[1]
|
Baillo EH, Kimotho RN, Zhang Z, Xu P. 2019. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes 10:771 doi: 10.3390/genes10100771
CrossRef Google Scholar
|
[2]
|
Zhu JK. 2016. Abiotic stress signaling and responses in plants. Cell 167:313−24 doi: 10.1016/j.cell.2016.08.029
CrossRef Google Scholar
|
[3]
|
Wu S, Gallagher KL. 2012. Transcription factors on the move. Current Opinion in Plant Biology 15:645−51 doi: 10.1016/j.pbi.2012.09.010
CrossRef Google Scholar
|
[4]
|
Doebley J, Stec A, Hubbard L. 1997. The evolution of apical dominance in maize. Nature 386:485−88 doi: 10.1038/386485a0
CrossRef Google Scholar
|
[5]
|
Kosugi S, Ohashi Y. 1997. PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene. Plant Cell 9:1607−19 doi: 10.1105/tpc.9.9.1607
CrossRef Google Scholar
|
[6]
|
Luo D, Carpenter R, Vincent C, Copsey L, Coen E. 1996. Origin of floral asymmetry in Antirrhinum. Nature 383:794−99 doi: 10.1038/383794a0
CrossRef Google Scholar
|
[7]
|
Danisman S, van Dijk ADJ, Bimbo A, van der Wal F, Hennig L, et al. 2013. Analysis of functional redundancies within the Arabidopsis TCP transcription factor family. Journal of Experimental Botany 64:5673−85 doi: 10.1093/jxb/ert337
CrossRef Google Scholar
|
[8]
|
Nicolas M, Rodríguez-Buey ML, Franco-Zorrilla JM, Cubas P. 2015. A recently evolved alternative splice site in the BRANCHED1a gene controls potato plant architecture. Current Biology 25:1799−809 doi: 10.1016/j.cub.2015.05.053
CrossRef Google Scholar
|
[9]
|
Nag A, King S, Jack T. 2009. miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis. PNAS 106:22534−39 doi: 10.1073/pnas.0908718106
CrossRef Google Scholar
|
[10]
|
Giraud E, Ng S, Carrie C, Duncan O, Low J, et al. 2010. TCP transcription factors link the regulation of genes encoding mitochondrial proteins with the circadian clock in Arabidopsis thaliana. The Plant Cell 22:3921−34 doi: 10.1105/tpc.110.074518
CrossRef Google Scholar
|
[11]
|
Resentini F, Felipo-Benavent A, Colombo L, Blázquez MA, Alabadi D, et al. 2021. TCP14 and TCP15 mediate the promotion of seed germination by gibberellins in Arabidopsis thaliana (vol 8, pg 482, 2015). Molecular Plant 14:1771 doi: 10.1016/j.molp.2021.09.012
CrossRef Google Scholar
|
[12]
|
González-Grandío E, Pajoro A, Franco-Zorrilla JM, Tarancón C, Immink RGH, et al. 2017. Abscisic acid signaling is controlled by a BRANCHED1/HD-ZIP I cascade in Arabidopsis axillary buds. PNAS 114:E245−E254 doi: 10.1073/pnas.1613199114
CrossRef Google Scholar
|
[13]
|
Lopez JA, Sun Y, Blair PB, Mukhtar MS. 2015. TCP three-way handshake: linking developmental processes with plant immunity. Trends in Plant Science 20:238−45 doi: 10.1016/j.tplants.2015.01.005
CrossRef Google Scholar
|
[14]
|
Mukhopadhyay P, Tyagi AK. 2015. OsTCP19 influences developmental and abiotic stress signaling by modulating ABI4-mediated pathways. Scientific Reports 5:9998 doi: 10.1038/srep09998
CrossRef Google Scholar
|
[15]
|
Xu Y, Liu H, Gao Y, Xiong R, Wu M, et al. 2021. The TCP transcription factor PeTCP10 modulates salt tolerance in transgenic Arabidopsis. Plant Cell Reports 40:1971−87 doi: 10.1007/s00299-021-02765-7
CrossRef Google Scholar
|
[16]
|
Fan D, Ran L, Hu J, Ye X, Xu D, et al. 2020. miR319a/TCP module and DELLA protein regulate trichome initiation synergistically and improve insect defenses in Populus tomentosa. New Phytologist 227:867−83 doi: 10.1111/nph.16585
CrossRef Google Scholar
|
[17]
|
Spears BJ, Howton TC, Gao F, Garner CM, Mukhtar MS, et al. 2019. Direct regulation of the EFR-dependent immune response by Arabidopsis TCP transcription factors. Molecular Plant-Microbe Interactions 32:540−49 doi: 10.1094/MPMI-07-18-0201-FI
CrossRef Google Scholar
|
[18]
|
