[1]
|
Fujii S, Kubo K, Takayama S. 2016. Non-self- and self-recognition models in plant self-incompatibility. Nature Plants 2(9):16130 doi: 10.1038/nplants.2016.130
CrossRef Google Scholar
|
[2]
|
Liang M, Cao Z, Zhu A, Liu Y, Tao M, et al. 2020. Evolution of self-compatibility by a mutant S(m)-RNase in citrus. Nature Plants 6(2):131−42 doi: 10.1038/s41477-020-0597-3
CrossRef Google Scholar
|
[3]
|
Li S, Yan H, Mei WM, Tse YC, Wang H. 2020. Boosting autophagy in sexual reproduction: a plant perspective. New Phytologist 226(3):679−89 doi: 10.1111/nph.16414
CrossRef Google Scholar
|
[4]
|
Ye M, Peng Z, Tang D, Yang Z, Li D, et al. 2018. Generation of self-compatible diploid potato by knockout of S-RNase. Nature Plants 4(9):651−54 doi: 10.1038/s41477-018-0218-6
CrossRef Google Scholar
|
[5]
|
Eaves DJ, Flores-Ortiz C, Haque T, Lin Z, Teng N, et al. 2014. Self-incompatibility in Papaver: advances in integrating the signalling network. Biochemical Society Transactions 42(2):370−76 doi: 10.1042/BST20130248
CrossRef Google Scholar
|
[6]
|
Takasaki T, Hatakeyama K, Suzuki G, Watanabe M, Isogai A, et al. 2000. The S receptor kinase determines self-incompatibility in Brassica stigma. Nature 403:913−16 doi: 10.1038/35002628
CrossRef Google Scholar
|
[7]
|
Wang L, Peng H, Ge T, Liu T, Hou X, et al. 2014. Identification of differentially accumulating pistil proteins associated with self-incompatibility of non-heading Chinese cabbage. Plant Biology 16:49−57 doi: 10.1111/plb.12016
CrossRef Google Scholar
|
[8]
|
Vaughton G, Ramsey M, Johnson SD. 2010. Pollination and late-acting self-incompatibility in Cyrtanthus breviflorus (Amaryllidaceae): implications for seed production. Annals of Botany 106:547−55 doi: 10.1093/aob/mcq149
CrossRef Google Scholar
|
[9]
|
Sage TL, Price MV, Waser NM. 2006. Self-sterility in Ipomopsis aggregata (Polemoniaceae) is due to prezygotic ovule degeneration. American Journal of Botany 93(2):254−62 doi: 10.3732/ajb.93.2.254
CrossRef Google Scholar
|
[10]
|
Ye W, Qin Y, Ye Z, Silva J, Zhang L, et al. 2009. Seedless mechanism of a new mandarin cultivar 'Wuzishatangju' (Citrus reticulata Blanco). Plant Science 177:19−27 doi: 10.1016/j.plantsci.2009.03.005
CrossRef Google Scholar
|
[11]
|
Matsubara S. 1981. Overcoming the self-incompatibility of Lilium longiflorum Thunb. by application of flower-organ extract or temperature treatment of pollen. Euphytica 30:97−103 doi: 10.1007/BF00033664
CrossRef Google Scholar
|
[12]
|
Gradziel TM, Robinson RW. 1989. Breakdown of self-incompatibility during pistil development in Lycopersicon peruvianum by modified bud pollination. Sexual Plant Reproduction 2:28−42 doi: 10.1007/BF00190117
CrossRef Google Scholar
|
[13]
|
Enciso-Rodriguez F, Manrique-Carpintero NC, Nadakuduti SS, Buell CR, Zarka D, Douches D. 2019. Overcoming Self-Incompatibility in Diploid Potato Using CRISPR-Cas9. Frontiers in Plant Science 10:376 doi: 10.3389/fpls.2019.00376
CrossRef Google Scholar
|
[14]
|
Hao Y, Zhao X, She D, Xu B, Zhang D, et al. 2012. The role of late-acting self-incompatibility and early-acting inbreeding depression in governing female fertility in monkshood, Aconitum kusnezoffii. PLoS One 7(10):e47034 doi: 10.1371/journal.pone.0047034
