[1]
|
Wei C, Yang H, Wang S, Zhao J, Liu C, et al. 2018. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. PNAS 115:E4151−E4158 doi: 10.1073/pnas.1719622115
CrossRef Google Scholar
|
[2]
|
Ahammed GJ, Li X. 2022. Hormonal regulation of health-promoting compounds in tea (Camellia sinensis L.). Plant Physiology and Biochemistry 185:390−400 doi: 10.1016/j.plaphy.2022.06.021
CrossRef Google Scholar
|
[3]
|
Xia EH, Tong W, Wu Q, Wei S, Zhao J, et al. 2020. Tea plant genomics: achievements, challenges and perspectives. Horticulture Research 7:7 doi: 10.1038/s41438-019-0225-4
CrossRef Google Scholar
|
[4]
|
Chen L, Apostolides Z, Chen ZM. 2012. Global tea breeding: achievements, challenges and perspectives. Hangzhou,Zhejiang: Springer-Zhejiang University Press
|
[5]
|
Nayak SN, Singh VK, Varshney RK. 2017. Marker-assisted selection. In Encyclopedia of Applied Plant Sciences, eds. Thomas B, Murray BG, Murphy DJ, Thomas B, Murray BG, et al. UK: Academic Press, Elsevier. pp. 183−97. https://doi.org/10.1016/b978-0-12-394807-6.00192-1
|
[6]
|
Powder KE. 2020. Quantitative trait loci (QTL) mapping. In eQTL Analysis. Methods and Protocols, ed. Shi XM. vol. 2082. New York: Humana. pp. 211−29. https://doi.org/10.1007/978-1-0716-0026-9_15
|
[7]
|
Varshney RK, Pandey MK, Chitikineni A. 2018. Plant genetics and molecular biology: An introduction. In Plant Genetics and Molecular Biology, eds. Varshney RK, Pandey MK, Chitikineni A. vol 164. Switzerland: Springer, Cham. pp. 1−9. https://doi.org/10.1007/10_2017_45
|
[8]
|
Chen L, Zhou ZX, Yang YJ. 2007. Genetic improvement and breeding of tea plant (Camellia sinensis) in China: from individual selection to hybridization and molecular breeding. Euphytica 154:239−48 doi: 10.1007/s10681-006-9292-3
CrossRef Google Scholar
|
[9]
|
Wang X, Feng H, Chang Y, Ma C, Wang L, et al. 2020. Population sequencing enhances understanding of tea plant evolution. Nature Communications 11:4447 doi: 10.1038/s41467-020-18228-8
CrossRef Google Scholar
|
[10]
|
Young ND. 1994. Constructing a plant genetic linkage map with DNA markers. In DNA-based markers in plants, ed. RL Phillips, IK Vasil. Netherlands: Springer Dordrecht. pp. 31−47. https://doi.org/10.1007/978-94-015-9815-6_3
|
[11]
|
Tan LQ, Zhang CC, Qi GN, Wang LY, Wei K, et al. 2015. Heterozygosities and genetic relationship of tea cultivars revealed by simple sequence repeat markers and implications for breeding and genetic mapping programs. Genetics and Molecular Research 14:1557−65 doi: 10.4238/2015.March.6.3
CrossRef Google Scholar
|
[12]
|
Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, et al. 1987. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174−81 doi: 10.1016/0888-7543(87)90010-3
CrossRef Google Scholar
|
[13]
|
Somers DJ, Isaac P, Edwards K. 2004. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics 109:1105−14 doi: 10.1007/s00122-004-1740-7
CrossRef Google Scholar
|
[14]
|
Liu D, Ma C, Hong W, Huang L, Liu M, et al. 2014. Construction and analysis of high-density linkage map using high-throughput sequencing data. PLoS One 9:e98855 doi: 10.1371/journal.pone.0098855
CrossRef Google Scholar
|
[15]
|
