[1]
|
Chapman LA, Goring DR. 2010. Pollen-pistil interactions regulating successful fertilization in the Brassicaceae. Journal of Experimental Botany 61:1987−99 doi: 10.1093/jxb/erq021
CrossRef Google Scholar
|
[2]
|
Higashiyama T, Takeuchi H. 2015. The mechanism and key molecules involved in pollen tube guidance. Annual Review of Plant Biology 66:393−413 doi: 10.1146/annurev-arplant-043014-115635
CrossRef Google Scholar
|
[3]
|
Higashiyama T, Yang WC. 2017. Gametophytic Pollen Tube Guidance: Attractant Peptides, Gametic Controls, and Receptors. Plant Physiology 173:112−21 doi: 10.1104/pp.16.01571
CrossRef Google Scholar
|
[4]
|
Takeuchi H, Higashiyama T. 2016. Tip-localized receptors control pollen tube growth and LURE sensing in Arabidopsis. Nature 531:245−48 doi: 10.1038/nature17413
CrossRef Google Scholar
|
[5]
|
Wang T, Liang L, Xue Y, Jia PF, Chen W, et al. 2016. A receptor heteromer mediates the male perception of female attractants in plants. Nature 531:241−44 doi: 10.1038/nature16975
CrossRef Google Scholar
|
[6]
|
Okuda S, Tsutsui H, Shiina K, Sprunck S, Takeuchi H, et al. 2009. Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature 458:357−61 doi: 10.1038/nature07882
CrossRef Google Scholar
|
[7]
|
Takeuchi H, Higashiyama T. 2012. A species-specific cluster of defensin-like genes encodes diffusible pollen tube attractants in Arabidopsis. PLoS Biology 10:e1001449 doi: 10.1371/journal.pbio.1001449
CrossRef Google Scholar
|
[8]
|
Zhong S, Liu M, Wang Z, Huang Q, Hou S, et al. 2019. Cysteine-rich peptides promote interspecific genetic isolation in Arabidopsis. Science 364:eaau9564 doi: 10.1126/science.aau9564
CrossRef Google Scholar
|
[9]
|
Meng JG, Zhang MX, Yang WC, Li HJ. 2019. TICKET attracts pollen tubes and mediates reproductive isolation between relative species in Brassicaceae. Science China Life Sciences 62:1413−19 doi: 10.1007/s11427-019-9833-3
CrossRef Google Scholar
|
[10]
|
Guo J, Yang Z. 2020. Exocytosis and endocytosis: coordinating and fine-tuning the polar tip growth domain in pollen tubes. Journal of Experimental Botany 71:2428−38 doi: 10.1093/jxb/eraa134
CrossRef Google Scholar
|
[11]
|
Hepler PK, Vidali L, Cheung AY. 2001. Polarized cell growth in higher plants. Annual Review of Cell and Developmental Biology 17:159−87 doi: 10.1146/annurev.cellbio.17.1.159
CrossRef Google Scholar
|
[12]
|
Ruan H, Li J, Wang T, Ren H. 2020. Secretory Vesicles Targeted to Plasma Membrane During Pollen Germination and Tube Growth. Frontiers in Cell and Developmental Biolog 8:615447 doi: 10.3389/fcell.2020.615447
CrossRef Google Scholar
|
[13]
|
Luo N, Yan A, Liu G, Guo J, Rong D, et al. 2017. Exocytosis-coordinated mechanisms for tip growth underlie pollen tube growth guidance. Nature Communications 8:1687 doi: 10.1038/s41467-017-01452-0
CrossRef Google Scholar
|
[14]
|
Zhang R, Xu Y, Yi R, Shen J, Huang S. 2023. Actin cytoskeleton in the control of vesicle transport, cytoplasmic organization, and pollen tube tip growth. Plant Physiology 193:9−25 doi: 10.1093/plphys/kiad203
CrossRef Google Scholar
|
[15]
|
Xu Y, Huang S. 2020. Control of the actin cytoskeleton within apical and subapical regions of pollen tubes. Frontiers in Cell and Developmental Biology 8:614821 doi: 10.3389/fcell.2020.614821
CrossRef Google Scholar
|
[16]
|
Staiger CJ, Poulter NS, Henty JL, Franklin-Tong VE, Blanchoin L. 2010. Regulation of actin dynamics by actin-binding proteins in pollen. Journal of Experimental Botany 61:1969−86 doi: 10.1093/jxb/erq012
