-
A field study was conducted at Lewis-Brown Horticulture Farm in Corvallis, OR, USA on a Chehalis silty clay loam soil. Corvallis is located in the Willamette Valley, OR, USA and has a warm-summer Mediterranean climate (Csb) according to the Köppen-Geiger climate classification with wet winters and warm, dry summers. The weather data during the study period is provided in Table 1. The average annual precipitation in Corvallis is 108.5 cm, which occurs almost exclusively in a nine-month period from autumn to spring[17], therefore, irrigation with harvested rainwater[18] and residential effluent water are viable alternatives to using the limited potable water resources for urban lawns in Corvallis or regions with a similar climate. Perennial ryegrass cultivars were sown at the rate of 54 g·m−2 to ensure uniform establishment on research plots, and a 25-3-10 (N-P-K) fertilizer (Wil-Gro 5 Iron, Wilbur-Ellis Company, Aurora, CO, USA) was applied at a rate of 100 kg·N·ha−1 at seeding on 12 October 2015.
Table 1. Corvallis, OR, USA weather data obtained from Bureau of Reclamation Hydromet/AgriMet System.
Month-year Evapotranspiration
(mm)Precipitation
(mm)Mean temperature
(°C)Max temperature
(°C)Min temperature
(°C)Mar-16 56 188 9.1 12.7 5.3 Apr-16 104 76 12.3 19.4 8.1 May-16 150 20 14.7 19.6 11.6 Jun-16 203 13 17.2 26.3 11.4 Jul-16 226 10 18.9 24.3 15.4 Aug-16 244 3 20.6 29.4 15.1 Sep-16 135 15 16.1 21.3 10.9 Mar-17 46 180 8.6 12.8 2.7 Apr-17 79 89 9.6 12.8 6.8 May-17 145 41 14.3 23.2 8.7 Jun-17 183 38 17.2 28.1 11.1 Jul-17 254 0 19.9 24.7 17.3 Aug-17 224 5 21.3 29.6 17.2 Sep-17 130 51 17.9 24.2 11.1 Experimental design was an 11 by 2 strip-plot organized as a randomized complete block design with three replications conducted over two years. Factors included 11 perennial ryegrass cultivars and fresh (control) versus effluent water summer irrigation. The 11 perennial ryegrass cultivars were 'Premium', 'Pillar', 'Pepper', 'Brightstar SLT', 'Estelle', 'Gray Fox', 'Allstar 3', 'Mighty', 'SR4660ST', 'Zoom', and 'Manhattan 6'. These cultivars were commercially produced by local companies in the Willamette Valley at the time the experiment was initiated. The sub-plot size was 2.3 m2. Effluent water treatment was applied twice weekly in June, July, August, and September in 2016 and 2017. Synthetic effluent water was manufactured for this experiment using a mass of constituents of Na, Cl, and B concentrations found in effluent-quality wastewater used for irrigation of the Heritage Golf Course, Westminster, CO, USA[3] and Whispering Palms turfgrass study, Davis, CA, USA[19]. To achieve these values of B, Na, and Cl for this experiment, water softener coarse salt (NaCl) (Compass Minerals International, Inc., Overland Park, KS, USA) at 6.03 × 104 mg·L−1, 20 Mule Team Borax Natural Laundry Booster (Na2B4O7·10H2O) (Henkel AG & Company, KGaA, Düsseldorf, Germany) at 4.15 × 103 mg·L−1, Arm & Hammer Super Soda Booster (Na2CO3) (Church & Dwight Co., Inc., Ewing, NJ, USA) at 4.31 × 103 mg·L−1, and trace amounts of ethylenediaminetetraacetic acid (EDTA; C10H16N2O8) (Fisher Scientific, Pittsburgh, PA, USA) at 35.2 mg·L−1 were utilized. The simulated concentrations of B, Na, Cl, and EDTA used for this study were 2.1 mg·B·L−1, 111 mg·Na·L−1, 168 mg·Cl·L−1, and 0.33 mg·EDTA·L−1. Assuming 38 mm irrigation per week, mass loadings over the four-month period were calculated and distributed as twice-weekly sprays at a high concentration to avoid any significant differences in irrigation rates. Concentrated spray applications were watered-in with uniform 2.5 mm overhead irrigation to prevent evaporative loss and any potential acute salinity damage. Both treatments received overhead irrigation at the same rate and frequency. Irrigation was applied at 4.7 mm daily, and 2.5 mm twice weekly following effluent water applications, for a total of 38 mm per week.
