[1]
|
Ruan J, Wu X, Shi Y, Ma L. 2001. Nutrient input and fertilization effect in typical tea areas in China. Soils and Fertilizers Sciences in China 2001(5):9−13 doi: 10.3969/j.issn.1673-6257.2001.05.002
CrossRef Google Scholar
|
[2]
|
Zhang J. 2018. Research on the soil nutrient characteristics of tea plantation. 2018 International Conference on Air Pollution and Environmental Engineering (APEE 2018), Hong Kong, China, 2018. 208: 012079. Bristol: IOP Publishing Ltd. https://doi.org/10.1088/1755-1315/208/1/012079
|
[3]
|
Yuan D, Yang D, Pu G, Zhang Q, Chen X, et al. 2013. Fertility dynamics of three types of tea garden soils in western Sichuan, China. Pakistan Journal of Agricultural Sciences 2013(1):29−35
Google Scholar
|
[4]
|
Sun D, Zong M, Li S, Li H, Duan C, et al. 2020. The effects of the soil environment on soil organic carbon in tea plantations in Xishuangbanna, southwestern China. Agriculture, Ecosystems & Environment 297:106951 doi: 10.1016/j.agee.2020.106951
CrossRef Google Scholar
|
[5]
|
Salehi SY, Hajiboland R. 2008. A high internal phosphorus use efficiency in tea (Camellia Sinensis L.) plants. Asian Journal of Plant Sciences 7:30−36 doi: 10.3923/AJPS.2008.30.36
CrossRef Google Scholar
|
[6]
|
Lin ZH, Chen LS, Chen RB, Zhang FZ, Jiang HX, et al. 2009. CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, carbohydrates and photosynthetic electron transport probed by the JIP-test, of tea leaves in response to phosphorus supply. BMC Plant Biology 9:43 doi: 10.1186/1471-2229-9-43
CrossRef Google Scholar
|
[7]
|
Singh SK, Reddy VR, Fleisher DH, Timlin DJ. 2018. Phosphorus nutrition affects temperature response of soybean growth and canopy photosynthesis. Frontiers in Plant Science 9:1116 doi: 10.3389/fpls.2018.01116
CrossRef Google Scholar
|
[8]
|
Poirier Y, Bucher M. 2002. Phosphate Transport and Homeostasis in Arabidopsis. The Arabidopsis Book 2002(1):e0024 doi: 10.1199/tab.0024
CrossRef Google Scholar
|
[9]
|
Brembu T, Mühlroth A, Alipanah L, Bones AM. 2017. The effects of phosphorus limitation on carbon metabolism in diatoms. Philosophical Transactions of the Royal Society B: Biological Sciences 372:20160406 doi: 10.1098/rstb.2016.0406
CrossRef Google Scholar
|
[10]
|
Lynch JP. 2011. Root phenes for enhanced soil exploration and phosphorus acquisition: Tools for future crops. Plant Physiology 156:1041−49 doi: 10.1104/pp.111.175414
CrossRef Google Scholar
|
[11]
|
Pant BD, Pant P, Erban A, Huhman D, Kopka J, et al. 2015. Identification of primary and secondary metabolites with phosphorus status-dependent abundance in Arabidopsis, and of the transcription factor PHR1 as a major regulator of metabolic changes during phosphorus limitation. Plant, Cell & Environment 38:172−87 doi: 10.1111/pce.12378
CrossRef Google Scholar
|
[12]
|
Alexova R, Nelson CJ, Millar AH. 2017. Temporal development of the barley leaf metabolic response to Pi limitation. Plant, Cell & Environment 40:645−57 doi: 10.1111/pce.12882
CrossRef Google Scholar
|
[13]
|
Byrne SL, Foito A, Hedley PE, Morris JA, Stewart D, et al. 2011. Early response mechanisms of perennial ryegrass (Lolium Perenne) to phosphorus deficiency. Annals of Botany 107:243−54 doi: 10.1093/aob/mcq234
CrossRef Google Scholar
|
[14]
|
Ganie AH, Ahmad A, Pandey R, Aref IM, Yousuf PY, et al. 2015. Metabolite profiling of low-P tolerant and low-P sensitive maize genotypes under phosphorus starvation and restoration conditions. PLoS One 10:e0129520 doi: 10.1371/journal.pone.0129520
CrossRef Google Scholar
|
[15]
|
Müller J, Gödde V, Niehaus K, Zörb C. 2015. Metabolic adaptations of white lupin roots and shoots under phosphorus deficiency. Frontiers in Plant Science 6:1014 doi: 10.3389/fpls.2015.01014
CrossRef Google Scholar
|
[16]
|
Huang CY, Roessner U, Eickmeier I, Genc Y, Callahan DL, et al. 2008. Metabolite profiling reveals distinct changes in carbon and nitrogen metabolism in phosphate-deficient barley plants (Hordeum Vulgare L.). Plant & Cell Physiology 49:691−703 doi: 10.1093/pcp/pcn044