CrossRef Google Scholar
|
[17]
|
Chen N, Qu X, Wu Y, Huang S. 2009. Regulation of actin dynamics in pollen tubes: control of actin polymer level. Journal of Integrative Plant Biology 51:740−50 doi: 10.1111/j.1744-7909.2009.00850.x
CrossRef Google Scholar
|
[18]
|
Cheung AY, Duan QH, Costa SS, de Graaf BHJ, Di Stilio VS, et al. 2008. The dynamic pollen tube cytoskeleton: live cell studies using actin-binding and microtubule-binding reporter proteins. Molecular Plant 1:686−702 doi: 10.1093/mp/ssn026
CrossRef Google Scholar
|
[19]
|
Ren H, Xiang Y. 2007. The function of actin-binding proteins in pollen tube growth. Protoplasma 230:171−82 doi: 10.1007/s00709-006-0231-x
CrossRef Google Scholar
|
[20]
|
Vidali L, Hepler PK. 2001. Actin and pollen tube growth. Protoplasma 215:64−76 doi: 10.1007/BF01280304
CrossRef Google Scholar
|
[21]
|
Fu Y. 2015. The cytoskeleton in the pollen tube. Current Opinion in Plant Biology 28:111−19 doi: 10.1016/j.pbi.2015.10.004
CrossRef Google Scholar
|
[22]
|
Chang M, Huang S. 2015. Arabidopsis ACT11 modifies actin turnover to promote pollen germination and maintain the normal rate of tube growth. The Plant Journal 83:515−27 doi: 10.1111/tpj.12910
CrossRef Google Scholar
|
[23]
|
Zhu L, Zhang Y, Kang E, Xu Q, Wang M, et al. 2013. MAP18 regulates the direction of pollen tube growth in Arabidopsis by modulating F-actin organization. The Plant Cell 25:851−67 doi: 10.1105/tpc.113.110528
CrossRef Google Scholar
|
[24]
|
Qin T, Liu X, Li J, Sun J, Song L, et al. 2014. Arabidopsis microtubule-destabilizing protein 25 functions in pollen tube growth by severing actin filaments. The Plant Cell 26:325−39 doi: 10.1105/tpc.113.119768
CrossRef Google Scholar
|
[25]
|
Jiang Y, Chang M, Lan Y, Huang S. 2019. Mechanism of CAP1-mediated apical actin polymerization in pollen tubes. Proceedings of the National Academy of Sciences of the United States of America 116:12084−93 doi: 10.1073/pnas.1821639116
CrossRef Google Scholar
|
[26]
|
Wu Y, Yan J, Zhang R, Qu X, Ren S, et al. 2010. Arabidopsis FIMBRIN5, an actin bundling factor, is required for pollen germination and pollen tube growth. The Plant Cell 22:3745−63 doi: 10.1105/tpc.110.080283
CrossRef Google Scholar
|
[27]
|
Li S, Dong H, Pei W, Liu C, Zhang S, et al. 2017. LlFH1-mediated interaction between actin fringe and exocytic vesicles is involved in pollen tube tip growth. New Phytologist 214:745−61 doi: 10.1111/nph.14395
CrossRef Google Scholar
|
[28]
|
Su H, Zhu J, Cai C, Pei W, Wang J, et al. 2012. FIMBRIN1 is involved in lily pollen tube growth by stabilizing the actin fringe. The Plant Cell 24:4539−54 doi: 10.1105/tpc.112.099358
CrossRef Google Scholar
|
[29]
|
Lan Y, Liu X, Fu Y, Huang S. 2018. Arabidopsis class I formins control membrane-originated actin polymerization at pollen tube tips. PLoS Genetics 14:e1007789 doi: 10.1371/journal.pgen.1007789
CrossRef Google Scholar
|
[30]
|
Wang HJ, Wan AR, Jauh GY. 2008. An actin-binding protein, LlLIM1, mediates calcium and hydrogen regulation of actin dynamics in pollen tubes. Plant Physiology 147:1619−36 doi: 10.1104/pp.108.118604
CrossRef Google Scholar
|
[31]
|
Xiang Y, Huang X, Wang T, Zhang Y, Liu Q, et al. 2007. ACTIN BINDING PROTEIN29 from Lilium pollen plays an important role in dynamic actin remodeling. The Plant Cell 19:1930−46 doi: 10.1105/tpc.106.048413
CrossRef Google Scholar
|
[32]
|
Liu X, Qu X, Jiang Y, Chang M, Zhang R, et al. 2015. Profilin regulates apical actin polymerization to control polarized pollen tube growth. Molecular Plant 8:1694−709 doi: 10.1016/j.molp.2015.09.013