Li JW, Li H, Liu ZW, Wang YX, Chen Y, et al. 2023. Molecular markers in tea plant (Camellia sinensis): Applications to evolution, genetic identification, and molecular breeding. Plant Physiology and Biochemistry 198:107704 doi: 10.1016/j.plaphy.2023.107704
CrossRef Google Scholar
|
[16]
|
Tanaka J. 1996. Making linkage mag of tea based on RAPD and the possibility of the application to genetic analysis. Tea Research Journal 84:44−45
Google Scholar
|
[17]
|
Ma JQ, Yao MZ, Ma CL, Wang XC, Jin JQ, et al. 2014. Construction of a SSR-based genetic map and identification of QTLs for catechins content in tea plant (Camellia sinensis). PLoS One 9:e93131 doi: 10.1371/journal.pone.0093131
CrossRef Google Scholar
|
[18]
|
Tan LQ, Yang CJ, Zhou B, Wang LB, Zou Y, et al. 2020. Inheritance and quantitative trait loci analyses of the anthocyanins and catechins of Camellia sinensis cultivar 'Ziyan' with dark-purple leaves. Physiologia Plantarum 170:109−19 doi: 10.1111/ppl.13114
CrossRef Google Scholar
|
[19]
|
Xu LY, Wang LY, Wei K, Tan LQ, Su JJ, et al. 2018. High-density SNP linkage map construction and QTL mapping for flavonoid-related traits in a tea plant (Camellia sinensis) using 2b-RAD sequencing. BMC Genomics 19:955 doi: 10.1186/s12864-018-5291-8
CrossRef Google Scholar
|
[20]
|
Huang R, Wang JY, Yao MZ, Ma CL, Chen L. 2022. Quantitative trait loci mapping for free amino acid content using an albino population and SNP markers provides insight into the genetic improvement of tea plants. Horticulture Research 9:uhab029 doi: 10.1093/hr/uhab029
CrossRef Google Scholar
|
[21]
|
Chen S, Li X, Liu Y, Chen J, Ma J, et al. 2023. Identification of QTL controlling volatile terpene contents in tea plant (Camellia sinensis) using a high-aroma 'Huangdan' × 'Jinxuan' F1 population. Frontiers in Plant Science 14:1130582 doi: 10.3389/fpls.2023.1130582
CrossRef Google Scholar
|
[22]
|
Tan L, Wang L, Xu L, Wu L, Peng M, et al. 2016. SSR-based genetic mapping and QTL analysis for timing of spring bud flush, young shoot color, and mature leaf size in tea plant (Camellia sinensis). Tree Genetics & Genomes 12:52 doi: 10.1007/s11295-016-1008-9
CrossRef Google Scholar
|
[23]
|
Tan L, Cui D, Wang L, Liu Q, Zhang D, et al. 2022. Genetic analysis of the early bud flush trait of tea plants (Camellia sinensis) in the cultivar 'Emei Wenchun' and its open-pollinated offspring. Horticulture Research 9:uhac086 doi: 10.1093/hr/uhac086
CrossRef Google Scholar
|
[24]
|
An Y, Chen L, Tao L, Liu S, Wei C. 2021. QTL mapping for leaf area of tea plants (Camellia sinensis) based on a high-quality genetic map constructed by whole genome resequencing. Frontiers in Plant Science 12:705285 doi: 10.3389/fpls.2021.705285
CrossRef Google Scholar
|
[25]
|
Koech RK, Malebe PM, Nyarukowa C, Mose R, Kamunya SM, et al. 2019. Functional annotation of putative QTL associated with black tea quality and drought tolerance traits. Scientific Reports 9:1465 doi: 10.1038/s41598-018-37688-z
CrossRef Google Scholar
|
[26]
|
Tan L, Wang L, Zhou B, Liu Q, Chen S, et al.g, Q. 2020. Comparative transcriptional analysis reveled genes related to short winter-dormancy regulation in Camellia sinensis. Plant Growth Regulation 92:401−15 doi: 10.1007/s10725-020-00649-6
CrossRef Google Scholar
|
[27]
|
