[1]
|
Khan LU, Cao X, Zhao R, Tan H, Huang X. 2022. Effect of temperature on yellow leaf disease (YLD) symptoms and its associated areca palm velarivirus 1 (APV1) titer in areca palm (Areca catechu L.). Frontiers in Plant Science, 13:1023386 doi: 10.3389/fpls.2022.1023386
CrossRef Google Scholar
|
[2]
|
Amudhan MS, Begum VH, Hebbar K. 2012. A review on phytochemical and pharmacological potential of Areca catechu L. seed. International Journal of Pharmaceutical Sciences and Research 3:4151−57
Google Scholar
|
[3]
|
Hattori M, Kusumoto IT, Soga M, Namba T. 1993. Screening of various Ayurvedic medicines for their inhibitory activities on reverse transcriptase and identification of arecatannins and embelin as major inhibitory substances from Areca catechu and Embelia ribes. Journal of Medical and Pharmaceutical Society for WAKAN-YAKU 10:141−48
Google Scholar
|
[4]
|
Khan WU, Khan RA, Ahmed M, Khan LU, Khan MW. 2016. Pharmacological evaluation of methanolic extract of Cyperus scariosus. Bangladesh Journal of Pharmacology 11:353−58 doi: 10.3329/bjp.v11i2.23611
CrossRef Google Scholar
|
[5]
|
Tian F, Woo SY, Lee SY, Park SB, Zheng Y, et al. 2022. Antifungal activity of essential oil and plant-derived natural compounds against Aspergillus flavus. Antibiotics 11:1727 doi: 10.3390/antibiotics11121727
CrossRef Google Scholar
|
[6]
|
Kaur S, Samota MK, Choudhary M, Choudhary M, Pandey AK, et al. 2022. How do plants defend themselves against pathogens-Biochemical mechanisms and genetic interventions. Physiology and Molecular Biology of Plants: an International Journal of Functional Plant Biology 28:485−504 doi: 10.1007/s12298-022-01146-y
CrossRef Google Scholar
|
[7]
|
Yun HS, Sul WJ, Chung HS, Lee JH, Kwon C. 2023. Secretory membrane traffic in plant-microbe interactions. New Phytologist 237:53−59 doi: 10.1111/nph.18470
CrossRef Google Scholar
|
[8]
|
Johnson PTJ, Ostfeld RS, Keesing F. 2015. Frontiers in research on biodiversity and disease. Ecology Letters 18:1119−33 doi: 10.1111/ele.12479
CrossRef Google Scholar
|
[9]
|
Keesing F, Belden LK, Daszak P, Dobson A, Harvell CD, et al. 2010. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468:647−52 doi: 10.1038/nature09575
CrossRef Google Scholar
|
[10]
|
To-anun C, Nguenhom J, Meeboon J, Hidayat I. 2009. Two fungi associated with necrotic leaflets of areca palms (Areca catechu). Mycological Progress 8:115−21 doi: 10.1007/s11557-009-0583-7
CrossRef Google Scholar
|
[11]
|
Wang H, Xu L, Zhang Z, Lin J, Huang X. 2019. First report of Curvularia pseudobrachyspora causing leaf spots in Areca catechu in China. Plant Disease 103:150 doi: 10.1094/pdis-06-18-1096-pdn
CrossRef Google Scholar
|
[12]
|
Ramaswamy M, Nair S, Soumya VP, Thomas GV. 2013. Phylogenetic analysis identifies a 'Candidatus Phytoplasma oryzae'-related strain associated with yellow leaf disease of areca palm (Areca catechu L.) in India. nternational Journal of Systematic and Evolutionary Microbiology 63:1376−82 doi: 10.1099/ijs.0.043315-0
CrossRef Google Scholar
|
[13]
|
Kanatiwela-de Silva C, Damayanthi M, de Silva R, Dickinson M, de Silva N, et al. 2015. Molecular and scanning electron microscopic proof of phytoplasma associated with areca palm yellow leaf disease in Sri Lanka. Plant Disease 99:1641−41 doi: 10.1094/pdis-01-15-0072-pdn
CrossRef Google Scholar
|
[14]
|
Yu H, Qi S, Chang Z, Rong Q, Akinyemi IA, et al. 2015. Complete genome sequence of a novel velarivirus infecting areca palm in China. Archives of Virology 160:2367−70 doi: 10.1007/s00705-015-2489-9