CrossRef Google Scholar
|
[33]
|
Zhu J, Nan Q, Qin T, Qian D, Mao T, et al. 2017. Higher-ordered actin structures remodeled by Arabidopsis ACTIN-DEPOLYMERIZING FACTOR5 are important for pollen germination and pollen tube growth. Molecular Plant 10:1065−81 doi: 10.1016/j.molp.2017.06.001
CrossRef Google Scholar
|
[34]
|
Jiang Y, Lu Q, Huang S. 2022. Functional non-equivalence of pollen ADF isovariants in Arabidopsis. The Plant Journal 110:1068−81 doi: 10.1111/tpj.15723
CrossRef Google Scholar
|
[35]
|
Chen CY, Wong EI, Vidali L, Estavillo A, Hepler PK, et al. 2002. The regulation of actin organization by actin-depolymerizing factor in elongating pollen tubes. The Plant Cell 14:2175−90 doi: 10.1105/tpc.003038
CrossRef Google Scholar
|
[36]
|
Diao M, Li X, Huang SJ. 2020. Arabidopsis AIP1-1 regulates the organization of apical actin filaments by promoting their turnover in pollen tubes. Science China-Life Sciences 63:239−50 doi: 10.1007/s11427-019-9532-0
CrossRef Google Scholar
|
[37]
|
Zhang R, Qu X, Zhang M, Jiang Y, Dai A, et al. 2019. The Balance between Actin-Bundling Factors Controls Actin Architecture in Pollen Tubes. iScience 16:162−76 doi: 10.1016/j.isci.2019.05.026
CrossRef Google Scholar
|
[38]
|
Zheng Y, Xie Y, Jiang Y, Qu X, Huang S. 2013. Arabidopsis ACTIN-DEPOLYMERIZING FACTOR7 severs actin filaments and regulates actin cable turnover to promote normal pollen tube growth. The Plant Cell 25:3405−23 doi: 10.1105/tpc.113.117820
CrossRef Google Scholar
|
[39]
|
Qu X, Zhang R, Zhang M, Diao M, Xue Y, et al. 2017. Organizational innovation of apical actin filaments drives rapid pollen tube growth and turning. Molecular Plant 10:930−47 doi: 10.1016/j.molp.2017.05.002
CrossRef Google Scholar
|
[40]
|
Jiang Y, Wang J, Xie Y, Chen N, Huang S. 2017. ADF10 shapes the overall organization of apical actin filaments by promoting their turnover and ordering in pollen tubes. Journal of Cell Science 130:3988−4001 doi: 10.1242/jcs.207738
CrossRef Google Scholar
|
[41]
|
Wang ZP, Xing HL, Dong L, Zhang HY, Han CY, et al. 2015. Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biology 16:144 doi: 10.1186/s13059-015-0715-0
CrossRef Google Scholar
|
[42]
|
Clough SJ, Bent AF. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16:735−43 doi: 10.1046/j.1365-313x.1998.00343.x
CrossRef Google Scholar
|
[43]
|
Hamamura Y, Nishimaki M, Takeuchi H, Geitmann A, Kurihara D, et al. 2014. Live imaging of calcium spikes during double fertilization in Arabidopsis. Nature Communications 5:4722 doi: 10.1038/ncomms5722
CrossRef Google Scholar
|
[44]
|
Boavida LC, McCormick S. 2007. Temperature as a determinant factor for increased and reproducible in vitro pollen germination in Arabidopsis thaliana. The Plant Journal 52:570−82 doi: 10.1111/j.1365-313X.2007.03248.x
CrossRef Google Scholar
|
[45]
|
Qu X, Zhang H, Xie Y, Wang J, Chen N, Huang S. 2013. Arabidopsis villins promote actin turnover at pollen tube tips and facilitate the construction of actin collars. The Plant Cell 25:1803−17 doi: 10.1105/tpc.113.110940
CrossRef Google Scholar
|
[46]
|
Vidali L, Rounds CM, Hepler PK, Bezanilla M. 2009. Lifeact-mEGFP reveals a dynamic apical F-actin network in tip growing plant cells. PLoS One 4:e5744 doi: 10.1371/journal.pone.0005744
CrossRef Google Scholar
|
[47]
|
Zhang M, Zhang R, Qu X, Huang S. 2016. Arabidopsis FIM5 decorates apical actin filaments and regulates their organization in the pollen tube. Journal of Experimental Botany 67:3407−17 doi: 10.1093/jxb/erw160
