[1]
|
Azman NAM, Peiró S, Fajarí L, Julià L, Almajano MP. 2014. Radical Scavenging of White Tea and Its Flavonoid Constituents by Electron Paramagnetic Resonance (EPR) Spectroscopy. Journal of Agricultural and Food Chemistry 62:5743−48 doi: 10.1021/jf501707p
CrossRef Google Scholar
|
[2]
|
Thring TS, Hili P, Naughton DP. 2011. Antioxidant and potential anti-inflammatory activity of extracts and formulations of white tea, rose, and witch hazel on primary human dermal fibroblast cells. Journal of Inflammation 8:27 doi: 10.1186/1476-9255-8-27
CrossRef Google Scholar
|
[3]
|
Hajiaghaalipour F, Kanthimathi MS, Sanusi J, Rajarajeswaran J. 2015. White tea (Camellia sinensis) inhibits proliferation of the colon cancer cell line, HT-29, activates caspases and protects DNA of normal cells against oxidative damage. Food Chemistry 169:401−10 doi: 10.1016/j.foodchem.2014.07.005
CrossRef Google Scholar
|
[4]
|
Chen Q, Zhu Y, Dai W, Lv H, Mu B, et al. 2019. Aroma formation and dynamic changes during white tea processing. Food Chemistry 274:915−24 doi: 10.1016/j.foodchem.2018.09.072
CrossRef Google Scholar
|
[5]
|
Gao T, Shao S, Hou B, Hong Y, Ren W, et al. 2023. Characteristic volatile components and transcriptional regulation of seven major tea cultivars (Camellia sinensis) in China. Beverage Plant Research 3:17 doi: 10.48130/bpr-2023-0017
CrossRef Google Scholar
|
[6]
|
Yang Z, Baldermann S, Watanabe N. 2013. Recent studies of the volatile compounds in tea. Food Research International 53:585−99 doi: 10.1016/j.foodres.2013.02.011
CrossRef Google Scholar
|
[7]
|
Cheng AX, Lou YG, Mao YB, Lu S, Wang LJ, et al. 2007. Plant terpenoids: biosynthesis and ecological functions. Journal of Integrative Plant Biology 49:179−86 doi: 10.1111/j.1744-7909.2007.00395.x
CrossRef Google Scholar
|
[8]
|
Guo L, Chen M, Guo Y, Lin Z. 2022. Variations in fatty acids affected their derivative volatiles during Tieguanyin tea processing. Foods 11:1563 doi: 10.3390/foods11111563
CrossRef Google Scholar
|
[9]
|
Zhang C, Zhou C, Xu K, Tian C, Zhang M, et al. 2022. A comprehensive investigation of macro-composition and volatile compounds in spring-picked and autumn-picked white tea. Foods 11:3628 doi: 10.3390/foods11223628
CrossRef Google Scholar
|
[10]
|
Fang X, Liu Y, Xiao J, Ma C, Huang Y. 2023. GC–MS and LC-MS/MS metabolomics revealed dynamic changes of volatile and non-volatile compounds during withering process of black tea. Food Chemistry 410:135396 doi: 10.1016/j.foodchem.2023.135396
CrossRef Google Scholar
|
[11]
|
Wang Y, Wang Y, Hong L, Wang Y, Huang Y, et al. 2023. Digital evaluation of tea aroma intensity and odor characteristics changes during processing. JSFA Reports 3:60−71 doi: 10.1002/jsf2.100
CrossRef Google Scholar
|
[12]
|
Li Y, Wu T, Deng X, Tian D, Ma C, et al. 2023. Characteristic aroma compounds in naturally withered and combined withered γ-aminobutyric acid white tea revealed by HS-SPME-GC-MS and relative odor activity value. LWT 176:114467 doi: 10.1016/j.lwt.2023.114467
CrossRef Google Scholar
|
[13]
|
Feng Z, Li Y, Zhang P, Wang J, Xu Y, et al. 2023. Formation and Isomerization of (Z)-methyl epijasmonate, the key contributor of the orchid-like aroma, during tea processing. Food Research International 172:113186 doi: 10.1016/j.foodres.2023.113186
CrossRef Google Scholar
|
[14]
|
Glas JJ. 2014. Consequences of russet mite-induced tomato defenses for community interactions. Thesis. University of Amsterdam, Netherland. pp. 31−59https://pure.uva.nl/ws/files/2033566/142692_06.pdf
|
[15]
|
Kaushik S, Sidhu A, Singh AK, Sirhindi G. 2022. Bioscience of Jasmonates in Harmonizing Plant Stress Conditions. In Jasmonates and Brassinosteroids in Plants, eds. Akula R, Sirhindi G. Boca Raton: CRC Press. pp. 99−118. https://doi.org/10.1201/9781003110651-9
|
[16]
|