Turfgrass maintenance
-
The turfgrass was mowed as needed at a mowing height of 5 cm and clippings were removed to help prevent annual bluegrass (Poa annua L.) infestation. Annual nitrogen rate for the two trial years was 244 kg·N·ha−1 applied via a 25-3-10 fertilizer (Wil-Gro 5 Iron, Wilbur-Ellis Company). Selective herbicides were used to maintain plots as predominantly perennial ryegrass. Prograss SC (42% ethofumesate) was applied at 4.6 kg·ha−1 (1.9 kg·a.i.·ha−1) on December 1 of 2015, January 6, February 2, September 27, November 4, and December 6 of 2016, and January 23 of 2017. TZone SE (7.72% triclopyr BEE, butoxyethyl ester, 0.66% sulfentrazone, 29.32% 2,4-D, 2-ethylhexyl ester, and 2.22% dicamba acid) was applied at 4.6 kg·ha−1 on 19 September 2016. Barricade 65WG (65% prodiamine) was applied at 0.56 kg·ha−1 (0.36 kg·a.i.·ha−1) on 24 July 2017.
Response variables
-
Response variables included visual turf color and density, along with soil and tissue elemental analyses. Data were collected on a monthly basis with the exception of soil and tissue samplings which took place at the conclusion of the study in September of 2017.
Turf color and density were visually assessed using a 1–9 scale with 6 being the minimum acceptable level. In turf color, a 1 rating was given to straw-brown turf, and 9 was given to dark green turf. In turf density, a 1 rating equals the lowest density (open canopy), and 9 equals maximum density. Turf color and density were evaluated two to three days after an effluent water application.
Soil cores (12 per plot) were collected using a 19-mm-diameter probe to a 15-cm depth with the top 2.5 cm of root and thatch material removed. Aggregate soil samples were analyzed by Oregon State University Soil Health Laboratory (Corvallis, OR, USA) for pH, electrical conductivity (EC), Na, Cl, and B. Tissue samples were collected using a self-propelled push lawn mower (Honda, Minato, Tokyo, Japan), dried, and sent to the same laboratory for analyzing Na, Cl, and B concentrations.
Statistical analyses
-
Data were subjected to analysis of variance using SAS 9.4 Proc Mixed (SAS Institute Inc., Cary, NC, USA). Due to the significant year effect and interactions between year and some of the remaining factors, data were analyzed separately for each year. Factors in the final analyses included rating date, replication, irrigation water, and cultivar for field measurements, and replication, irrigation water, and cultivar for soil and tissue analyses. Fisher's Protected Least Significant Difference (LSD) at the 0.05 probability level was used to determine treatment difference.
-
Cultivar consistently had significant effects on turf color and density (Table 2). 'Premium' perennial ryegrass received the highest turf color rating, whereas 'Pepper' had the lowest color rating in both years. 'Pepper' had lower than acceptable color in 2017, but was not statistically different than 'Manhattan 6' (Table 3). 'Pillar' had a lower color rating than 'Premium', 'Allstar 3', 'SR4660ST', and 'Zoom' in 2016 but had the highest color rating that was not significantly different from 'Premium', 'Estelle', 'Allstar 3', 'SR4660ST', and 'Zoom' in 2017 (Table 3). All perennial ryegrass cultivars had acceptable turf density ranged from 7.3 to 7.7 in 2016 and 6.1 to 6.8 in 2017 when averaged over each summer and between two irrigation water treatments (Table 3). 'Premium' produced the highest density in both years (Table 3). 'Allstar 3' also had high turf density ratings that were statistically similar to those of 'Premium' in both years (Table 3).
Table 2. Analysis of variance and means table for visual turf color and density ratings affected by irrigation water, cultivar, and date in Corvallis, OR, USA in 2016 and 2017.