Ota S, Tanaka J. 1999. RAPD-based linkage mapping using F1 segregating population derived from crossings between tea cultivar 'Sayamakaori' and strain 'Kana-Ck17'. Breeding Research 1:16
Google Scholar
|
[28]
|
Hackett CA, Wachira FN, Paul S, Powell W, Waugh R. 2000. Construction of a genetic linkage map for Camellia sinensis (tea). Heredity 85:346−55 doi: 10.1046/j.1365-2540.2000.00769.x
CrossRef Google Scholar
|
[29]
|
Huang J, Li J, Huang Y, Luo J, Gong Z, et al. 2005. Construction of AFLP molecular markers linkage map in tea plant. Journal of Tea Science 25:7−15 doi: 10.3969/j.issn.1000-369X.2005.01.002
CrossRef Google Scholar
|
[30]
|
Huang F, Liang Y, Lu J, Chen R. 2006. Genetic mapping of first generation of backcross in tea by RAPD and ISSR markers. Journal of Tea Science 26(3):171−76 doi: 10.3969/j.issn.1000-369X.2006.03.003
CrossRef Google Scholar
|
[31]
|
Mewan KM, Saha MC, Konstantin C. 2007. Construction of a genomic and EST-SSR based saturated genetic linkage map of tea (Camellia sinensis L.). Proceedings of the 3rd International Conference on O-Cha (tea) Culture and Science (ICOS), Shizuoka, Japan, 2007. Shizuoka, Japan: The Organization Committee of the 2007 ICOS. www.ocha-festival.jp/archive/2007/
|
[32]
|
Taniguchi L, Tanka J, Kono I. 2007. Construction of genetic linkage map of tea using SSR markers. In Proceedings of the 3rd International Conference on O-Cha (tea) Culture and Science (ICOS), Shizuoka, Japan, 2007. Shizuoka, Japan: The Organization Committee of the 2007 ICOS. www.ocha-festival.jp/archive/2007/
|
[33]
|
Kamunya SM, Wachira FN, Pathak RS, Korir R, Sharma V, et al. 2010. Genomic mapping and testing for quantitative trait loci in tea (Camellia sinensis (L.) O. Kuntze). Tree Genetics & Genomes 6:915−29 doi: 10.1007/s11295-010-0301-2
CrossRef Google Scholar
|
[34]
|
Taniguchi F, Furukawa K, Ota-Metoku S, Yamaguchi N, Ujihara T, et al. 2012. Construction of a high-density reference linkage map of tea (Camellia sinensis). Breeding Science 62:263−73 doi: 10.1270/jsbbs.62.263
CrossRef Google Scholar
|
[35]
|
Tan L, Wang L, Wei K, Zhang C, Wu L, et al. 2013. Floral transcriptome sequencing for SSR marker development and linkage map construction in the tea plant (Camellia sinensis). PLoS One 8:e81611 doi: 10.1371/journal.pone.0081611
CrossRef Google Scholar
|
[36]
|
Ma J, Huang L, Ma C, Jin J, Li C, et al. 2015. Large-scale snp discovery and genotyping for constructing a high-density genetic map of tea plant using specific-locus amplified fragment sequencing (SLAF-seq). PLoS One 10:e0128798 doi: 10.1371/journal.pone.0128798
CrossRef Google Scholar
|
[37]
|
Xu L, Tan L, Wang L, Qi G, Cheng H, et al. 2016. QTL analysis for anthracnose in tea plant(Camellia sinensis). Journal of Tea Science 36:432−39 doi: 10.13305/j.cnki.jts.2016.04.012
CrossRef Google Scholar
|
[38]
|
Chang Y, Oh EU, Lee MS, Kim HB, Moon DG, et al. 2017. Construction of a genetic linkage map based on RAPD, AFLP, and SSR markers for tea plant (Camellia sinensis). Euphytica 213:190 doi: 10.1007/s10681-017-1979-0
CrossRef Google Scholar
|
[39]
|
Wei K, Wang X, Hao X, Qian Y, Li X, et al. 2022. Development of a genome-wide 200K SNP array and its application for high-density genetic mapping and origin analysis of Camellia sinensis. Plant Biotechnology Journal 20:414−16 doi: 10.1111/pbi.13761
