[1]
|
Bäurle I, Dean C. 2006. The timing of developmental transitions in plants. Cell 125:655−64 doi: 10.1016/j.cell.2006.05.005
CrossRef Google Scholar
|
[2]
|
Huijser P, Schmid M. 2011. The control of developmental phase transitions in plants. Development 138:4117−29 doi: 10.1242/dev.063511
CrossRef Google Scholar
|
[3]
|
Dambreville A, Lauri PÉ, Normand F, Guédon Y. 2015. Analysing growth and development of plants jointly using developmental growth stages. Annals of Botany 115:93−105 doi: 10.1093/aob/mcu227
CrossRef Google Scholar
|
[4]
|
Mutasa-Göttgens E, Hedden P. 2009. Gibberellin as a factor in floral regulatory networks. Journal of Experimental Botany 60:1979−89 doi: 10.1093/jxb/erp040
CrossRef Google Scholar
|
[5]
|
Matsoukas IG, Massiah AJ, Thomas B. 2012. Florigenic and antiflorigenic signaling in plants. Plant and Cell Physiology 53:1827−42 doi: 10.1093/pcp/pcs130
CrossRef Google Scholar
|
[6]
|
Moon J, Lee H, Kim M, Lee I. 2005. Analysis of flowering pathway integrators in Arabidopsis. Plant and Cell Physiology 46(2):292−9 doi: 10.1093/pcp/pci024
CrossRef Google Scholar
|
[7]
|
Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, et al. 2005. Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056−59 doi: 10.1126/science.1114358
CrossRef Google Scholar
|
[8]
|
Wei Q, Ma C, Xu Y, Wang T, Chen Y, et al. 2017. Control of chrysanthemum flowering through integration with an aging pathway. Nature Communications 8:829 doi: 10.1038/s41467-017-00812-0
CrossRef Google Scholar
|
[9]
|
Mathieu J, Yant LJ, Mürdter F, Küttner F, Schmid M. 2009. Repression of flowering by the miR172 target SMZ. PLoS Biology 7:e1000148 doi: 10.1371/journal.pbio.1000148
CrossRef Google Scholar
|
[10]
|
Porri A, Torti S, Romera-Branchat M, Coupland G. 2012. Spatially distinct regulatory roles for gibberellins in the promotion of flowering of Arabidopsis under long photoperiods. Development 139:2198−209 doi: 10.1242/dev.077164
CrossRef Google Scholar
|
[11]
|
Zhou C, Wang J. 2013. Regulation of flowering time by microRNAs. Journal of Genetics and Genomics 40:211−15 doi: 10.1016/j.jgg.2012.12.003
CrossRef Google Scholar
|
[12]
|
Khan MRG, Ai X, Zhang J. 2014. Genetic regulation of flowering time in annual and perennial plants. Wiley Interdisciplinary Reviews RNA 5:347−59 doi: 10.1002/wrna.1215
CrossRef Google Scholar
|
[13]
|
Yu Y, Zhang Y, Chen X, Chen Y. 2019. Plant noncoding RNAs: hidden players in development and stress responses. Annual Review of Cell and Developmental Biology 35:407−31 doi: 10.1146/annurev-cellbio-100818-125218
CrossRef Google Scholar
|
[14]
|
Song X, Li Y, Cao X, Qi Y. 2019. microRNAs and their regulatory roles in plant-environment interactions. Annual Review of Plant Biology 70:489−525 doi: 10.1146/annurev-arplant-050718-100334
CrossRef Google Scholar
|
[15]
|
Fei Q, Xia R, Meyers BC. 2013. Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks. The Plant Cell 25:2400−15 doi: 10.1105/tpc.113.114652
CrossRef Google Scholar
|
[16]
|
Ren G, Xie M, Zhang S, Vinovskis C, Chen X, et al. 2014. Methylation protects microRNAs from an AGO1-associated activity that uridylates 5' RNA fragments generated by AGO1 cleavage. Proceedings of the National Academy of Sciences of the United States of America 111:6365−70 doi: 10.1073/pnas.1405083111
CrossRef Google Scholar
|
[17]
|
Wu G, Park MY, Conway SR, Wang JW, Weigel D, et al. 2009. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750−59 doi: 10.1016/j.cell.2009.06.031