CrossRef Google Scholar
|
[15]
|
Yang K, Yan H, Song L, Jin P, Miao W, et al. 2018. Analysis of the complete genome sequence of a potyvirus from passion fruit suggests its taxonomic classification as a member of a new species. Archives of Virology 163:2583−86 doi: 10.1007/s00705-018-3885-8
CrossRef Google Scholar
|
[16]
|
Yang K, Shen W, Li Y, Li Z, Miao W, et al. 2019. Areca palm necrotic ringspot virus, classified within a recently proposed genus 'Arepavirus' of the family Potyviridae, is associated with necrotic ringspot disease in areca palm. Phytopathology 109:887−94 doi: 10.1094/PHYTO-06-18-0200-R
CrossRef Google Scholar
|
[17]
|
Zhang H, Zhao X, Cao X, Khan LU, Zhao R, et al. 2022. Transmission of areca palm velarivirus 1 by mealybugs causes yellow leaf disease in betel palm (Areca catechu). Phytopathology 112:700−7 doi: 10.1094/PHYTO-06-21-0261-R
CrossRef Google Scholar
|
[18]
|
Wang H, Zhao R, Zhang H, Cao X, Li Z, et al. 2020. Prevalence of yellow leaf disease (YLD) and its associated areca palm velarivirus 1 (APV1) in betel palm (Areca catechu) plantations in Hainan, China. Plant Disease 104:2556−62 doi: 10.1094/PDIS-01-20-0140-RE
CrossRef Google Scholar
|
[19]
|
Cao X, Zhao R, Wang H, Zhang H, Zhao X, et al. 2021. Genomic diversity of Areca Palm Velarivirus 1 (APV1) in Areca palm (Areca catechu) plantations in Hainan, China. BMC Genomics 22:725 doi: 10.1186/s12864-021-07976-6
CrossRef Google Scholar
|
[20]
|
Li Y, Cheng L, Peng Z, Ju R, Wan F. 2007. [Effects of host plants on development and fecundity of Brontispa longissima (Gestro)]. Chinese Journal of Applied Ecology 18:2050−4
Google Scholar
|
[21]
|
Zhong B, Lv C, Qin W. 2017. Effect of temperature on the population growth of Tirathaba rufivena (Lepidoptera: Pyralidae) on Areca catechu (Arecaceae). Florida Entomologist 100:578−82 doi: 10.1653/024.100.0314
CrossRef Google Scholar
|
[22]
|
Raghavan V, Baruah HK. 1958. Arecanut: India’s popular masticatory — history, chemistry and utilization. Economic Botany 12:315−45 doi: 10.1007/BF02860022
CrossRef Google Scholar
|
[23]
|
Rawther T. 1982. Yellow leaf disease of arecanut. Indian Cocoa Arecanut and Spices Journal 6:41−42
Google Scholar
|
[24]
|
Yu H, Feng S, Zheng J. 1986. Research report on "yellow leaf disease" of areca palm in Hainan Island. Chinese Journal of Tropical Agriculture 3:45−49
Google Scholar
|
[25]
|
Menon R. 1963. Transmission of Yellow Leaf Disease. Journal of Phytopathology 48:82−88 doi: 10.1111/j.1439-0434.1963.tb02106.x
CrossRef Google Scholar
|
[26]
|
Nayar R, Seliskar CE. 1978. Mycoplasma like organisms associated with yellow leaf disease of Areca catechu L. European Journal of Forest Pathology 8:125−28 doi: 10.1111/j.1439-0329.1978.tb00625.x
CrossRef Google Scholar
|
[27]
|
Ponnamma KN. 1993. Studies on proutista moesta westwood: population dynamics, control and role as a vector df yellow leaf disease of arecanut. Dissertation. University OF Kerala, India
|
[28]
|
Manimekalai R, Soumya VP, Sathish Kumar R, Selvarajan R, Reddy K, et al. 2010. Molecular detection of 16SrXI group phytoplasma associated with root (wilt) disease of coconut (Cocos nucifera) in India. Plant Disease 94:636−36 doi: 10.1094/PDIS-94-5-0636B
CrossRef Google Scholar
|
[29]
|
Xu G, Qiu F, Li X, Zheng FQ, Zheng L, et al. 2020. Diaporthe limonicola causing leaf spot disease on Areca catechu in China. Plant Disease 12:1869−69 doi: 10.1094/pdis-11-19-2324-pdn
CrossRef Google Scholar
|
[30]
|