CrossRef Google Scholar
|
[40]
|
Demirjian C, Vailleau F, Berthomé R, Roux F. 2023. Genome-wide association studies in plant pathosystems:success or failure? Trends In Plant Science 28:471−85 doi: 10.1016/j.tplants.2022.11.006
CrossRef Google Scholar
|
[41]
|
Pavan S, Delvento C, Ricciardi L, Lotti C, Ciani E, et al. 2020. Recommendations for choosing the genotyping method and best practices for quality control in crop genome-wide association studies. Frontiers in Genetics 11:447 doi: 10.3389/fgene.2020.00447
CrossRef Google Scholar
|
[42]
|
Gupta PK, Kulwal PL, Jaiswal V. 2019. Association mapping in plants in the post-GWAS genomics era. In Advances in Genetics, ed. Kumar D. vol. 104. US: Academic Press. pp. 75−154. https://doi.org/10.1016/bs.adgen.2018.12.001
|
[43]
|
Cheng L, Dong X, Liu Q, Wang R, Li Y, et al. 2022. SLAF-seq technology-based genome-wide association and population structure analyses of ancient Camellia sinensis (L.) Kuntze in sandu county, China. Forests 13:1885 doi: 10.3390/f13111885
CrossRef Google Scholar
|
[44]
|
Chen Y, Niu S, Deng X, Song Q, He L, et al. 2023. Genome-wide association study of leaf-related traits in tea plant in Guizhou based on genotyping-by-sequencing. BMC Plant Biology 23:196 doi: 10.1186/s12870-023-04192-0
CrossRef Google Scholar
|
[45]
|
Zhu W, Liu X, Cheng X, Li Y, Liu L. 2023. Shading effects revisited: Comparisons of spring and autumn shading treatments reveal a seasonal-dependent regulation on amino acids in tea leaves. Beverage Plant Research 3:5 doi: 10.48130/bpr-2023-0005
CrossRef Google Scholar
|
[46]
|
Xia E, Li F, Tong W, Li P, Wu Q, et al. 2019. Tea plant information archive: a comprehensive genomics and bioinformatics platform for tea plant. Plant Biotechnology Journal 17:1938−53 doi: 10.1111/pbi.13111
CrossRef Google Scholar
|
[47]
|
Wang R, Gao X, Yang J, Kong X. 2019. Genome-wide association study to identify favorable snp allelic variations and candidate genes that control the timing of spring bud flush of tea (Camellia sinensis) using SLAF-seq. Journal of Agricultural and Food Chemistry 67:10380−91 doi: 10.1021/acs.jafc.9b03330
CrossRef Google Scholar
|
[48]
|
Yu Y, Deng Y, Lu B, Liu Y, Li J, et al. 2014. Green tea catechins: A fresh flavor to anticancer therapy. Apoptosis 19:1−18 doi: 10.1007/s10495-013-0908-5
CrossRef Google Scholar
|
[49]
|
Singh BN, Shankar S, Srivastava RK. 2011. Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochemical Pharmacology 82:1807−21 doi: 10.1016/j.bcp.2011.07.093
CrossRef Google Scholar
|
[50]
|
Jin J, Zhou C, Ma C, Yao M, Ma J, et al. 2014. Identification on purine alkaloids of representative tea germplasms in china journal of plant genetic resources. Journal of Plant Genetic Resources 15:279−85 doi: 10.13430/j.cnki.jpgr.2014.02.008
CrossRef Google Scholar
|
[51]
|
Ma J, Ma C, Yao M, Jin J, Wang Z, et al. 2012. Microsatellite markers from tea plant expressed sequence tags (ESTs) and their applicability for cross-species/genera amplification and genetic mapping. Scientia Horticulturae 134:167−75 doi: 10.1016/j.scienta.2011.10.029
CrossRef Google Scholar
|
[52]
|
