, Li HJ. 2019. TICKET attracts pollen tubes and mediates reproductive isolation between relative species in Brassicaceae. Science China. Life Sciences 62:1413−19 doi: 10.1007/s11427-019-9833-3
CrossRef Google Scholar
|
[6]
|
Takeuchi H, Higashiyama T. 2012. A species-specific cluster of defensin-like genes encodes diffusible pollen tube attractants in Arabidopsis. PLoS Biology 10:e1001449 doi: 10.1371/journal.pbio.1001449
CrossRef Google Scholar
|
[7]
|
Higashiyama T, Yabe S, Sasaki N, Nishimura Y, Miyagishima S, et al. 2001. Pollen tube attraction by the synergid cell. Science 293:1480−83 doi: 10.1126/science.1062429
CrossRef Google Scholar
|
[8]
|
Meng JG, Xu YJ, Wang WQ, Yang F, Chen SY, et al. 2023. Central-cell-produced attractants control fertilization recovery. Cell 186:3593−3605.E12 doi: 10.1016/j.cell.2023.06.024
CrossRef Google Scholar
|
[9]
|
Takeuchi H. 2021. The role of diverse LURE-type cysteine-rich peptides as signaling molecules in plant reproduction. Peptides 142:170572 doi: 10.1016/j.peptides.2021.170572
CrossRef Google Scholar
|
[10]
|
Cheng L, Li C. 2023. Stigma receptors function as barriers between intraspecies and interspecies in Brassicaceae. Seed Biology 2:3 doi: 10.48130/seedbio-2023-0003
CrossRef Google Scholar
|
[11]
|
Silverstein KA, Moskal WA Jr, Wu HC, Underwood BA, Graham MA, et al. 2007. Small cysteine-rich peptides resembling antimicrobial peptides have been under-predicted in plants. The Plant Journal 51:262−80 doi: 10.1111/j.1365-313X.2007.03136.x
CrossRef Google Scholar
|
[12]
|
Kasahara RD, Portereiko MF, Sandaklie-Nikolova L, Rabiger DS, Drews GN. 2005. MYB98 is required for pollen tube guidance and synergid cell differentiation in Arabidopsis. The Plant Cell 17:2981−92 doi: 10.1105/tpc.105.034603
CrossRef Google Scholar
|
[13]
|
Punwani JA, Rabiger DS, Drews GN. 2007. MYB98 positively regulates a battery of synergid-expressed genes encoding filiform apparatus localized proteins. The Plant Cell 19:2557−68 doi: 10.1105/tpc.107.052076
CrossRef Google Scholar
|
[14]
|
Márton ML, Cordts S, Broadhvest J, Dresselhaus T. 2005. Micropylar pollen tube guidance by egg apparatus 1 of maize. Science 307:573−76 doi: 10.1126/science.1104954
CrossRef Google Scholar
|
[15]
|
Uebler S, Márton ML, Dresselhaus T. 2015. Classification of EA1-box proteins and new insights into their role during reproduction in grasses. Plant Reproduction 28:183−97 doi: 10.1007/s00497-015-0269-z
CrossRef Google Scholar
|
[16]
|
Eisenbach M, Giojalas LC. 2006. Sperm guidance in mammals — an unpaved road to the egg. Nature Reviews Molecular Cell Biology 7:276−85 doi: 10.1038/nrm1893
CrossRef Google Scholar
|
[17]
|
Wang ZP, Xing HL, Dong L, Zhang HY, Han CY. et al. 2015. Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biology 16:144 doi: 10.1186/s13059-015-0715-0
CrossRef Google Scholar
|
[18]
|
Li HJ, Zhu SS, Zhang MX, Wang T, Liang L, et al. 2015. Arabidopsis CBP1 is a novel regulator of transcription initiation in central cell-mediated pollen tube guidance. The Plant Cell 27:2880−93 doi: 10.1105/tpc.15.00370
CrossRef Google Scholar
|
[19]
|
Chen YH, Li HJ, Shi DQ, Yuan L, Liu J, et al. 2007. The central cell plays a critical role in pollen tube guidance in Arabidopsis. The Plant Cell 19:3563−77 doi: 10.1105/tpc.107.053967
CrossRef Google Scholar
|
[20]
|
Chen LY, Shi DQ, Zhang WJ, Tang ZS, Liu J, et al. 2015. The Arabidopsis alkaline ceramidase TOD1 is a key turgor pressure regulator in plant cells. Nature Communications 6:6030 doi: 10.1038/ncomms7030
CrossRef Google Scholar
|
[21]
|
Wang T, Liang L, Xue Y, Jia PF, Chen W, et al. 2016. A receptor heteromer mediates the male perception of female attractants in plants. Nature 531:241−44 doi: 10.1038/nature16975
CrossRef Google Scholar
|
[22]
|
Song Q, Ando A, Jiang N, Ikeda Y, Chen ZJ. 2020. Single-cell RNA-seq analysis reveals ploidy-dependent and cell-specific transcriptome changes in Arabidopsis female gametophytes. Genome Biology 21:178 doi: 10.1186/s13059-020-02094-0
CrossRef Google Scholar
|
[23]
|
Jones-Rhoades MW, Borevitz JO, Preuss D. 2007. Genome-wide expression profiling of the Arabidopsis female gametophyte identifies families of small, secreted proteins. PLoS Genetics 3:e0030171 doi: 10.1371/journal.pgen.0030171
CrossRef Google Scholar
|
[24]
|
Klepikova AV, Kasianov AS, Gerasimov ES, Logacheva MD, Penin AA. 2016. A high resolution map of the Arabidopsis thaliana developmental transcriptome based on RNA-seq profiling. The Plant Journal 88:1058−70 doi: 10.1111/tpj.13312
CrossRef Google Scholar
|
[25]
|
Huang Q, Dresselhaus T, Gu H, Qu LJ. 2015. Active role of small peptides in Arabidopsis reproduction: Expression evidence. Journal of Integrative Plant Biology 57:518−21 doi: 10.1111/jipb.12356
CrossRef Google Scholar
|
[26]
|
Fletcher JC. 2020. Recent advances in Arabidopsis CLE peptide signaling. Trends In Plant Science 25:1005−16 doi: 10.1016/j.tplants.2020.04.014
CrossRef Google Scholar
|
[27]
|
Olsson V, Joos L, Zhu S, Gevaert K, Butenko MA, et al. 2019. Look closely, the beautiful may be small: precursor-derived peptides in plants. Annual Review of Plant Biology 70:153−86 doi: 10.1146/annurev-arplant-042817-040413
CrossRef Google Scholar
|
[28]
|
Liu X, Zhang H, Jiao H, Li L, Qiao X, et al. 2017. Expansion and evolutionary patterns of cysteine-rich peptides in plants. BMC Genomics 18:610 doi: 10.1186/s12864-017-3948-3
CrossRef Google Scholar
|
[29]
|
Cao J, Shi F. 2012. Evolution of the RALF gene family in plants: gene duplication and selection patterns. Evolutionary Bioinformatics Online 8:271−92 doi: 10.4137/EBO.S9652
CrossRef Google Scholar
|
[30]
|
Ma H, Feng Y, Cao Q, Jia J, Ali M, et al. 2023. Evolution of antimicrobial cysteine-rich peptides in plants. Plant Cell Reports 42:1517−27 doi: 10.1007/s00299-023-03044-3
CrossRef Google Scholar
|