CrossRef Google Scholar
|
[15]
|
Gibbs PE. 2014. Late-acting self-incompatibility--the pariah breeding system in flowering plants. New Phytologist 203:717−34 doi: 10.1111/nph.12874
CrossRef Google Scholar
|
[16]
|
Rangappa Thimmaiah M, Choudhary SB, Sharma HK, Kumar AA, Bhandari H, et al. 2018. Late-acting self-incompatibility: a barrier to self-fertilization in sunnhemp (Crotalaria juncea L.). Euphytica 214:19 doi: 10.1007/s10681-017-2096-9
CrossRef Google Scholar
|
[17]
|
Liu S, Rao J, Zhu J, Li G, Li F, et al. 2023. Integrated physiological, metabolite and proteomic analysis reveal the glyphosate stress response mechanism in tea plant (Camellia sinensis). Journal of Hazardous Materials 454:131419 doi: 10.1016/j.jhazmat.2023.131419
CrossRef Google Scholar
|
[18]
|
Zhu J, Zhang H, Huang K, Guo R, Zhao J, et al. 2023. Comprehensive analysis of the laccase gene family in tea plant highlights its roles in development and stress responses. BMC Plant Biology 23:129 doi: 10.1186/s12870-023-04134-w
CrossRef Google Scholar
|
[19]
|
Chen X, Hao S, Wang L, Fang W, Wang Y, et al. 2012. Late-acting self-incompatibility in tea plant (Camellia sinensis). Biologia 67(2):347−51 doi: 10.2478/s11756-012-0018-9
CrossRef Google Scholar
|
[20]
|
Tan L, Liu Q, Zhou B, Yang C, Zou X, et al. 2019. Paternity analysis using SSR markers reveals that the anthocyanin-rich tea cultivar 'Ziyan' is self-compatible. Scientia Horticulturae 245:258−62 doi: 10.1016/j.scienta.2018.10.034
CrossRef Google Scholar
|
[21]
|
Wang L, Xu L, Aktar S, He M, Wu L, et al. 2023. Petal-assisted artificial pollination method enhanced the fruit setting ratios in tea plant (Camellia sinensis). Beverage Plant Research 3:7 doi: 10.48130/bpr-2023-0007
CrossRef Google Scholar
|
[22]
|
Wachira FN, Kamunya SK. 2005. Pseudo-self-incompatibility in some tea clones (Camellia sinensis(L.) O. Kuntze). The Journal of Horticultural Science and Biotechnology 80(6):716−20 doi: 10.1080/14620316.2005.11512004
CrossRef Google Scholar
|
[23]
|
Seth R, Bhandawat A, Parmar R, Singh P, Kumar S, et al. 2019. Global transcriptional insights of pollen-pistil interactions commencing self-incompatibility and fertilization in tea [Camellia sinensis (L.) O. Kuntze]. International Journal of Molecular Sciences 20:539 doi: 10.3390/ijms20030539
CrossRef Google Scholar
|
[24]
|
Zhang CC, Wang LY, Wei K, Wu LY, Li HL, et al. 2016. Transcriptome analysis reveals self-incompatibility in the tea plant (Camellia sinensis) might be under gametophytic control. BMC Genomics 17:359 doi: 10.1186/s12864-016-2703-5
CrossRef Google Scholar
|
[25]
|
Zhang C, Tan L, Wang L, Wei K, Wu L, et al. 2016. Cloning and characterization of an S-RNase gene in Camellia sinensis. Scientia Horticulturae 207:218−24 doi: 10.1016/j.scienta.2016.06.002
CrossRef Google Scholar
|
[26]
|
Ma Q, Chen C, Zeng Z, Zou Z, Li H, et al. 2018. Transcriptomic analysis between self- and cross-pollinated pistils of tea plants (Camellia sinensis). BMC Genomics 19:289 doi: 10.1186/s12864-018-4674-1
CrossRef Google Scholar
|
[27]
|
Zhu FY, Chen MX, Ye NH, Qiao WM, Gao B, et al. 2018. Comparative performance of the BGISEQ-500 and Illumina HiSeq4000 sequencing platforms for transcriptome analysis in plants. Plant Methods 14:69 doi: 10.1186/s13007-018-0337-0