CrossRef Google Scholar
|
[18]
|
Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP. 2002. microRNAs in plants. Genes & Development 16:1616−26 doi: 10.1101/gad.1004402
CrossRef Google Scholar
|
[19]
|
Shikata M, Koyama T, Mitsuda N, Ohme-Takagi M. 2009. Arabidopsis SBP-box genes SPL10, SPL11 and SPL2 control morphological change in association with shoot maturation in the reproductive phase. Plant and Cell Physiology 50:2133−45 doi: 10.1093/pcp/pcp148
CrossRef Google Scholar
|
[20]
|
Wang JW, Czech B, Weigel D. 2009. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138:738−49 doi: 10.1016/j.cell.2009.06.014
CrossRef Google Scholar
|
[21]
|
Gandikota M, Birkenbihl RP, Höhmann S, Cardon GH, Saedler H, et al. 2007. The miRNA156/157 recognition element in the 3' UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. The Plant Journal 49:683−93 doi: 10.1111/j.1365-313X.2006.02983.x
CrossRef Google Scholar
|
[22]
|
Yu S, Cao L, Zhou C, Zhang T, Lian H, et al. 2013. Sugar is an endogenous cue for juvenile-to-adult phase transition in plants. eLife 2:e00269 doi: 10.7554/eLife.00269
CrossRef Google Scholar
|
[23]
|
Amasino R. 2010. Seasonal and developmental timing of flowering. The Plant Journal 61:1001−13 doi: 10.1111/j.1365-313X.2010.04148.x
CrossRef Google Scholar
|
[24]
|
Wang J. 2014. Regulation of flowering time by the miR156-mediated age pathway. Journal of Experimental Botany 65:4723−30 doi: 10.1093/jxb/eru246
CrossRef Google Scholar
|
[25]
|
Peng T, Qiao M, Liu H, Teotia S, Zhang Z, et al. 2018. A resource for inactivation of microRNAs using short tandem target mimic technology in model and crop plants. Molecular Plant 11:1400−17 doi: 10.1016/j.molp.2018.09.003
CrossRef Google Scholar
|
[26]
|
Yant L, Mathieu J, Dinh TT, Ott F, Lanz C, et al. 2010. Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2. The Plant Cell 22:2156−70 doi: 10.1105/tpc.110.075606
CrossRef Google Scholar
|
[27]
|
Luo Y, Guo Z, Li L. 2013. Evolutionary conservation of microRNA regulatory programs in plant flower development. Developmental Biology 380:133−44 doi: 10.1016/j.ydbio.2013.05.009
CrossRef Google Scholar
|
[28]
|
Zhu QH, Helliwell CA. 2011. Regulation of flowering time and floral patterning by miR172. Journal of Experimental Botany 62:487−95 doi: 10.1093/jxb/erq295
CrossRef Google Scholar
|
[29]
|
Aukerman MJ, Sakai H. 2003. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. The Plant Cell 15:2730−41 doi: 10.1105/tpc.016238
CrossRef Google Scholar
|
[30]
|
Chen X. 2004. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022−25 doi: 10.1126/science.1088060
CrossRef Google Scholar
|
[31]
|
Jung JH, Seo PJ, Kang SK, Park CM. 2011. miR172 signals are incorporated into the miR156 signaling pathway at the SPL3/4/5 genes in Arabidopsis developmental transitions. Plant Molecular Biology 76:35−45 doi: 10.1007/s11103-011-9759-z
CrossRef Google Scholar
|
[32]
|
Lian H, Wang L, Ma N, Zhou C, Han L, et al. 2021. Redundant and specific roles of individual MIR172 genes in plant development. PLoS Biology 19:e3001044 doi: 10.1371/journal.pbio.3001044
CrossRef Google Scholar
|
[33]
|
Xu Z, Chen M, Li L, Ma Y. 2011. Functions and application of the AP2/ERF transcription factor family in crop improvement. Journal of Integrative Plant Biology 53:570−85 doi: 10.1111/j.1744-7909.2011.01062.x
CrossRef Google Scholar
|
[34]
|