CrossRef Google Scholar
|
[48]
|
Shi M, Xie Y, Zheng Y, Wang J, Su Y, et al. 2013. Oryza sativa actin-interacting protein 1 is required for rice growth by promoting actin turnover. The Plant Journal 73:747−60 doi: 10.1111/tpj.12065
CrossRef Google Scholar
|
[49]
|
Ketelaar T, Allwood EG, Anthony R, Voigt B, Menzel D, et al. 2004. The actin-interacting protein AIP1 is essential for actin organization and plant development. Current Biology 14:145−49 doi: 10.1016/j.cub.2004.01.004
CrossRef Google Scholar
|
[50]
|
Chen W, Jia PF, Yang WC, Li HJ. 2020. Plasma membrane H+-ATPases-mediated cytosolic proton gradient regulates pollen tube growth. Journal of Integrative Plant Biology 62:1817−22 doi: 10.1111/jipb.12981
CrossRef Google Scholar
|
[51]
|
Hoffmann RD, Portes MT, Olsen LI, Damineli DSC, Hayashi M, et al. 2020. Plasma membrane H(+)-ATPases sustain pollen tube growth and fertilization. Nature Communications 11:2395 doi: 10.1038/s41467-020-16253-1
CrossRef Google Scholar
|
[52]
|
Wang J, Shen J, Xu Y, Jiang Y, Qu X, et al. 2023. Differential sensitivity of ADF isovariants to a pH gradient promotes pollen tube growth. The Journal of Cell Biology 222:e202206074 doi: 10.1083/jcb.202206074
CrossRef Google Scholar
|
[53]
|
Malhó R, Trewavas AJ. 1996. Localized apical increases of cytosolic free calcium control pollen tube orientation. The Plant Cell 8:1935−49 doi: 10.2307/3870403
CrossRef Google Scholar
|
[54]
|
Moutinho A, Trewavas AJ, Malho R. 1998. Relocation of a Ca2+-dependent protein kinase activity during pollen tube reorientation. The Plant Cell 10:1499−509 doi: 10.1105/tpc.10.9.1499
CrossRef Google Scholar
|
[55]
|
Meng JG, Liang L, Jia PF, Wang YC, Li HJ, et al. 2020. Integration of ovular signals and exocytosis of a Ca2+ channel by MLOs in pollen tube guidance. Nature Plants 6:143−53 doi: 10.1038/s41477-020-0599-1
CrossRef Google Scholar
|
[56]
|
Wang Q, Xu Y, Zhao S, Jiang Y, Yi R, et al. 2023. Activation of actin-depolymerizing factor by CDPK16-mediated phosphorylation promotes actin turnover in Arabidopsis pollen tubes. PLoS Biology 21:e3002073 doi: 10.1371/journal.pbio.3002073
CrossRef Google Scholar
|
[57]
|
Cheung AY, Niroomand S, Zou Y, Wu HM. 2010. A transmembrane formin nucleates subapical actin assembly and controls tip-focused growth in pollen tubes. Proceedings of the National Academy of Sciences of the United States of America 107:16390−95 doi: 10.1073/pnas.1008527107
CrossRef Google Scholar
|
[58]
|
Kovar DR, Drøbak BK, Staiger CJ. 2000. Maize profilin isoforms are functionally distinct. The Plant Cell 12:583−98 doi: 10.1105/tpc.12.4.583
CrossRef Google Scholar
|
[59]
|
Hwang JU, Gu Y, Lee YJ, Yang Z. 2005. Oscillatory ROP GTPase activation leads the oscillatory polarized growth of pollen tubes. Molecular Biology of the Cell 16:5385−99 doi: 10.1091/mbc.e05-05-0409
CrossRef Google Scholar
|
[60]
|
Bove J, Vaillancourt B, Kroeger J, Hepler PK, Wiseman PW, et al. 2008. Magnitude and direction of vesicle dynamics in growing pollen tubes using spatiotemporal image correlation spectroscopy and fluorescence recovery after photobleaching. Plant Physiology 147:1646−58 doi: 10.1104/pp.108.120212
CrossRef Google Scholar
|
[61]
|
Bou Daher F, Geitmann A. 2011. Actin is Involved in Pollen Tube Tropism Through Redefining the Spatial Targeting of Secretory Vesicles. Traffic 12:1537−51 doi: 10.1111/j.1600-0854.2011.01256.x
CrossRef Google Scholar
|