Feng Z, Li M, Li Y, Yin J, Wan X, et al. 2022. Characterization of the key aroma compounds in infusions of four white teas by the sensomics approach. European Food Research and Technology 248:1299−309 doi: 10.1007/s00217-022-03967-3
CrossRef Google Scholar
|
[17]
|
Ni H, Jiang Q, Lin Q, Ma Q, Wang L, et al. 2021. Enzymatic hydrolysis and auto-isomerization during β-glucosidase treatment improve the aroma of instant white tea infusion. Food Chemistry 342:128565 doi: 10.1016/j.foodchem.2020.128565
CrossRef Google Scholar
|
[18]
|
Qiao D, Mi X, An Y, Xie H, Cao K, et al. 2021. Integrated metabolic phenotypes and gene expression profiles revealed the effect of spreading on aroma volatiles formation in postharvest leaves of green tea. Food Research International 149:110680 doi: 10.1016/j.foodres.2021.110680
CrossRef Google Scholar
|
[19]
|
Deng X, Shang H, Chen J, Wu J, Wang T, et al. 2022. Metabolomics Combined with Proteomics Provide a Novel Interpretation of the Changes in Flavonoid Glycosides during White Tea Processing. Foods 11:1226 doi: 10.3390/foods11091226
CrossRef Google Scholar
|
[20]
|
Wei G, Tian P, Zhang F, Qin H, Miao H, et al. 2016. Integrative analyses of nontargeted volatile profiling and transcriptome data provide molecular insight into VOC diversity in cucumber plants (Cucumis sativus). Plant Physiology 172:603−18 doi: 10.1104/pp.16.01051
CrossRef Google Scholar
|
[21]
|
Wang P, Gu M, Shao S, Chen X, Hou B, et al. 2022. Changes in non-volatile and volatile metabolites associated with heterosis in tea plants (Camellia sinensis). Journal of Agricultural and Food Chemistry 70:3067−78 doi: 10.1021/acs.jafc.1c08248
CrossRef Google Scholar
|
[22]
|
Xia EH, Li FD, Tong W, Li PH, Wu Q, et al. 2019. Tea plant information archive: a comprehensive genomics and bioinformatics platform for tea plant. Plant Biotechnology Journal 17:1938−53 doi: 10.1111/pbi.13111
CrossRef Google Scholar
|
[23]
|
Langfelder P, Horvath S. 2008. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559 doi: 10.1186/1471-2105-9-559
CrossRef Google Scholar
|
[24]
|
Zhang R, Fu X, Zhao C, Cheng J, Liao H, et al. 2020. Identification of the key regulatory genes involved in elaborate petal development and specialized character formation in Nigella damascena (Ranunculaceae). The Plant Cell 32:3095−112 doi: 10.1105/tpc.20.00330
CrossRef Google Scholar
|
[25]
|
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCᴛ method. Methods 25:402−8 doi: 10.1006/meth.2001.1262
CrossRef Google Scholar
|
[26]
|
Owuor PO. 1992. Comparison of gas chromatographic volatile profiling methods for assessing the flavour quality of Kenyan black teas. Journal of the Science of Food and Agriculture 59:189−97 doi: 10.1002/jsfa.2740590209
CrossRef Google Scholar
|
[27]
|
Chen Y, Yang J, Meng Q, Tong H. 2023. Non-volatile metabolites profiling analysis reveals the tea flavor of "Zijuan" in different tea plantations. Food Chemistry 412:135534 doi: 10.1016/j.foodchem.2023.135534
CrossRef Google Scholar
|
[28]
|
Chen QC, Zhu Y, Yan H, Chen M, Xie DC, et al. 2020. Identification of aroma composition and key odorants contributing to aroma characteristics of white teas. Molecules 25:6050 doi: 10.3390/molecules25246050
CrossRef Google Scholar
|
[29]
|
Feng Z, Li Y, Li M, Wang Y, Zhang L, et al. 2019. Tea aroma formation from six model manufacturing processes. Food Chemistry 285:347−54 doi: 10.1016/j.foodchem.2019.01.174
CrossRef Google Scholar
|
[30]
|
Robinson J, Owuor PO. 1992. Tea aroma. In Tea − Cultivation to consumption, eds. Willson KC, Clifford MN. vol 18. London: Chapman and Hall. pp. 603−47
|
[31]
|
Deluc LG, Quilici DR, Decendit A, Grimplet J, Wheatley MD, et al. 2009. Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay. BMC Genomics 10:212 doi: 10.1186/1471-2164-10-212
CrossRef Google Scholar
|
[32]
|
Singh P, Arif Y, Miszczuk E, Bajguz A, Hayat S. 2022. Specific roles of lipoxygenases in development and responses to stress in plants. Plants 11:979 doi: 10.3390/plants11070979
CrossRef Google Scholar
|
