[1]
|
Daryanto S, Wang L, Jacinthe PA. 2017. Global synthesis of drought effects on cereal, legume, tuber and root crops production: A review. Agricultural Water Management 179:18−33 doi: 10.1016/j.agwat.2016.04.022
CrossRef Google Scholar
|
[2]
|
Leng G, Hall J. 2019. Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future. Science of the Total Environment 654:811−21 doi: 10.1016/j.scitotenv.2018.10.434
CrossRef Google Scholar
|
[3]
|
Martignago D, Rico-Medina A, Blasco-Escámez D, Fontanet-Manzaneque JB, Caño-Delgado AI. 2020. Drought Resistance by Engineering Plant Tissue-Specific Responses. Frontiers in Plant Science 10:1676 doi: 10.3389/fpls.2019.01676
CrossRef Google Scholar
|
[4]
|
Orek C, Gruissem W, Ferguson M, Vanderschuren H. 2020. Morpho-physiological and molecular evaluation of drought tolerance in cassava (Manihot esculenta Crantz). Field Crops Research 255:107861 doi: 10.1016/j.fcr.2020.107861
CrossRef Google Scholar
|
[5]
|
Olsen KM, Schaal BA. 2001. Microsatellite variation in cassava (Manihot esculenta, Euphorbiaceae) and its wild relatives: further evidence for a southern Amazonian origin of domestication. American Journal Botany 88:131−42 doi: 10.2307/2657133
CrossRef Google Scholar
|
[6]
|
Zhu Y, Luo X, Nawaz G, Yin J, Yang J. 2020. Physiological and Biochemical Responses of four cassava cultivars to drought stress. Scientific Reports 10:6968 doi: 10.1038/s41598-020-63809-8
CrossRef Google Scholar
|
[7]
|
Burns A, Gleadow R, Cliff J, Zacarias A, Cavagnaro T. 2010. Cassava: The drought, war and famine crop in a changing world. Sustainability 2:3572−607 doi: 10.3390/su2113572
CrossRef Google Scholar
|
[8]
|
Sreelakshmi K, Menon MV. 2019. Effect of moisture stress on leaf and root production in cassava (Manihot esculenta Crantz). Journal of Tropical Agriculture 57(1):40−45
Google Scholar
|
[9]
|
Tize I, Fotso AK, Nukenine EN, Masso C, Ngome FA, et al. 2021. New cassava germplasm for food and nutritional security in Central Africa. Scientific Reports 11:7394 doi: 10.1038/s41598-021-86958-w
CrossRef Google Scholar
|
[10]
|
Reincke K, Vilvert E, Fasse A, Graef F, Sieber S, Lana MA. 2018. Key factors influencing food security of smallholder farmers in Tanzania and the role of cassava as a strategic crop. Food Security 10:911−24 doi: 10.1007/s12571-018-0814-3
CrossRef Google Scholar
|
[11]
|
Basu S, Ramegowda V, Kumar A, Pereira A. 2016. Plant adaptation to drought stress. F1000Research 5:1554 doi: 10.12688/f1000research.7678.1
CrossRef Google Scholar
|
[12]
|
El-Sharkawy MA. 2004. Cassava biology and physiology. Plant Molecular Biology 56:481−501 doi: 10.1007/s11103-005-2270-7
CrossRef Google Scholar
|
[13]
|
Alves AAC, Setter TL. 2000. Response of cassava to water deficit: Leaf area growth and abscisic acid. Crop Science 40:131−37 doi: 10.2135/cropsci2000.401131x
CrossRef Google Scholar
|
[14]
|
Alves AAC, Setter TL. 2004. Abscisic acid accumulation and osmotic adjustment in cassava under water deficit. Environmental and Experimental Botany 51:259−271 doi: 10.1016/j.envexpbot.2003.11.005
CrossRef Google Scholar
|
[15]
|
Setter TL, Fregene MA. 2007. Recent advances in molecular breeding of cassava for improved drought stress tolerance. In Advances in molecular breeding toward drought and salt tolerant crops, eds. Jenks MA, Hasegawa PM, Jain SM. Dordrecht, The Netherlands: Springer. pp. 701−11. https://doi.org/10.1007/978-1-4020-5578-2_28
|
[16]
|
Okogbenin E, Setter TL, Ferguson M, Mutegi R, Ceballos H, et al. 2013. Phenotypic approaches to drought in cassava: review. Frontiers in Physiology 4:00093 doi: 10.3389/fphys.2013.00093