Yang K, Ran M, Li Z, Hu M, Zheng L, et al. 2018. Analysis of the complete genomic sequence of a novel virus, areca palm necrotic spindle-spot virus, reveals the existence of a new genus in the family Potyviridae. Archives of Virology 163:3471−75 doi: 10.1007/s00705-018-3980-x
CrossRef Google Scholar
|
[31]
|
Jin KX, Sun FS, Chen MR, Luo DQ, Tsai JH. 1995. Yellows disease of betel nut palm in Hainan, China. Scientia Silvae Sinicae 6:556−58
Google Scholar
|
[32]
|
Doi Y, Teranaka M, Yora K, Asuyama H. 1967. Mycoplasma- or PLT group-like microorganisms found in the phloem elements of plants infected with mulberry dwarf, potato witches' broom, aster yellows, or paulownia witches' broom. Japanese Journal of Phytopathology 33:259−66 doi: 10.3186/jjphytopath.33.259
CrossRef Google Scholar
|
[33]
|
Hogenhout SA, Oshima K, Ammar ED, Kakizawa S, Kingdom HN, et al. 2008. Phytoplasmas: bacteria that manipulate plants and insects. Molecular Plant Pathology 9:403−23 doi: 10.1111/j.1364-3703.2008.00472.x
CrossRef Google Scholar
|
[34]
|
Nair S, Roshna OM, Soumya VP, Hegde V, Suresh Kumar M, et al. 2014. Real-time PCR technique for detection of arecanut yellow leaf disease phytoplasma. Australasian Plant Pathology 43:527−29 doi: 10.1007/s13313-014-0278-7
CrossRef Google Scholar
|
[35]
|
Ishiie T, Doi Y, Yora K, Asuyama H. 1967. Suppressive effects of antibiotics of tetracycline group on symptom developement of mulberry dwarf disease. Japanese Journal of Phytopathology 33:267−75 doi: 10.3186/jjphytopath.33.267
CrossRef Google Scholar
|
[36]
|
Rajeev G. 2003. Studies on the phytoplasmal etiology of yellow leaf disease of arecanut (Areca catechu L. ). University of Kerala, India. 160 pp.
|
[37]
|
Jiang YP, Chen TA. 1987. Purification of Mycoplasma-like organisms from lettuce with aster yellows disease. Phytopathology 77:949−53 doi: 10.1094/Phyto-77-949
CrossRef Google Scholar
|
[38]
|
Zhou Y, Gan B, Zhang Z, Sui C, Wei J, et al. 2010. Detection of the phytoplasmas associated with yellow leaf disease of Areca catechu L. Hainan province of China by nested PCR. Chinese Agricultural Science Bulletin 26:381−84
Google Scholar
|
[39]
|
Rajeev G, Prakash VR, Vaganan MM, Sasikala M, Solomon JJ, et al. 2011. Microscopic and polyclonal antibody-based detection of yellow leaf disease of arecanut (Areca catechu L.). Archives of Phytopathology and Plant Protection 44:1093−104 doi: 10.1080/03235408.2010.482402
CrossRef Google Scholar
|
[40]
|
Nair S, Manimekalai R, Ganga Raj P, Hegde V. 2016. Loop mediated isothermal amplification (LAMP) assay for detection of coconut root wilt disease and arecanut yellow leaf disease phytoplasma. Journal of Microbiology & Biotechnology 32:108 doi: 10.1007/s11274-016-2078-4
CrossRef Google Scholar
|
[41]
|
Bertaccini A, Duduk B, Paltrinieri S, Contaldo N. 2014. Phytoplasmas and Phytoplasma Diseases: A Severe Threat to Agriculture. American Journal of Plant Sciences 5:1763−88
Google Scholar
|
[42]
|
Contaldo N, Sciovolone A, Barbieri C, Quadri AD, Bertaccini A. 2021. Multilocus typing of aster yellows phytoplasmas infecting lettuce with yellowing in Calabria, Italy. Phytopathogenic Mollicutes 11:105−11 doi: 10.5958/2249-4677.2021.00017.7
CrossRef Google Scholar
|
[43]
|
Ćurčić Ž, Kosovac A, Stepanović J, Rekanović E, Kube M, et al. 2021. Multilocus Genotyping of 'Candidatus Phytoplasma solani' Associated with Rubbery Taproot Disease of Sugar Beet in the Pannonian Plain. Microorganisms 9:1950 doi: 10.3390/microorganisms9091950