Wang X, Ma J, Jin J, Ma C, Yao M, et al. 2013. Genetic variation of catechins and alkaloids in first generation of tea plants. Journal of Tea Science 33:397−404 doi: 10.13305/j.cnki.jts.2013.05.011
CrossRef Google Scholar
|
[53]
|
Chen J, Zheng C, Ma J, Jiang C, Ercisli S, et al. 2020. The chromosome-scale genome reveals the evolution and diversification after the recent tetraploidization event in tea plant. Horticulture Research 7:63 doi: 10.1038/s41438-020-0288-2
CrossRef Google Scholar
|
[54]
|
Yamashita H, Uchida T, Tanaka Y, Katai H, Nagano AJ, et al. 2020. Genomic predictions and genome-wide association studies based on RAD-seq of quality-related metabolites for the genomics-assisted breeding of tea plants. Scientific Reports 10:17480 doi: 10.1038/s41598-020-74623-7
CrossRef Google Scholar
|
[55]
|
Hazra A, Kumar R, Sengupta C, Das S. 2021. Genome-wide SNP discovery from Darjeeling tea cultivars - their functional impacts and application toward population structure and trait associations. Genomics 113:66−78 doi: 10.1016/j.ygeno.2020.11.028
CrossRef Google Scholar
|
[56]
|
Fang K, Xia Z, Li H, Jiang X, Qin D, et al. 2021. Genome-wide association analysis identified molecular markers associated with important tea flavor-related metabolites. Horticulture Research 8:42 doi: 10.1038/s41438-021-00477-3
CrossRef Google Scholar
|
[57]
|
Ashihara H. 2015. Occurrence, biosynthesis and metabolism of theanine (γ-glutamyl-L-ethylamide) in plants: a comprehensive review. Natural Product Communications 10:803−10
Google Scholar
|
[58]
|
Lin S, Chen Z, Chen T, Deng W, Wan X, et al. 2023. Theanine metabolism and transport in tea plants (Camellia sinensis L.): advances and perspectives. Critical Reviews in Biotechnology 43:327−41 doi: 10.1080/07388551.2022.2036692
CrossRef Google Scholar
|
[59]
|
Li M, Liu H, Wu D, Kenaan A, Geng F, et al. 2022. L-Theanine: a unique Functional Amino Acid in Tea (Camellia sinensis L.) With Multiple Health Benefits and Food Applications. Frontiers In Nutrition 9:853846 doi: 10.3389/fnut.2022.853846
CrossRef Google Scholar
|
[60]
|
Yang T, Xie Y, Lu X, Yan X, Wang Y, et al. 2021. Shading promoted theanine biosynthesis in the roots and allocation in the shoots of the tea plant (Camellia sinensis L.) cultivar Shuchazao. Journal of Agricultural and Food Chemistry 69:4795−803 doi: 10.1021/acs.jafc.1c00641
CrossRef Google Scholar
|
[61]
|
Liu D, Wei K, Zhang C, Liu H, Gong Y, et al. 2023. The potential effects of chlorophyll-deficient mutation and tree_age on the accumulation of amino acid components in tea plants. Food Chemistry 411:135527 doi: 10.1016/j.foodchem.2023.135527
CrossRef Google Scholar
|
[62]
|
Li X, Ma J, Yao M, Chen L. 2017. SNP detection and mapping of theanine synthetase gene in tea plant. Journal of Tea Science 37:251−57 doi: 10.13305/j.cnki.jts.2017.03.004
CrossRef Google Scholar
|
[63]
|
Wang S, Ma C, Huang D, Ma J, Jin J, et al. 2018. Analysis of genetic diversity and construction of dna fingerprints of chlorophyll-deficient tea cultivars by SSR markers. Journal of Tea Science 38:58−68 doi: 10.13305/j.cnki.jts.2018.01.006
CrossRef Google Scholar
|
[64]
|
Zhang S, Jin J, Chen J, Ercisli S, Chen L. 2022. Purine alkaloids in tea plants: component, biosynthetic mechanism and genetic variation. Beverage Plant Research 2:13 doi: 10.48130/bpr-2022-0013