CrossRef Google Scholar
|
[17]
|
Morcuende R, Bari R, Gibon Y, Zheng W, Pant B D, et al. 2007. Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant, Cell & Environment 30:85−112 doi: 10.1111/j.1365-3040.2006.01608.x
CrossRef Google Scholar
|
[18]
|
Warren CR. 2011. How does P affect photosynthesis and metabolite profiles of Eucalyptus Globulus. Tree Physiol 31:727−39 doi: 10.1093/treephys/tpr064
CrossRef Google Scholar
|
[19]
|
Lin ZH, Chen LS, Chen RB, Zhang FZ. 2012. Antioxidant system of tea (Camellia Sinensis) leaves in response to phosphorus supply. Acta Physiologiae Plantarum 34:2443−48 doi: 10.1007/s11738-012-1034-7
CrossRef Google Scholar
|
[20]
|
Lin ZH, Chen LS, Chen RB, Zhang FZ, Jiang HX, et al. 2011. Root release and metabolism of organic acids in tea plants in response to phosphorus supply. Journal of Plant Physiology 168:644−52 doi: 10.1016/j.jplph.2010.09.017
CrossRef Google Scholar
|
[21]
|
Wei K, Liu M, Shi Y, Zhang H, Ruan J, et al. 2022. Metabolomics reveal that the high application of phosphorus and potassium in tea plantation inhibited amino-acid accumulation but promoted metabolism of flavonoid. Agronomy 12:1086 doi: 10.3390/agronomy12051086
CrossRef Google Scholar
|
[22]
|
Kim YD, Yun JG, Seo YR, Karigar CS, Choi MS. 2015. Influence of mineral salts on shoot growth and metabolite biosynthesis in tea tree (Camellia Sinensis L.). Horticultural Science & Technology 33:106−13 doi: 10.7235/hort.2015.14055
CrossRef Google Scholar
|
[23]
|
Mgaloblisvili TS. 1970. The effect of phosphorus fertilization on the formation and accumulation of catechins in tea leaves. Subtropicheskie Kul'tury 1970(2):65−68
Google Scholar
|
[24]
|
Lin ZH, Qi YP, Chen RB, Zhang FZ, Chen LS. 2012. Effects of phosphorus supply on the quality of green tea. Food Chemistry 130:908−14 doi: 10.1016/j.foodchem.2011.08.008
CrossRef Google Scholar
|
[25]
|
Kc S, Liu M, Zhang Q, Fan K, Shi Y, et al. 2018. Metabolic changes of amino acids and flavonoids in tea plants in response to inorganic phosphate limitation. International Journal of Molecular Sciences 19:3683 doi: 10.3390/ijms19113683
CrossRef Google Scholar
|
[26]
|
Joshi R, Rana A, Kumar V, Kumar D, Padwad Y S, et al. 2017. Anthocyanins Enriched Purple Tea Exhibits Antioxidant, Immunostimulatory and Anticancer Activities. Journal of Food Science and Technology 54:1953−1963 doi: 10.1007/s13197-017-2631-7
CrossRef Google Scholar
|
[27]
|
Yang L, Zhang D, Qiu S, Gong Z, Shen H. 2017. Effects of environmental factors on seedling growth and anthocyanin content in Betula 'Royal Frost' leaves. Journal of Forestry Research 28:1147−55 doi: 10.1007/s11676-017-0487-3
CrossRef Google Scholar
|
[28]
|
Annis J, Coons J, Zaya DN, Molano-Flores B. 2019. Environmental influences on foliar anthocyanin production in Pinguicula Planifolia (Lentibulariaceae)1. Journal of the Torrey Botanical Society 146:269−77 doi: 10.3159/TORREY-D-18-00043.1
CrossRef Google Scholar
|
[29]
|
Hong Y, Li M, Dai S. 2019. ITRAQ-based protein profiling provides insights into the mechanism of light-induced anthocyanin biosynthesis in chrysanthemum (Chrysanthemum × Morifolium). Genes (Basel) 10:1024 doi: 10.3390/genes10121024
CrossRef Google Scholar
|
[30]
|
Mori K, Sugaya S, Gemma H. 2005. Decreased anthocyanin biosynthesis in grape berries grown under elevated night temperature condition. Scientia Horticulturae 105:319−30 doi: 10.1016/j.scienta.2005.01.032
CrossRef Google Scholar
|
[31]
|
Moratalla-López N, Lorenzo C, Chaouqi S, Sánchez AM, Alonso GL. 2019. Kinetics of polyphenol content of dry flowers and floral bio-residues of saffron at different temperatures and relative humidity conditions. Food Chemistry 290:87−94 doi: 10.1016/j.foodchem.2019.03.129
CrossRef Google Scholar
|
[32]
|
Miura H, Iwata M. 1979. Effect of nitrogen, phosphorus and potassium on anthocyanin content of the seedlings of Polygonum Hydropiper L. in sand culture. Journal of the Japanese Society for Horticultural Science 48:91−98 doi: 10.2503/jjshs.48.91