Zhang N, Wang Z, Bao Z, Yang L, Wu D, et al. 2018. MOS1 functions closely with TCP transcription factors to modulate immunity and cell cycle in Arabidopsis. Plant Journal 93:66−78 doi: 10.1111/tpj.13757
CrossRef Google Scholar
|
[19]
|
Martín-Trillo M, Cubas P. 2010. TCP genes: a family snapshot ten years later. Trends in Plant Science 15:31−39 doi: 10.1016/j.tplants.2009.11.003
CrossRef Google Scholar
|
[20]
|
Leng X, Wei H, Xu X, Ghuge SA, Jia D, et al. 2019. Genome-wide identification and transcript analysis of TCP transcription factors in grapevine. BMC Genomics 20:786 doi: 10.1186/s12864-019-6159-2
CrossRef Google Scholar
|
[21]
|
Zhao Y, Su X, Wang X, Wang M, Chi X, et al. 2021. Comparative genomic analysis of TCP genes in six Rosaceae species and expression pattern analysis in Pyrus bretschneideri. Frontiers in Genetics 12:669959 doi: 10.3389/fgene.2021.669959
CrossRef Google Scholar
|
[22]
|
Ren L, Wu H, Zhang T, Ge X, Wang T, et al. 2021. Genome-wide identification of TCP transcription factors family in sweet potato reveals significant roles of miR319-targeted TCPs in leaf anatomical morphology. Frontiers in Plant Science 12:686698 doi: 10.3389/fpls.2021.686698
CrossRef Google Scholar
|
[23]
|
Zhang L, Li C, Yang D, Wang Y, Yang Y, et al. 2021. Genome-wide analysis of the TCP transcription factor genes in Dendrobium catenatum Lindl. International Journal of Molecular Sciences 12:10269 doi: 10.3390/ijms221910269
CrossRef Google Scholar
|
[24]
|
Zhang S, Zhou Q, Chen F, Wu L, Liu B, et al. 2020. Genome-wide identification, characterization and expression analysis of TCP transcription factors in Petunia. International Journal of Molecular Sciences 21:6594 doi: 10.3390/ijms21186594
CrossRef Google Scholar
|
[25]
|
Bendahmane M, Dubois A, Raymond O, Le Bris M. 2013. Genetics and genomics of flower initiation and development in roses. Journal of Experimental Botany 64:847−57 doi: 10.1093/jxb/ers387
CrossRef Google Scholar
|
[26]
|
Li W, Fu L, Geng Z, Zhao X, Liu Q, et al. 2020. Physiological characteristic changes and full-length transcriptome of rose (Rosa chinensis) roots and leaves in response to drought stress. Plant and Cell Physiology 61:2153−66 doi: 10.1093/pcp/pcaa137
CrossRef Google Scholar
|
[27]
|
Jiang C, Xu J, Zhang H, Zhang X, Shi J, et al. 2009. A cytosolic class I small heat shock protein, RcHSP17.8, of Rosa chinensis confers resistance to a variety of stresses to Escherichia coli, yeast and Arabidopsis thaliana. Plant, Cell and Environment 32:1046−59 doi: 10.1111/j.1365-3040.2009.01987.x
CrossRef Google Scholar
|
[28]
|
Debener T, Byrne DH. 2014. Disease resistance breeding in rose: Current status and potential of biotechnological tools. Plant Science 228:107−17 doi: 10.1016/j.plantsci.2014.04.005
CrossRef Google Scholar
|
[29]
|
Raymond O, Gouzy J, Just J, Badouin H, Verdenaud M, et al. 2018. The Rosa genome provides new insights into the domestication of modern roses. Nature Genetics 50:772−77 doi: 10.1038/s41588-018-0110-3
CrossRef Google Scholar
|
[30]
|
Mount DW. 2007. Using the Basic Local Alignment Search Tool (BLAST). CSH protocols 2007: pdb. CSH Protocols 2007:top17 doi: 10.1101/pdb.top17
CrossRef Google Scholar
|
[31]
|
Bateman A, Coin L, Durbin R, Finn RD, Hollich V, et al. 2004. The Pfam protein families database. Nucleic Acids Research 32:D138−D141 doi: 10.1093/nar/gkh121
CrossRef Google Scholar
|
[32]
|
Finn RD, Mistry J, Tate J, Coggill P, Heger A, et al. 2010. The Pfam protein families database. Nucleic Acids Research 38:D211−D222 doi: 10.1093/nar/gkp985
CrossRef Google Scholar
|
[33]
|
Geourjon C, Deléage G. 1995. SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Bioinformatics 11:681−84 doi: bioinformatics/11.6.681
CrossRef Google Scholar