Zhang B, Chen X. 2021. Secrets of the MIR172 family in plant development and flowering unveiled. PLoS Biology 19:e3001099 doi: 10.1371/journal.pbio.3001099
CrossRef Google Scholar
|
[35]
|
Cao S, Wang Y, Li X, Gao F, Feng J, et al. 2020. Characterization of the AP2/ERF transcription factor family and expression profiling of DREB subfamily under cold and osmotic stresses in Ammopiptanthus nanus. Plants 9:455 doi: 10.3390/plants9040455
CrossRef Google Scholar
|
[36]
|
Teotia S, Tang G. 2015. To bloom or not to bloom: role of microRNAs in plant flowering. Molecular Plant 8:359−77 doi: 10.1016/j.molp.2014.12.018
CrossRef Google Scholar
|
[37]
|
Telfer A, Bollman KM, Poethig RS. 1997. Phase change and the regulation of trichome distribution in Arabidopsis thaliana. Development 124:645−54 doi: 10.1242/dev.124.3.645
CrossRef Google Scholar
|
[38]
|
Poethig RS. 1990. Phase change and the regulation of shoot morphogenesis in plants. Science 250:923−30 doi: 10.1126/science.250.4983.923
CrossRef Google Scholar
|
[39]
|
Lawrence EH, Springer CJ, Helliker BR, Poethig RS. 2021. microRNA156-mediated changes in leaf composition lead to altered photosynthetic traits during vegetative phase change. New Phytologist 231:1008−22 doi: 10.1111/nph.17007
CrossRef Google Scholar
|
[40]
|
Jia X, Chen Y, Xu X, Shen F, Zheng Q, et al. 2017. miR156 switches on vegetative phase change under the regulation of redox signals in apple seedlings. Scientific Reports 7:14223 doi: 10.1038/s41598-017-14671-8
CrossRef Google Scholar
|
[41]
|
Heuret P, Meredieu C, Coudurier T, Courdier F, Barthélémy D. 2006. Ontogenetic trends in the morphological features of main stem annual shoots of Pinus pinaster (Pinaceae). American Journal of Botany 93:1577−87 doi: 10.3732/ajb.93.11.1577
CrossRef Google Scholar
|
[42]
|
Preston JC, Hileman LC. 2013. Functional Evolution in the Plant SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) gene family. Frontiers in Plant Science 4:80 doi: 10.3389/fpls.2013.00080
CrossRef Google Scholar
|
[43]
|
Wang JW, Park MY, Wang L, Koo Y, Chen X, et al. 2011. miRNA control of vegetative phase change in trees. PLoS Genetics 7:e1002012 doi: 10.1371/journal.pgen.1002012
CrossRef Google Scholar
|
[44]
|
Rubinelli PM, Chuck G, Li X, Meilan R. 2012. Constitutive expression of the Corngrass1 microRNA in poplar affects plant architecture and stem lignin content and composition. Biomass and Bioenergy 54:312−21 doi: 10.1016/j.biombioe.2012.03.001
CrossRef Google Scholar
|
[45]
|
Lawrence EH, Leichty AR, Doody EE, Ma C, Strauss SH, et al. 2021. Vegetative phase change in Populus tremula × alba. New Phytologist 231:351−64 doi: 10.1111/nph.17316
CrossRef Google Scholar
|
[46]
|
Li H, Luo Y, Ma B, Hu J, Lv Z, et al. 2021. Hierarchical action of mulberry miR156 in the vegetative phase transition. International Journal of Molecular Sciences 22:5550 doi: 10.3390/ijms22115550
CrossRef Google Scholar
|
[47]
|
Yu N, Yang J, Yin G, Li R, Zou W. 2020. Genome-wide characterization of the SPL gene family involved in the age development of Jatropha curcas. BMC Genomics 21:368 doi: 10.1186/s12864-020-06776-8
CrossRef Google Scholar
|
[48]
|
Shalom L, Shlizerman L, Zur N, Doron-Faigenboim A, Blumwald E, et al. 2015. Molecular characterization of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) gene family from Citrus and the effect of fruit load on their expression. Frontiers in Plant Science 6:389 doi: 10.3389/fpls.2015.00389
CrossRef Google Scholar
|