CrossRef Google Scholar
|
[44]
|
Muddumadiah C, Madhupriya, Kumar S, Manimekalai R, Rao GP. 2014. Detection and characterization of 16SrI-B phytoplasmas associated with yellow leaf disease of arecanut palm in India. Phytopathogenic Mollicutes 4:77−82 doi: 10.5958/2249-4677.2014.00585.4
CrossRef Google Scholar
|
[45]
|
Che HY, Wu CT, Fu RY, Wen YS, Ye SB, Luo DQ. 2010. Molecular identification of pathogens from arecanut yellow leaf disease in Hainan. Chinese J Trop Crops 31:83−87
Google Scholar
|
[46]
|
Abeysinghe S, Abeysinghe PD, Kanatiwela-de Silva C, Udagama P, Warawichanee K, et al. 2016. Refinement of the taxonomic structure of 16SrXI and 16SrXIV phytoplasmas of gramineous plants using multilocus sequence typing. Plant Disease 100:2001−10 doi: 10.1094/PDIS-02-16-0244-RE
CrossRef Google Scholar
|
[47]
|
Bertaccini A, Arocha-Rosete Y, Contaldo N, Duduk B, Fiore N, et al. 2022. Revision of the 'Candidatus Phytoplasma' species description guidelines. International Journal of Systematic and Evolutionary Microbiology 72:e5353 doi: 10.1099/ijsem.0.005353
CrossRef Google Scholar
|
[48]
|
Wei W, Zhao Y. 2022. Phytoplasma Taxonomy: Nomenclature, Classification, and Identification. Biology 11:1119 doi: 10.3390/biology11081119
CrossRef Google Scholar
|
[49]
|
Wei W, Shao J, Bottner-Parker KD, Zhao Y. 2022. Draft genome sequence resource of CBPPT1, a 'Candidatus Phytoplasma trifolii'-related strain associated with potato purple top disease in the Columbia Basin, U.S.A. Plant Disease 107:922−25 doi: 10.1094/PDIS-08-22-1788-A
CrossRef Google Scholar
|
[50]
|
Wright AA, Harper SJ. 2022. Draft genome sequence of a Washington isolate of "Candidatus Phytoplasma pruni". Microbiology Resource Announcements 11:e0079022 doi: 10.1128/mra.00790-22
CrossRef Google Scholar
|
[51]
|
Nejat N, Sijam K, Abdullah SNA, Vadamalai G, Dickinson M. 2009. Phytoplasmas associated with disease of coconut in Malaysia: phylogenetic groups and host plant species. Plant Pathology 58:1152−60 doi: 10.1111/j.1365-3059.2009.02153.x
CrossRef Google Scholar
|
[52]
|
Perera L, Meegahakumbura M, Wijesekara H, Fernando W, Dickinson J. 2012. A phytoplasma is associated with the Waligama coconut leaf wilt disease in Sri Lanka. Journal of Plant Pathology 94:205−9
Google Scholar
|
[53]
|
Gottwald TR. 2010. Current epidemiological understanding of citrus Huanglongbing. Annual Review of Phytopathology 48:119−39 doi: 10.1146/annurev-phyto-073009-114418
CrossRef Google Scholar
|
[54]
|
Alquézar B, Carmona L, Bennici S, Miranda MP, Bassanezi RB, et al. 2022. Cultural Management of Huanglongbing: Current Status and Ongoing Research. Phytopathology 112:11−25 doi: 10.1094/PHYTO-08-21-0358-IA
CrossRef Google Scholar
|
[55]
|
Duan Y, Zhou L, Hall DG, Li W, Doddapaneni H, et al. 2009. Complete genome sequence of citrus huanglongbing bacterium, 'Candidatus Liberibacter asiaticus' obtained through metagenomics. Molecular Plant-Microbe Interactions 22:1011−20 doi: 10.1094/MPMI-22-8-1011
CrossRef Google Scholar
|
[56]
|
Wang N. 2021. A promising plant defense peptide against citrus Huanglongbing disease. PNAS 118:e2026483118 doi: 10.1073/pnas.2026483118
CrossRef Google Scholar
|
[57]
|
Ponnamma KN, Solomon JJ, Rajeev G, Govindankutty MP, Karnavar GK. 1997. Evidences for transmission of yellow leaf disease of areca palm, Areca catechu L. by Proutista moesta (Westwood) (Homoptera:Derbidae). Journal of Plantation Crops 25:197−200
Google Scholar
|
[58]
|