CrossRef Google Scholar
|
[65]
|
Mohanpuria P, Kumar V, Yadav SK. 2010. Tea caffeine: metabolism, functions, and reduction strategies. Food science and biotechnology 19:275−87 doi: 10.1007/s10068-010-0041-y
CrossRef Google Scholar
|
[66]
|
Ashihara H, Crozier A. 2001. Caffeine: a well known but little mentioned compound in plant science. Trends in Plant Science 6:407−13 doi: 10.1016/S1360-1385(01)02055-6
CrossRef Google Scholar
|
[67]
|
Misako K, Kouichi M. 2004. Caffeine synthase and related methyltransferases in plants. Frontiers in Bioscience 9:1833−42 doi: 10.2741/1364
CrossRef Google Scholar
|
[68]
|
Ashihara H, Sano H, Crozier A. 2008. Caffeine and related purine alkaloids: biosynthesis, catabolism, function and genetic engineering. Phytochemistry 69(4):841−56 doi: 10.1016/j.phytochem.2007.10.029
CrossRef Google Scholar
|
[69]
|
Ma J, Jin J, Yao M, Ma C, Xu Y, et al. 2018. Quantitative trait loci mapping for theobromine and caffeine contents in tea plant (Camellia sinensis). Journal of Agricultural and Food Chemistry 66:13321−27 doi: 10.1021/acs.jafc.8b05355
CrossRef Google Scholar
|
[70]
|
Liu Y, Pang D, Li Y, Jiang H, Tian Y, et al. 2022. The screening and identification of key transcription factor genes for theacrine metabolism. Journal of Tea Science 42:41−50 doi: 10.3969/j.issn.1000-369X.2022.01.005
CrossRef Google Scholar
|
[71]
|
Tan L, Peng M, Xu L, Wang L, Wei K, et al. 2018. The validation of two major QTLs related to the timing of spring bud flush in Camellia sinensis. Euphytica 214:17 doi: 10.1007/s10681-017-2099-6
CrossRef Google Scholar
|
[72]
|
Koech RK, Malebe PM, Nyarukowa C, Mose R, Kamunya SM, et al. 2018. Identification of novel QTL for black tea quality traits and drought tolerance in tea plants (Camellia sinensis). Tree Genetics & Genomes 14:9 doi: 10.1007/s11295-017-1219-8
CrossRef Google Scholar
|
[73]
|
Jin J, Ma J, Yao M, Ma C, Chen L. 2017. Functional natural allelic variants of flavonoid 3',5'-hydroxylase gene governing catechin traits in tea plant and its relatives. Planta 245:523−38 doi: 10.1007/s00425-016-2620-5
CrossRef Google Scholar
|
[74]
|
Zheng C, Ma J, Ma C, Yao M, Chen J, et al. 2020. Identifying conserved functional gene modules underlying the dynamic regulation of tea plant development and secondary metabolism. Journal of Agricultural and Food Chemistry 68:11026−37 doi: 10.1021/acs.jafc.0c04744
CrossRef Google Scholar
|
[75]
|
Jiang C, Ma J, Liu Y, Chen J, Ni D, et al. 2020. Identification and distribution of a single nucleotide polymorphism responsible for the catechin content in tea plants. Horticulture Research 7:24 doi: 10.1038/s41438-020-0247-y
CrossRef Google Scholar
|
[76]
|
Wang X, Yao M, Jin J, Ma C, Chen L. 2012. Analysis of caffeine content and molecular variance of low-caffeine tea plants. Journal of Tea Science 32(3):276−82 doi: 10.13305/j.cnki.jts.2012.03.013
CrossRef Google Scholar
|
[77]
|
Jin J, Yao M, Ma C, Ma J, Chen L. 2016. Natural allelic variations of TCS1 play a crucial role in caffeine biosynthesis of tea plant and its related species. Plant Physiology and Biochemistry 100:18−26 doi: 10.1016/j.plaphy.2015.12.020
CrossRef Google Scholar