[49]
|
Chen G, Li J, Liu Y, Zhang Q, Gao Y, et al. 2019. Roles of the GA-mediated SPL gene family and miR156 in the floral development of Chinese chestnut (Castanea mollissima). International Journal of Molecular Sciences 20:1577 doi: 10.3390/ijms20071577
CrossRef Google Scholar
|
[50]
|
Li B, Zhao Y, Wang S, Zhang X, Wang Y, et al. 2021. Genome-wide identification, gene cloning, subcellular location and expression analysis of SPL gene family in P. granatum L. BMC Plant Biology 21:400 doi: 10.1186/s12870-021-03171-7
CrossRef Google Scholar
|
[51]
|
Wan L, Wang F, Guo X, Lu S, Qiu Z, et al. 2012. Identification and characterization of small non-coding RNAs from Chinese fir by high throughput sequencing. BMC Plant Biology 12:146 doi: 10.1186/1471-2229-12-146
CrossRef Google Scholar
|
[52]
|
Qin S, Bao L, He Z, Li C, La H, et al. 2022. Identification and regulatory network analysis of SPL family transcription factors in Populus euphratica Oliv. heteromorphic leaves. Scientific Reports 12:2856 doi: 10.1038/s41598-022-06942-w
CrossRef Google Scholar
|
[53]
|
Hudson CJ, Freeman JS, Jones RC, Potts BM, Wong MML, et al. 2014. Genetic control of heterochrony in Eucalyptus globulus. G3 Genes Genomes Genetics 4:1235−45 doi: 10.1534/g3.114.011916
CrossRef Google Scholar
|
[54]
|
Ahsan MU, Hayward A, Irihimovitch V, Fletcher S, Tanurdzic M, et al. 2019. Juvenility and vegetative phase transition in tropical/subtropical tree crops. Frontiers in Plant Science 10:729 doi: 10.3389/fpls.2019.00729
CrossRef Google Scholar
|
[55]
|
Wang L, Cui J, Jin B, Zhao J, Xu H, et al. 2020. Multifeature analyses of vascular cambial cells reveal longevity mechanisms in old Ginkgo biloba trees. Proceedings of the National Academy of Sciences of the United States of America 117:2201−10 doi: 10.1073/pnas.1916548117
CrossRef Google Scholar
|
[56]
|
Niu S, Liu C, Yuan H, Li P, Li Y, et al. 2015. Identification and expression profiles of sRNAs and their biogenesis and action-related genes in male and female cones of Pinus tabuliformis. BMC Genomics 16(1):693 doi: 10.1186/s12864-015-1885-6
CrossRef Google Scholar
|
[57]
|
Akhter S, Westrin KJ, Zivi N, Nordal V, Kretzschmar WW, et al. 2022. Cone-setting in spruce is regulated by conserved elements of the age-dependent flowering pathway. New Phytologist 236:1951−63 doi: 10.1111/nph.18449
CrossRef Google Scholar
|
[58]
|
Tang M, Bai X, Niu L, Chai X, Chen M, et al. 2018. miR172 regulates both vegetative and reproductive development in the perennial Woody Plant Jatropha curcas. Plant and Cell Physiology 59(12):2549−63 doi: 10.1093/pcp/pcy175
CrossRef Google Scholar
|
[59]
|
Sun L, Jiang Z, Ju Y, Zou X, Wan X, et al. 2021. A potential endogenous gibberellin-mediated signaling cascade regulated floral transition in Magnolia × soulangeana 'Changchun'. Molecular Genetics and Genomics 296:207−22 doi: 10.1007/s00438-020-01740-3
CrossRef Google Scholar
|
[60]
|
Ahsan MU, Hayward A, Alam M, Bandaralage JH, Topp B, et al. 2019. Scion control of miRNA abundance and tree maturity in grafted avocado. BMC Plant Biology 19:382 doi: 10.1186/s12870-019-1994-5
CrossRef Google Scholar
|
[61]
|
Nilsson L, Carlsbecker A, Sundås-Larsson A, Vahala T. 2007. APETALA2 like genes from Picea abies show functional similarities to their Arabidopsis homologues. Planta 225:589−602 doi: 10.1007/s00425-006-0374-1
CrossRef Google Scholar
|
[62]
|