Source of variation df Turf color
(1‒9)aTurf density
(1‒9)b2016 2017 2016 2017 Pr > F Replication 2 NS * NS *** Irrigation water 1 NS *** NS *** Fresh 7.3 6.5 7.5 6.6 Effluent 7.4 6.1 7.5 6.3 Cultivar 10 *** *** * * Date 2 ** *** NS *** Irrigation water × cultivar 10 NS NS NS NS Irrigation water × date 2 NS *** NS *** Cultivar × date 20 * NS NS NS Irrigation water × cultivar × date 20 NS NS NS NS a Turf color ratings were visually assessed on a 1‒9 scale with 1 being straw-brown turf, 6 being the minimum acceptable color, and 9 being dark green turf. b Turf density ratings were visually assessed on a 1‒9 scale with 1 being the lowest density (open canopy), 6 being the minimum acceptable density, and 9 being the highest density. NS Not significant at the 0.05 probability level. * Significant at the 0.05 probability level. ** Significant at the 0.01 probability level. *** Significant at the 0.001 probability level. Table 3. Visual turf color and density for 11 perennial ryegrass cultivars evaluated in Corvallis, OR, USA in 2016 and 2017. Mean values represent data points averaged across replication, date, and irrigation water.
Cultivar Turf color (1−9)ab Turf density (1−9)ac 2016 2017 2016 2017 Premium 7.63A 6.67A 7.69A 6.83A Pillar 7.31CD 6.67A 7.56ABC 6.58AB Pepper 6.93E 5.81D 7.56ABC 6.31BCD Brightstar SLT 7.19D 6.22BC 7.33D 6.33BCD Estelle 7.39BC 6.42AB 7.50ABC 6.36BCD Gray Fox 7.26CD 6.25BC 7.56ABC 6.53ABC Allstar 3 7.46B 6.42AB 7.61AB 6.72AB Mighty 7.38BC 6.28BC 7.47BC 6.11CD SR4660ST 7.47B 6.50AB 7.57ABC 6.72AB Zoom 7.44B 6.47AB 7.39CD 6.44ABCD Manhattan 6 7.36BC 6.08CD 7.43BC 6.08D a Means followed by the same uppercase letter were not significantly different at the 0.05 probability level. b Turf color ratings were visually assessed on a 1‒9 scale with 1 being straw-brown turf, 6 being the minimum acceptable color, and 9 being dark green turf. c Turf density ratings were visually assessed on a 1‒9 scale with 1 being the lowest density (open canopy), 6 being the minimum acceptable density, and 9 being the highest density. Summer effluent water irrigation
-
Effluent water irrigation applied in the summer did not have significant effects on turf color or density compared to freshwater irrigation in the first year of the study. In the second year, irrigation water and its interaction with date were significant (Table 2). Effluent water irrigation had similar effects on turf color and density in 2017 (Fig. 1). Reductions in turf color (Fig. 1a) and density (Fig. 1b) with effluent water irrigation were observed in June and July 2017. In August of 2017, effluent water irrigation produced turf color and density comparable to freshwater irrigation (Fig. 1).
Figure 1.
The effects of summer irrigation with fresh versus effluent water on (a) turf color and (b) turf density varied by rating dates in 2017. Turf color ratings were visually assessed on a 1‒9 scale with 1 being straw-brown turf, 6 being the minimum acceptable color (indicated by the dotted line), and 9 being dark green turf. Turf density ratings were visually assessed on a 1‒9 scale with 1 being the lowest density (open canopy), 6 being the minimum acceptable density (indicated by the dotted line), and 9 being the highest density. Error bars indicate standard deviations. ** Significant at the 0.01 probability level. *** Significant at the 0.001 probability level.
Soil analysis
-
While effluent water irrigation did not affect soil pH, it was found to have significant effects on EC as well as soil B, Na, and Cl contents measured at the conclusion of the study (Table 4). Effluent water irrigation in the summer resulted in an EC of 0.24 dS·m‒1 which was statistically higher than the freshwater control of 0.15 dS·m‒1 (Table 4). The concentrations of B, Na, and Cl were found to be significantly higher in the soil of effluent water irrigation treatment compared to the freshwater irrigation treatment, all of which were 4 to 5 times higher than the freshwater control (Table 4). The main effect of perennial ryegrass cultivar and its interaction with irrigation water were not significant in any of the soil chemical properties tested in this study (Table 4).