Purushothama CRA, Ramanayaka JG, Sano T, Casati P, Bianco PA. 2007. Are phytoplasmas the etiological agent of yellow leaf disease of Areca catechu in India? Bulletin of Insectology 60:413−14
Google Scholar
|
[59]
|
Karasev AV. 2000. Genetic diversity and evolution of closteroviruses. Annual Review of Phytopathology 38:293−324 doi: 10.1146/annurev.phyto.38.1.293
CrossRef Google Scholar
|
[60]
|
Jelkmann W, Mikona C, Turturo C, Navarro B, Rott ME, et al. 2012. Molecular characterization and taxonomy of grapevine leafroll-associated virus 7. Archives of Virology 157:359−62 doi: 10.1007/s00705-011-1176-8
CrossRef Google Scholar
|
[61]
|
Dolja VV, Kreuze JF, Valkonen JP. 2006. Comparative and functional genomics of closteroviruses. Virus Research 117:38−51 doi: 10.1016/j.virusres.2006.02.002
CrossRef Google Scholar
|
[62]
|
Rubio L, Guerri J, Moreno P. 2013. Genetic variability and evolutionary dynamics of viruses of the family Closteroviridae. Frontiers in Microbiology 4:151 doi: 10.3389/fmicb.2013.00151
CrossRef Google Scholar
|
[63]
|
Melzer MJ, Sether DM, Borth WB, Mersino EF, Hu JS. 2011. An assemblage of closteroviruses infects Hawaiian ti (Cordyline fruticosa L.). Virus Genes 42:254−60 doi: 10.1007/s11262-010-0537-9
CrossRef Google Scholar
|
[64]
|
Al Rwahnih M, Dolja VV, Daubert S, Koonin EV, Rowhani A. 2012. Genomic and biological analysis of Grapevine leafroll-associated virus 7 reveals a possible new genus within the family Closteroviridae. Virus Research 163:302−9 doi: 10.1016/j.virusres.2011.10.018
CrossRef Google Scholar
|
[65]
|
Lim S, Igori D, Yoo RH, Zhao F, Cho IS, et al. 2015. Genomic detection and characterization of a Korean isolate of Little cherry virus 1 sampled from a peach tree. Virus Genes 51:260−6 doi: 10.1007/s11262-015-1225-6
CrossRef Google Scholar
|
[66]
|
Ng JCK, Falk BW. 2006. Virus-vector interactions mediating nonpersistent and semipersistent transmission of plant viruses. Annu Rev Phytopathol 44:183−212 doi: 10.1146/annurev.phyto.44.070505.143325
CrossRef Google Scholar
|
[67]
|
Naidu RA, Maree HJ, Burger JT. 2015. Grapevine leafroll disease and associated viruses: a unique pathosystem. Annual Review of Phytopathology 53:613−34 doi: 10.1146/annurev-phyto-102313-045946
CrossRef Google Scholar
|
[68]
|
Brewer HC, Hird DL, Bailey AM, Seal SE, Foster GD. 2018. A guide to the contained use of plant virus infectious clones. Plant Biotechnology Journal 16:832−43 doi: 10.1111/pbi.12876
CrossRef Google Scholar
|
[69]
|
Pasin F, Menzel W, Daròs JA. 2019. Harnessed viruses in the age of metagenomics and synthetic biology: an update on infectious clone assembly and biotechnologies of plant viruses. Plant Biotechnology Journal 17:1010−26 doi: 10.1111/pbi.13084
CrossRef Google Scholar
|
[70]
|
Goszczynski DE, Kasdorf GGF, Pietersen G, van Tonder H. 1996. Grapevine leafroll-associated virus 2 (GLRaV-2)- mechanical transmission, purification, production and properties of antisera, detection by ELISA. South African Journal for Enology & Viticulture 17:15−26 doi: 10.21548/17-1-2253
CrossRef Google Scholar
|
[71]
|
Lindbo JA, Falk BW. 2017. The Impact of "Coat Protein-Mediated Virus Resistance" in Applied Plant Pathology and Basic Research. Phytopathology 107:624−34 doi: 10.1094/PHYTO-12-16-0442-RVW
CrossRef Google Scholar
|
[72]
|
Abel PP, Nelson RS, De B, Hoffmann N, Rogers SG, et al. 1986. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232:738−43 doi: 10.1126/science.3457472
CrossRef Google Scholar
|
[73]
|