CrossRef Google Scholar
|
[33]
|
Müller R, Morant M, Jarmer H, Nilsson L, Nielsen TH. 2007. Genome-wide analysis of the Arabidopsis leaf transcriptome reveals interaction of phosphate and sugar metabolism. Plant Physiology 143:156−71 doi: 10.1104/pp.106.090167
CrossRef Google Scholar
|
[34]
|
Mo X, Zhang M, Zhang Z, Lu X, Liang C, et al. 2021. Phosphate (Pi) starvation up-regulated GmCSN5A/B participates in anthocyanin synthesis in soybean (Glycine Max) dependent on Pi availability. International Journal of Molecular Sciences 22:12348 doi: 10.3390/ijms222212348
CrossRef Google Scholar
|
[35]
|
Chea L, Pfeiffer B, Schneider D, Daniel R, Pawelzik E, et al. 2021. Morphological and metabolite responses of potatoes under various phosphorus levels and their amelioration by plant growth-promoting rhizobacteria. International Journal of Molecular Sciences 22:5162 doi: 10.3390/ijms22105162
CrossRef Google Scholar
|
[36]
|
Sarker BC, Karmoker JL. 2009. Effects of phosphorus deficiency on the root growth of lentil seedlings (Lens Culinaris Medik) grown in rhizobox. Bangladesh Journal of Botany 38:215−18 doi: 10.3329/bjb.v38i2.5153
CrossRef Google Scholar
|
[37]
|
Cao L, Chen G. 2012. Effect of phosphorus deficiency on root growth and root exudates of Cucurbita Pepo 'Luoren'. Acta Horticulturae 933:149−55 doi: 10.17660/ActaHortic.2012.933.17
CrossRef Google Scholar
|
[38]
|
Huang X, Wang Y, Wei L, Feng D, Sun X. 2022. Dynamic changes of endogenous hormones and polyamines in leaves of walnut seedlings under phosphorus deficiency. Fresenius Environmental Bulletin 31:3559−66
Google Scholar
|
[39]
|
Sarker BC, Karmoker JL. 2011. Effects of phosphorus deficiency on accumulation of biochemical compounds in lentil (Lens Culinaris Medik). Bangladesh Journal of Botany 40:23−27 doi: 10.3329/bjb.v40i1.7992
CrossRef Google Scholar
|
[40]
|
Kavanova M, Lattanzi FA, Grimoldi AA, Schnyder H. 2006. Phosphorus deficiency decreases cell division and elongation in grass leaves. Plant Physiology 141:766−75 doi: 10.1104/pp.106.079699
CrossRef Google Scholar
|
[41]
|
Liang H, Shang Q. 2013. Effects of excess or deficient phosphorus on growth and development of cucumber and tomato plug seedling. China Cucurbits and Vegetables 26:17−20 doi: 10.3969/j.issn.1673-2871.2013.06.005
CrossRef Google Scholar
|
[42]
|
Kondo T, Higuchi H. 2013. Effects of excess phosphorus application on passion fruit quality. Tropical Agriculture and Development 57:109−13
Google Scholar
|
[43]
|
Shukla D, Rinehart CA, Sahi SV. 2017. Comprehensive study of excess phosphate response reveals ethylene mediated signaling that negatively regulates plant growth and development. Scientific Reports 7:3074 doi: 10.1038/s41598-017-03061-9
CrossRef Google Scholar
|
[44]
|
Lin ZH, Chen LS, Chen RB, Zhang FZ. 2012. Antioxidant system of tea (Camellia Sinensis) leaves in response to phosphorus supply. Acta Physiologiae Plantarum 34:2443−48 doi: 10.1007/s11738-012-1034-7
CrossRef Google Scholar
|
[45]
|
Lin ZH, Chen LS, Chen RB, Zhang FZ, Jiang HX, et al. 2011. Root release and metabolism of organic acids in tea plants in response to phosphorus supply. Journal of Plant Physiology 168:644−52 doi: 10.1016/j.jplph.2010.09.017
CrossRef Google Scholar
|
[46]
|
Rietra RPJJ, Heinen M, Dimkpa CO, Bindraban PS. 2017. Effects of nutrient antagonism and synergism on yield and fertilizer use efficiency. Communications in Soil Science and Plant Analysis 48:1895−920 doi: 10.1080/00103624.2017.1407429
CrossRef Google Scholar
|
[47]
|
Robson AD, Pitman MG. 1983. Interactions between nutrients in higher plants. In Inorganic Plant Nutrition, eds. Läuchli A, Bieleski RL. Heidelberg: Springer, Berlin. pp. 147–80. https://doi.org/10.1007/978-3-642-68885-0_6
|
[48]
|
Fageria V D. 2001. Nutrient interactions in crop plants. Journal of Plant Nutrition 24:1269−90 doi: 10.1081/PLN-100106981
CrossRef Google Scholar
|