CrossRef Google Scholar
|
[28]
|
Xia E, Tong W, Hou Y, An Y, Chen L, et al. 2020. The Reference Genome of Tea Plant and Resequencing of 81 Diverse Accessions Provide Insights into Its Genome Evolution and Adaptation. Molecular Plant 13(7):1013−26 doi: 10.1016/j.molp.2020.04.010
CrossRef Google Scholar
|
[29]
|
Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. 2016. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nature Protocols 11(9):1650−67 doi: 10.1038/nprot.2016.095
CrossRef Google Scholar
|
[30]
|
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using realtime quantitative PCR and the 2−ΔΔCᴛ method. Methods 25(4):402−8 doi: 10.1006/meth.2001.1262
CrossRef Google Scholar
|
[31]
|
Fujii S, Shimosato-Asano H, Kakita M, Kitanishi T, Iwano M, et al. 2020. Parallel evolution of dominant pistil-side self-incompatibility suppressors in Arabidopsis. Nature Communications 11:1404 doi: 10.1038/s41467-020-15212-0
CrossRef Google Scholar
|
[32]
|
Herrero M, Dickinson HG. 1980. Ultrastructural and physiological differences between buds and mature flowers of Petunia hybrida prior to and following pollination. Planta 148:138−45 doi: 10.1007/BF00386414
CrossRef Google Scholar
|
[33]
|
Takayama S, Isogai A. 2005. Self-incompatibility in plants. Annual Review of Plant Biology 56:467−89 doi: 10.1146/annurev.arplant.56.032604.144249
CrossRef Google Scholar
|
[34]
|
Yu HF, Wang JS, Sheng XG, Zhao ZQ, Qi ZR, et al. 2017. Comparative transcriptome analysis of self-incompatible flower stigmas and self-compatible bud stigmas following self-pollination in broccoli. Genetics and Molecular Research 16:gmr16019018 doi: 10.4238/gmr16019018
CrossRef Google Scholar
|
[35]
|
Chen D, Zhang S. 2007. Comparison of pear pollen tube growth in style and fruit set after self- and cross-pollination in different floral development stage. Journal of Fruit Science 24(5):575−79 doi: 10.3969/j.issn.1009-9980.2007.05.002
CrossRef Google Scholar
|
[36]
|
Chai L, Ge X, Xu Q, Deng X. 2011. CgSL2, an S-like RNase gene in 'Zigui shatian' pummelo (Citrus grandis Osbeck), is involved in ovary senescence. Molecular Biology Reports 38:1−8 doi: 10.1007/s11033-010-0070-x
CrossRef Google Scholar
|
[37]
|
Okabe T, Yoshimoto I, Hitoshi M, Ogawa T, Ohyama T. 2005. An S-like ribonuclease gene is used to generate a trap-leaf enzyme in the carnivorous plant Drosera adelae. FEBS Letters 579:5729−33 doi: 10.1016/j.febslet.2005.09.043
CrossRef Google Scholar
|
[38]
|
Hiscock SJ, Mcinnis SM, Tabah DA, Henderson CA, Brennan AC. 2003. Sporophytic self-incompatibility in Senecio squalidus L. (Asteraceae)—the search for S. Journal of Experimental Botany 54(380):169−74 doi: 10.1093/jxb/erg005
CrossRef Google Scholar
|
[39]
|
Du J, Ge C, Li T, Wang S, Gao Z, et al. 2021. Molecular characteristics of S-RNase alleles as the determinant of self-incompatibility in the style of Fragaria viridis. Horticulture Research 8:185 doi: 10.1038/s41438-021-00623-x
CrossRef Google Scholar
|
[40]
|
Miao H, Ye Z, Qin Y, Hu G. 2013. Identification of differentially expressed genes in 72 h styles from self-incompatible Citrus reticulata. Scientia Horticulturae 161:278−85 doi: 10.1016/j.scienta.2013.07.013