|
[78]
|
Liu Y, Jin J, Yao M, Chen L. 2019. Screening, cloning and functional research of the rare allelic variation of caffeine synthase gene (TCS1g) in tea plants. Scientia Agricultura Sinica 52:1772−83 doi: 10.3864/j.issn.0578-1752.2019.10.010
CrossRef Google Scholar
|
[79]
|
Wang Y, Liu Y, Wei M, Zhang C, Chen J, et al. 2023. Deeply functional identification of TCS1 alleles provides efficient technical paths for low-caffeine breeding of tea plants. Horticulture Research 10:uhac279 doi: 10.1093/hr/uhac279
CrossRef Google Scholar
|
[80]
|
Liu Y, Chen S, Jiang C, Liu H, Wang J, et al. 2023. Combined QTL mapping, GWAS and transcriptomic analysis revealed a candidate gene associated with the timing of spring bud flush in tea plant (Camellia sinensis). Horticulture Research Accepted:uhad149 doi: 10.1093/hr/uhad149
CrossRef Google Scholar
|
[81]
|
Wang L, Zhou B, Peng M, Ye Z, Tan L, et al. 2019. Expression analysis and linkage mapping of CsAN1 in Tea (Camellia sinensis (L.) O. Kuntze). Journal of Sichuan Agricultural University 37:814−20 doi: 10.16036/j.issn.1000-2650.2019.06.010
CrossRef Google Scholar
|
[82]
|
Wei K, Wang L, Zhang Y, Ruan L, Li H, et al. 2019. A coupled role for CsMYB75 and CsGSTF1 in anthocyanin hyperaccumulation in purple tea. The Plant Journal 97(5):825−840 doi: 10.1111/tpj.14161
CrossRef Google Scholar
|
[83]
|
Xia E, Zhang H, Sheng J, Li K, Zhang QJ, et al. 2017. The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis. Molecular Plant 10:866−77 doi: 10.1016/j.molp.2017.04.002
CrossRef Google Scholar
|
[84]
|
Zhang Q, Li W, Li K, Nan H, Shi C, et al. 2020. The chromosome-level reference genome of tea tree unveils recent bursts of non-autonomous LTR retrotransposons in driving genome size evolution. Molecular Plant 13:935−38 doi: 10.1016/j.molp.2020.04.009
CrossRef Google Scholar
|
[85]
|
Zhang W, Zhang Y, Qiu H, Guo Y, Wan H, et al. 2020. Genome assembly of wild tea tree DASZ reveals pedigree and selection history of tea varieties. Nature Communications 11:3719 doi: 10.1038/s41467-020-17498-6
CrossRef Google Scholar
|
[86]
|
Wang P, Yu J, Jin S, Chen S, Yue C, et al. 2021. Genetic basis of high aroma and stress tolerance in the oolong tea cultivar genome. Horticulture Research 8:107 doi: 10.1038/s41438-021-00542-x
CrossRef Google Scholar
|
[87]
|
Zhang X, Chen S, Shi L, Gong D, Zhang S, et al. 2021. Haplotype-resolved genome assembly provides insights into evolutionary history of the tea plant Camellia sinensis. Nature Genetics 53:1250−59 doi: 10.1038/s41588-021-00895-y
CrossRef Google Scholar
|
[88]
|
Zhang F, Tian W, Cen L, Lv L, Zeng X, et al. 2022. Population structure analysis and genome-wide association study of tea (Camellia sinensis (L.) Kuntze) germplasm in qiannan, china, based on SLAF-seq technology. Phyton-International Journal of Experimental Botany 91:791−809 doi: 10.32604/phyton.2022.018104
CrossRef Google Scholar
|
[89]
|
Yue Y, Chu G, Liu X, Tang X, Wang W, et al. 2014. TMDB: a literature-curated database for small molecular compounds found from tea. BMC Plant Biology 14:243 doi: 10.1186/s12870-014-0243-1
CrossRef Google Scholar
|
[90]
|