|
[34]
|
Guo A, Zhu Q, Chen X, Luo J. 2007. GSDS: a gene structure display server. Hereditas (Yi chuan) 29:1023−26
Google Scholar
|
[35]
|
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, et al. 2009. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Research 37:W202−W208 doi: 10.1093/nar/gkp335
CrossRef Google Scholar
|
[36]
|
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202 doi: 10.1016/j.molp.2020.06.009
CrossRef Google Scholar
|
[37]
|
Savchenko T, Walley JW, Chehab EW, Xiao Y, Kaspi R, et al. 2010. Arachidonic acid: An evolutionarily conserved signaling molecule modulates plant stress signaling networks. The Plant Cell 22:3193−205 doi: 10.1105/tpc.110.073858
CrossRef Google Scholar
|
[38]
|
Liu J, Fu X, Dong Y, Lu J, Ren M, et al. 2018. MIKCC-type MADS-box genes in Rosa chinensis: the remarkable expansion of ABCDE model genes and their roles in floral organogenesis. Horticulture Research 5:25 doi: 10.1038/s41438-018-0031-4
CrossRef Google Scholar
|
[39]
|
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−8 doi: 10.1006/meth.2001.1262
CrossRef Google Scholar
|
[40]
|
Viola IL, Reinheimer R, Ripoll R, Manassero NGU, Gonzalez DH. 2012. Determinants of the DNA binding specificity of class I and class II TCP transcription factors. Journal of Biological Chemistry 287:347−56 doi: 10.1074/jbc.M111.256271
CrossRef Google Scholar
|
[41]
|
Yao X, Ma H, Wang J, Zhang D. 2007. Genome-wide comparative analysis and expression pattern of TCP gene families in Arabidopsis thaliana and Oryza sativa. Journal of Integrative Plant Biology 49:885−97 doi: 10.1111/j.1744-7909.2007.00509.x
CrossRef Google Scholar
|
[42]
|
Manassero NGU, Viola IL, Welchen E, Gonzalez DH. 2013. TCP transcription factors: architectures of plant form. Biomolecular Concepts 4:111−27 doi: 10.1515/bmc-2012-0051
CrossRef Google Scholar
|
[43]
|
Ibraheem O, Botha CEJ, Bradley G. 2010. In silico analysis of cis-acting regulatory elements in 5' regulatory regions of sucrose transporter gene families in rice (Oryza sativa Japonica) and Arabidopsis thaliana. Computational Biology and Chemistry 34:268−83 doi: 10.1016/j.compbiolchem.2010.09.003
CrossRef Google Scholar
|
[44]
|
Li R, Zhu F, Duan D. 2020. Function analysis and stress-mediated cis-element identification in the promoter region of VqMYB15. Plant Signaling & Behavior 15:1773664 doi: 10.1080/15592324.2020.1773664
CrossRef Google Scholar
|
[45]
|
Liu Z, Shi L, Yang S, Qiu S, Ma X, et al. 2021. A conserved double-W box in the promoter of CaWRKY40 mediates autoregulation during response to pathogen attack and heat stress in pepper. Molecular Plant Pathology 22:3−18 doi: 10.1111/mpp.13004
CrossRef Google Scholar
|
[46]
|
Ding S, Cai Z, Du H, Wang H. 2019. Genome-wide analysis of TCP family genes in Zea mays L. identified a role for ZmTCP42 in drought tolerance. International Journal of Molecular Sciences 20:2762 doi: 10.3390/ijms20112762
CrossRef Google Scholar
|
[47]
|
Yao Y, Dong L, Fu X, Zhao L, Wei J, et al. 2022. HrTCP20 dramatically enhance drought tolerance of sea buckthorn (Hippophae rhamnoides L). by mediating the JA signaling pathway. Plant Physiology and Biochemistry 174:51−62 doi: 10.1016/j.plaphy.2022.01.026
CrossRef Google Scholar
|
[48]
|
Fang P, Shi S, Liu X, Zhang Z. 2020. First report of Alternaria black spot of rose caused by Alternaria alternata in China. Journal of Plant Pathology 102:273 doi: 10.1007/s42161-019-00411-6
CrossRef Google Scholar
|
[49]
|
Takaoka S, Kurata M, Harimoto Y, Hatta R, Yamamoto M, et al. 2014. Complex regulation of secondary metabolism controlling pathogenicity in the phytopathogenic fungus Alternaria alternata. New Phytologist 202:1297−309 doi: 10.1111/nph.12754
CrossRef Google Scholar
|