[33]
|
Farmer EE, Goossens A. 2019. Jasmonates: what ALLENE OXIDE SYNTHASE does for plants. Journal of Experimental Botany 70:3373−8 doi: 10.1093/jxb/erz254
CrossRef Google Scholar
|
[34]
|
Arent S, Pye VE, Henriksen A. 2008. Structure and function of plant acyl-CoA oxidases. Plant Physiology and Biochemistry 46:292−301 doi: 10.1016/j.plaphy.2007.12.014
CrossRef Google Scholar
|
[35]
|
Ullah S, Khan MN, Lodhi SS, Ahmed I, Tayyab M, et al. 2022. Targeted metabolomics reveals fatty acid abundance adjustments as playing a crucial role in drought-stress response and post-drought recovery in wheat. Frontiers in Genetics 13:972696 doi: 10.3389/fgene.2022.972696
CrossRef Google Scholar
|
[36]
|
Zhang J, Jia H, Zhu B, Li J, Yang T, et al. 2021. Molecular and biochemical characterization of jasmonic acid carboxyl methyltransferase involved in aroma compound production of methyl jasmonate during black tea processing. Journal of Agricultural and Food Chemistry 69:3154−64 doi: 10.1021/acs.jafc.0c06248
CrossRef Google Scholar
|
[37]
|
Zhao L, Chang W, Xiao Y, Liu H, Liu P. 2013. Methylerythritol phosphate pathway of isoprenoid biosynthesis. Annual Review of Biochemistry 82:497−530 doi: 10.1146/annurev-biochem-052010-100934
CrossRef Google Scholar
|
[38]
|
Joshi J, Mimura M, Suzuki M, Wu S, Gregory JF III, et al. 2021. The Thiamin-Requiring 3 mutation of Arabidopsis 5-Deoxyxylulose-Phosphate Synthase 1 highlights how the thiamin economy impacts the methylerythritol 4-phosphate pathway. Frontiers in Plant Science 12:721391 doi: 10.3389/fpls.2021.721391
CrossRef Google Scholar
|
[39]
|
Xia E, Tong W, Hou Y, An Y, Chen L, et al. 2020. The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into its genome evolution and adaptation. Molecular Plant 13:1013−26 doi: 10.1016/j.molp.2020.04.010
CrossRef Google Scholar
|
[40]
|
Ginglinger JF, Boachon B, Höfer R, Paetz C, Köllner TG, et al. 2013. Gene coexpression analysis reveals complex metabolism of the monoterpene alcohol linalool in Arabidopsis flowers. The Plant Cell 25:4640−57 doi: 10.1105/tpc.113.117382
CrossRef Google Scholar
|
[41]
|
Verma V, Ravindran P, Kumar PP. 2016. Plant hormone-mediated regulation of stress responses. BMC Plant Biology 16:86 doi: 10.1186/s12870-016-0771-y
CrossRef Google Scholar
|
[42]
|
Van Moerkercke A, Duncan O, Zander M, Šimura J, Broda M, et al. 2019. A MYC2/MYC3/MYC4-dependent transcription factor network regulates water spray-responsive gene expression and jasmonate levels. PNAS 116:23345−56 doi: 10.1073/pnas.1911758116
CrossRef Google Scholar
|
[43]
|
Gershater MC, Cummins I, Edwards R. 2007. Role of a carboxylesterase in herbicide bioactivation in Arabidopsis thaliana. Journal of Biological Chemistry 282:21460−6 doi: 10.1074/jbc.M701985200
CrossRef Google Scholar
|
[44]
|
Tillander V, Alexson SEH, Cohen DE. 2017. Deactivating fatty acids: acyl-CoA thioesterase-mediated control of lipid metabolism. Trends in Endocrinology & Metabolism 28:473−84 doi: 10.1016/j.tem.2017.03.001
CrossRef Google Scholar
|
[45]
|
Shikakura Y, Oguchi T, Yu X, Ohtani M, Demura T, et al. 2022. Transgenic poplar trees overexpressing AtGolS2, a stress-responsive galactinol synthase gene derived from Arabidopsis thaliana, improved drought tolerance in a confined field. Transgenic Research 31:579−91 doi: 10.1007/s11248-022-00321-x
CrossRef Google Scholar
|
[46]
|
Selvaraj MG, Ishizaki T, Valencia M, Ogawa S, Dedicova B, et al. 2017. Overexpression of an Arabidopsis thaliana galactinol synthase gene improves drought tolerance in transgenic rice and increased grain yield in the field. Plant Biotechnology Journal 15:1465−77 doi: 10.1111/pbi.12731
CrossRef Google Scholar
|
[47]
|
Dinolfo MI, Castañares E, Stenglein SA. 2017. Resistance of Fusarium poae in Arabidopsis leaves requires mainly functional JA and ET signaling pathways. Fungal Biology 121:841−8 doi: 10.1016/j.funbio.2017.06.001
CrossRef Google Scholar
|