Zhang R, Ma Y, Hu X, Chen Y, He X, et al. 2020. TeaCoN: a database of gene co-expression network for tea plant (Camellia sinensis). BMC Genomics 21:461 doi: 10.1186/s12864-020-06839-w
CrossRef Google Scholar
|
[91]
|
Dubey H, Rawal H, Rohilla M, Lama U, Kumar PM, et al. 2020. TeaMiD: a comprehensive database of simple sequence repeat markers of tea. Database 2020:baaa013 doi: 10.1093/database/baaa013
CrossRef Google Scholar
|
[92]
|
Singh G, Singh V, Singh V. 2021. Genome-wide interologous interactome map (TeaGPIN) of Camellia sinensis. Genomics 113:553−64 doi: 10.1016/j.ygeno.2020.09.048
CrossRef Google Scholar
|
[93]
|
Lei X, Wang Y, Zhou Y, Chen Y, Chen H, et al. 2021. TeaPGDB: Tea Plant Genome Database. Beverage Plant Research 1:5 doi: 10.48130/bpr-2021-0005
CrossRef Google Scholar
|
[94]
|
Mi X, Yue Y, Tang M, An Y, Xie H, et al. 2021. TeaAS: a comprehensive database for alternative splicing in tea plants (Camellia sinensis). BMC Plant Biology 21:280 doi: 10.1186/s12870-021-03065-8
CrossRef Google Scholar
|
[95]
|
Chen J, He W, Chen S, Chen Q, Ma J, et al. 2022. TeaGVD: A comprehensive database of genomic variations for uncovering the genetic architecture of metabolic traits in tea plants. Frontiers in Plant Science 13:1056891 doi: 10.3389/fpls.2022.1056891
CrossRef Google Scholar
|
[96]
|
An Y, Zhang X, Jiang S, Zhao J, Zhang F. 2022. TeaPVs: a comprehensive genomic variation database for tea plant (Camellia sinensis). BMC Plant Biology 22:513 doi: 10.1186/s12870-022-03901-5
CrossRef Google Scholar
|
[97]
|
Li X, Shen Z, Ma C, Yang L, Duan S, et al. 2023. Teabase: a comprehensive omics database of Camellia. Plant Communications 25:100664 doi: 10.1016/j.xplc.2023.100664
CrossRef Google Scholar
|
[98]
|
Chen R, Deng Y, Ding Y, Guo J, Qiu J, et al. 2022. Rice functional genomics: decades' efforts and roads ahead. Science China Life Sciences 65:33−92 doi: 10.1007/s11427-021-2024-0
CrossRef Google Scholar
|
[99]
|
Delseny M, Salses J, Cooke R, Sallaud C, Regad F, et al. 2001. Rice genomics: present and future. Plant Physiology and Biochemistry 39:323−34 doi: 10.1016/S0981-9428(01)01245-1
CrossRef Google Scholar
|
[100]
|
Liu W, Zhang Y, He H, He G, Deng X. 2022. From hybrid genomes to heterotic trait output: Challenges and opportunities. Current Opinion in Plant Biology 66:102193 doi: 10.1016/j.pbi.2022.102193
CrossRef Google Scholar
|
[101]
|
Korol A, Frenkel Z, Orion O, Ronin Y. 2012. Some ways to improve QTL mapping accuracy. Animal Genetics 43:36−44 doi: 10.1111/j.1365-2052.2012.02347.x
CrossRef Google Scholar
|
[102]
|
Xiao Q, Bai X, Zhang C, He Y. 2021. Advanced high-throughput plant phenotyping techniques for genome-wide association studies: A review. Journal of Advanced Research 35:215−30 doi: 10.1016/j.jare.2021.05.002
CrossRef Google Scholar
|
[103]
|
Zheng C, Ma J, Chen J, Ma C, Chen W, et al. 2019. Gene coexpression networks reveal key drivers of flavonoid variation in eleven tea cultivars. Journal of Agricultural and Food Chemistry 67:9967−78 doi: 10.1021/acs.jafc.9b04422
CrossRef Google Scholar
|
[104]
|
Holme IB, Gregersen PL, Brinch-Pedersen H. 2019. Induced genetic variation in crop plants by random or targeted mutagenesis: convergence and differences. Frontiers in Plant Science 10:1468 doi: 10.3389/fpls.2019.01468
CrossRef Google Scholar
|