An W, Gong W, He S, Pan Z, Sun J, et al. 2015. microRNA and mRNA expression profiling analysis revealed the regulation of plant height in Gossypium hirsutum. BMC Genomics 16:886 doi: 10.1186/s12864-015-2071-6
CrossRef Google Scholar
|
[63]
|
Zhang H, Zhang J, Yan J, Gou F, Mao Y, et al. 2017. Short tandem target mimic rice lines uncover functions of miRNAs in regulating important agronomic traits. Proceedings of the National Academy of Sciences of the United States of America 114:5277−82 doi: 10.1073/pnas.1703752114
CrossRef Google Scholar
|
[64]
|
Chávez Montes RA, de Fátima Flor Rosas-Cárdenas, De Paoli E, Accerbi M, Rymarquis LA, et al. 2014. Sample sequencing of vascular plants demonstrates widespread conservation and divergence of microRNAs. Nature Communications 5:3722 doi: 10.1038/ncomms4722
CrossRef Google Scholar
|
[65]
|
Gubler F, Kalla R, Roberts JK, Jacobsen JV. 1995. Gibberellin-regulated expression of a myb gene in barley aleurone cells: evidence for Myb transactivation of a high-pI alpha-amylase gene promoter. The Plant Cell 7:1879−91 doi: 10.1105/tpc.7.11.1879
CrossRef Google Scholar
|
[66]
|
Guo C, Xu Y, Shi M, Lai Y, Wu X, et al. 2017. Repression of miR156 by miR159 regulates the timing of the juvenile-to-adult transition in Arabidopsis. The Plant Cell 29:1293−1304 doi: 10.1105/tpc.16.00975
CrossRef Google Scholar
|
[67]
|
Garighan J, Dvorak E, Estevan J, Loridon K, Huettel B, et al. 2021. The identification of small RNAs differentially expressed in apple buds reveals a potential role of the Mir159-MYB regulatory module during dormancy. Plants 10:2665 doi: 10.3390/plants10122665
CrossRef Google Scholar
|
[68]
|
Kim MH, Cho JS, Lee JH, Bae SY, Choi YI, et al. 2018. Poplar MYB transcription factor PtrMYB012 and its Arabidopsis AtGAMYB orthologs are differentially repressed by the Arabidopsis miR159 family. Tree Physiology 38:801−12 doi: 10.1093/treephys/tpx164
CrossRef Google Scholar
|
[69]
|
Hu H, Guo Z, Yang J, Cui J, Zhang Y, et al. 2021. Transcriptome and microRNA sequencing identified miRNAs and target genes in different developmental stages of the vascular cambium in Cryptomeria fortunei hooibrenk. Frontiers in Plant Science 12:751771 doi: 10.3389/fpls.2021.751771
CrossRef Google Scholar
|
[70]
|
Ding Q, Zeng J, He X. 2016. MiR169 and its target PagHAP2-6 regulated by ABA are involved in poplar cambium dormancy. Journal of Plant Physiology 198:1−9 doi: 10.1016/j.jplph.2016.03.017
CrossRef Google Scholar
|
[71]
|
Xu M, Zhang L, Li W, Hu X, Wang MB, et al. 2014. Stress-induced early flowering is mediated by miR169 in Arabidopsis thaliana. Journal of Experimental Botany 65:89−101 doi: 10.1093/jxb/ert353
CrossRef Google Scholar
|
[72]
|
Luan M, Xu M, Lu Y, Zhang L, Fan Y, et al. 2015. Expression of zma-miR169 miRNAs and their target ZmNF-YA genes in response to abiotic stress in maize leaves. Gene 555:178−85 doi: 10.1016/j.gene.2014.11.001
CrossRef Google Scholar
|
[73]
|
Zhao H, Lin K, Ma L, Chen Q, Gan S, et al. 2020. Arabidopsis NUCLEAR FACTOR Y A8 inhibits the juvenile-to-adult transition by activating transcription of MIR156s. Journal of Experimental Botany 71:4890−902 doi: 10.1093/jxb/eraa197
CrossRef Google Scholar
|
[74]
|
Potkar R, Recla J, Busov V. 2013. ptr-MIR169 is a posttranscriptional repressor of PtrHAP2 during vegetative bud dormancy period of aspen (Populus tremuloides) trees. Biochemical and Biophysical Research Communications 431:512−18 doi: 10.1016/j.bbrc.2013.01.027
CrossRef Google Scholar
|