Table 4. Analysis of variance and means table for soil pH, electrical conductivity (EC), soil boron (B), sodium (Na), and chloride (Cl) concentrations on 11 perennial ryegrass cultivars under fresh versus effluent water summer irrigation at the conclusion of a two-year study in Corvallis, OR, USA.
Source of variation df pH EC
(dS·m−1)B
(ppm)Na
(ppm)Cl
(ppm)Pr > F Replication 2 NS NS NS NS NS Irrigation water 1 NS * * * * Fresh 6.3 0.15 0.9 74 6 Effluent 6.2 0.24 4.3 326 30 Cultivar 10 NS NS NS NS NS Irrigation water × cultivar 10 NS NS NS NS NS NS Not significant at the 0.05 probability level. * Significant at the 0.05 probability level. Plant tissue analysis
-
Irrigation water had significant effects on Na and Cl ion concentrations in the leaf tissues (Table 5). Significantly higher concentrations of Na and Cl ions, and marginally higher (probability of 0.057) B ions were detected in the tissue samples from effluent water irrigation plots compared to freshwater irrigation plots (Table 5). Perennial ryegrass cultivars had different levels of tissue B regardless of irrigation water source, ranging from 8 ppm from 'Estelle' to 29 ppm from 'Allstar 3' (Table 6).
Table 5. Analysis of variance and means table for leaf tissue boron (B), sodium (Na), and chloride (Cl) concentrations on 11 perennial ryegrass cultivars under fresh versus effluent water summer irrigation at the conclusion of a two-year study in Corvallis, OR, USA.
Source of variation df B (ppm) Na (ppm) Cl (ppm) Pr > F Replication 2 NS NS NS Irrigation water 1 0.0568a ** * Fresh 15 874 5782 Effluent 21 7592 9506 Cultivar 10 * NS NS Irrigation water × cultivar 10 NS NS NS a Significant at the 0.1 probability level with a probability of 0.0568. NS Not significant at the 0.05 probability level. * Significant at the 0.05 probability level. Table 6. Leaf tissue boron (B) concentrations for 11 perennial ryegrass cultivars at the conclusion of a two-year study in Corvallis, OR, USA. Mean values represent data points averaged across replication and irrigation water.
Cultivar B (ppm)a Premium 22ABC Pillar 15BCD Pepper 18BCD Brightstar SLT 18BCD Estelle 8D Gray Fox 21ABC Allstar 3 29A Mighty 14BCD SR4660ST 18BCD Zoom 13CD Manhattan 6 23AB a Means followed by the same uppercase letter were not significantly different at the 0.05 probability level. -
The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.
-
About this article
Cite this article
Wang R, Olsen CJ, Gould MA, Kowalewski AR. 2023. Field evaluation of perennial ryegrass cultivars for use with effluent water irrigation. Grass Research 3:23 doi: 10.48130/GR-2023-0023
Field evaluation of perennial ryegrass cultivars for use with effluent water irrigation
- Received: 27 August 2023
- Accepted: 02 November 2023
- Published online: 28 November 2023
Abstract: Fresh water is a scarce resource that needs to be conserved. Landscape irrigation, a large portion of the outdoor water use, can be accomplished with water of less-than-potable quality. The use of effluent water generated from residential graywater in landscapes would go a long way toward conserving potable water for other essential uses. The objectives of this study were to evaluate the effect of effluent versus fresh water irrigation on the performance of 11 lawn-height perennial ryegrass (Lolium perenne L.) cultivars in the Willamette Valley of Oregon, USA, and determine the effects of effluent water irrigation on soil and tissue analyses. A two-year field trial was established in October 2015 on native soil, and the experimental design was an 11 by 2 strip-plot design with three replications. Synthetic effluent water (water-softening salt, two laundry detergents, and a chelating agent) was applied twice-weekly over perennial ryegrass plots in the summers of 2016 and 2017 and compared to a freshwater control. Small reductions in turf color and density were observed with effluent water irrigation only in June and July of 2017. Our results suggest that effluent water is a viable alternative to freshwater irrigation in the Willamette Valley, where there is little to no precipitation during summer. However, the accumulation of Na, Cl, and B in the soil and plant tissue indicates that future research is warranted to determine any long-term effects from effluent water irrigation on turfgrass and soil health.
-
Key words:
- Sustainability /
- Wastewater /
- Soil