Cuozzo M, O'Connell KM, Kaniewski W, Fang R, Chua NH, et al. 1988. Viral protection in transgenic tobacco plants expressing the cucumber mosaic virus coat protein or its antisense RNA. Bio/Technology 6:549−57 doi: 10.1038/nbt0588-549
CrossRef Google Scholar
|
[74]
|
Lawson C, Kaniewski W, Haley L, Rozman R, Newell C, et al. 1990. Engineering resistance to mixed virus infection in a commercial potato cultivar: resistance to potato virus X and potato virus Y in transgenic Russet Burbank. Bio/Technology 8:127−34 doi: 10.1038/nbt0290-127
CrossRef Google Scholar
|
[75]
|
Kawchuk LM, Martin RR, McPherson J. 1990. Resistance in transgenic potato expressing the potato leafroll virus coat protein gene. Molecular Plant-Microbe Interactions 3:301−7 doi: 10.1094/MPMI-3-301
CrossRef Google Scholar
|
[76]
|
Fuchs M, Gonsalves D. 2007. Safety of virus-resistant transgenic plants two decades after their introduction: lessons from realistic field risk assessment studies. Annual Review of Phytopathology 45:173−202 doi: 10.1146/annurev.phyto.45.062806.094434
CrossRef Google Scholar
|
[77]
|
Kaniewski WK, Thomas PE. 2004. The potato story. AgBioForum 7:41−46
Google Scholar
|
[78]
|
Fitch MMM. 2016. Update on gene transfer biotechnology of papaya. Acta Horticulturae 111:7−18 doi: 10.17660/actahortic.2016.1111.2
CrossRef Google Scholar
|
[79]
|
Scorza R, Callahan A, Dardick C, Ravelonandro M, Polak J, et al. 2013. Genetic engineering of Plum pox virus resistance: ‘HoneySweet’ plum from concept to product. Plant Cell, Tissue and Organ Culture 115:1−12 doi: 10.1007/s11240-013-0339-6
CrossRef Google Scholar
|
[80]
|
Carbonell A. 2019. Design and high-throughput generation of artificial small RNA constructs for plants. Plant microRNAs 1932:247−60 doi: 10.1007/978-1-4939-9042-9_19
CrossRef Google Scholar
|
[81]
|
Carbonell A, Daròs JA. 2017. Artificial microRNAs and synthetic trans-acting small interfering RNAs interfere with viroid infection. Molecular Plant Pathology 18:746−53 doi: 10.1111/mpp.12529
CrossRef Google Scholar
|
[82]
|
Carbonell A, Daros JA. 2019. Design, synthesis, and functional analysis of highly specific artificial small RNAs with antiviral activity in plants. In Antiviral Resistance in Plants. Methods in Molecular Biology, eds. Kobayashi K, Nishiguchi M. vol 2028. New York: Humana. pp. 231−46. https://doi.org/10.1007/978-1-4939-9635-3_13
|
[83]
|
Carbonell A, Fahlgren N, Mitchell S, Cox KL Jr, Reilly KC, et al. 2015. Highly specific gene silencing in a monocot species by artificial microRNAs derived from chimeric miRNA precursors. The Plant Journal 82:1061−75 doi: 10.1111/tpj.12835
CrossRef Google Scholar
|
[84]
|
Zhang Y, Malzahn AA, Sretenovic S, Qi Y. 2019. The emerging and uncultivated potential of CRISPR technology in plant science. Nature Plants 5:778−94 doi: 10.1038/s41477-019-0461-5
CrossRef Google Scholar
|
[85]
|
Zhang T, Zheng Q, Yi X, An H, Zhao Y, et al. 2018. Establishing RNA virus resistance in plants by harnessing CRISPR immune system. Plant Biotechnology Journal 16:1415−23 doi: 10.1111/pbi.12881
CrossRef Google Scholar
|
[86]
|
Zhang T, Zhao Y, Ye J, Cao X, Xu C, et al. 2019. Establishing CRISPR/Cas13a immune system conferring RNA virus resistance in both dicot and monocot plants. Plant Biotechnology Journal 17:1185−87 doi: 10.1111/pbi.13095
CrossRef Google Scholar
|
[87]
|
Taki A, Yamagishi N, Yoshikawa N. 2013. Development of apple latent spherical virus-based vaccines against three tospoviruses. Virus Research 176:251−58 doi: 10.1016/j.virusres.2013.06.015
CrossRef Google Scholar
|