CrossRef Google Scholar
|
[41]
|
Mou W, Kao YT, Michard E, Simon AA, Li D, et al. 2020. Ethylene-independent signaling by the ethylene precursor ACC in Arabidopsis ovular pollen tube attraction. Nature Communications 11:4082 doi: 10.1038/s41467-020-17819-9
CrossRef Google Scholar
|
[42]
|
Kovaleva LV, Zakharova EV, Timofeeva GV, Andreev IM, Golivanov YY, et al. 2020. Aminooxyacetic acid (АОА), inhibitor of 1-aminocyclopropane-1-carboxilic acid (ACC) synthesis, suppresses self-incompatibility-induced programmed cell death in self-incompatible Petunia hybrida L. pollen tubes. Protoplasma 257:213−27 doi: 10.1007/s00709-019-01430-x
CrossRef Google Scholar
|
[43]
|
Abhinandan K, Sankaranarayanan S, Macgregor S, Goring DR, Samuel MA. 2022. Cell-cell signaling during the Brassicaceae self-incompatibility response. Trends in Plant Science 27(5):472−87 doi: 10.1016/j.tplants.2021.10.011
CrossRef Google Scholar
|
[44]
|
Zhao Y, Zhao Z, Chen C, Yu Y, Jeyaraj A, et al. 2022. Characterization of self-incompatibility and expression profiles of CsMCU2 related to pollination in different varieties of tea plants. Scientia Horticulturae 293:110693 doi: 10.1016/j.scienta.2021.110693
CrossRef Google Scholar
|
[45]
|
Rushton PJ, Somssich IE, Ringler P, Shen QJ. 2010. WRKY transcription factors. Trends in Plant Science 15(5):247−58 doi: 10.1016/j.tplants.2010.02.006
CrossRef Google Scholar
|
[46]
|
Feng K, Hou X, Xing G, Liu J, Duan A, et al. 2020. Advances in AP2/ERF super-family transcription factors in plant. Critical Reviews in Biotechnology 140(6):750−76 doi: 10.1080/07388551.2020.1768509
CrossRef Google Scholar
|
[47]
|
Wang X, Niu Y, Zheng Y. 2021. Multiple Functions of MYB Transcription Factors in Abiotic Stress Responses. International Journal of Molecular Sciences 22:6125 doi: 10.3390/ijms22116125
CrossRef Google Scholar
|
[48]
|
Chaves-Sanjuan A, Gnesutta N, Gobbini A, Martignago D, Bernardini A, et al. 2021. Bernardini A, Fornara F, Mantovani R, Nardini M. 2021. Structural determinants for NF-Y subunit organization and NF-Y/DNA association in plants. The Plant Journal 105:49−61 doi: 10.1111/tpj.15038
CrossRef Google Scholar
|
[49]
|
Li P, Xia E, Fu J, Xu Y, Zhao X, et al. 2022. Diverse roles of MYB transcription factors in regulating secondary metabolite biosynthesis, shoot development, and stress responses in tea plants (Camellia sinensis). The Plant Journal 110:1144−65 doi: 10.1111/tpj.15729
CrossRef Google Scholar
|
[50]
|
Zhao H, Mallano AI, Li F, Li P, Wu Q, et al. 2022. Characterization of CsWRKY29 and CsWRKY37 transcription factors and their functional roles in cold tolerance of tea plant. Beverage Plant Research 2:1−3 doi: 10.48130/bpr-2022-0015
CrossRef Google Scholar
|
[51]
|
Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, et al. 2002. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977−983 doi: 10.1038/415977a
CrossRef Google Scholar
|
[52]
|
Zhou H, Zeng RF, Liu TJ, Ai XY, Ren MK, et al. 2022. Drought and low temperature-induced NF-YA1 activates FT expression to promote citrus flowering. Plant, Cell & Environment 45(12):3505−22 doi: 10.1111/pce.14442
CrossRef Google Scholar
|