CrossRef Google Scholar
|
[17]
|
Li S, Yu X, Cheng Z, Yu X, Ruan M, et al. 2017. Global gene expression analysis reveals crosstalk between response mechanisms to cold and drought stresses in cassava seedlings. Frontiers in Plant Science 8:1259 doi: 10.3389/fpls.2017.01259
CrossRef Google Scholar
|
[18]
|
Joshi R, Wani SH, Singh B, Bohra A, Dar ZA et al. 2016. Transcription factors and plants response to drought stress: Current understanding and future directions. Frontiers in Plant Science 7:1029 doi: 10.3389/fpls.2016.01029
CrossRef Google Scholar
|
[19]
|
Fu L, Ding Z, Han B, Hu W, Li Y, et al. 2016. Physiological investigation and transcriptome analysis of polyethylene glycol (PEG)-induced dehydration stress in cassava. International Journal of Molecular Science 17:283 doi: 10.3390/ijms17030283
CrossRef Google Scholar
|
[20]
|
Feng RJ, Ren MY, Lu LF, Peng M, Guan X, et al. 2019. Involvement of abscisic acid-responsive element-binding factors in cassava (Manihot esculenta) dehydration stress response. Scientific Reports 9:12661 doi: 10.1038/s41598-019-49083-3
CrossRef Google Scholar
|
[21]
|
Turyagyenda LF, Kizito EB, Ferguson M, Baguma Y, Agaba M, et al. 2013. Physiological and molecular characterization of drought responses and identification of candidate tolerance genes in cassava. AoB Plants 5:plt007 doi: 10.1093/aobpla/plt007
CrossRef Google Scholar
|
[22]
|
Gai WX, Ma X, Qiao YM, Shi BH, Haq SU, et al. 2020. Characterization of the bZIP Transcription Factor Family in Pepper (Capsicum annuum L.): CabZIP25 Positively Modulates the Salt Tolerance. Frontiers in Plant Science 11(139):00139 doi: 10.3389/fpls.2020.00139
CrossRef Google Scholar
|
[23]
|
Fujita Y, Yoshida T, Yamaguchi-Shinozaki K. 2013. Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiologia Plantarum 147:15−27 doi: 10.1111/j.1399-3054.2012.01635.x
CrossRef Google Scholar
|
[24]
|
Collin A, Daszkowska-Golec A, Szarejko I. 2021. Updates on the role of abscisic acid insensitive 5 (ABI5) and abscisic acid-responsive element binding factors (ABFs) in ABA signaling in different developmental stages in plants. Cells 10(8):1996 doi: 10.3390/cells10081996
CrossRef Google Scholar
|
[25]
|
Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, et al. 2010. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. The Plant Journal 61(4):672−685 doi: 10.1111/j.1365-313X.2009.04092.x
CrossRef Google Scholar
|
[26]
|
Li F, Mei F, Zhang Y, Li S, Kang Z, et al. 2020. Genome-wide analysis of the AREB/ABF gene lineage in land plants and functional analysis of TaABF3 in Arabidopsis. BMC Plant Biology 20:558 doi: 10.1186/s12870-020-02783-9
CrossRef Google Scholar
|
[27]
|
Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, et al. 2005. Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiology 138:341−51 doi: 10.1104/pp.104.059147
CrossRef Google Scholar
|
[28]
|
Hu W, Yang H, Yan Y, Wei Y, Tie W, et al. 2016. Genome-wide characterization and analysis of bZIP transcription factor gene family related to abiotic stress in cassava. Scientific Reports 6:22783 doi: 10.1038/srep22783
CrossRef Google Scholar
|
[29]
|
Fan W, Zhang M, Zhang H, Zhang P. 2012. Improved tolerance to various abiotic stresses in transgenic sweet potato (Ipomoea batatas) expressing spinach betaine aldehyde dehydrogenase. PLoS One 7:e37344 doi: 10.1371/journal.pone.0037344
CrossRef Google Scholar
|
[30]
|
Orek CO. 2014. Morphological, physiological and molecular characterization of drought tolerance in cassava (Manihot esculenta Crantz). PhD thesis. ETH Zürich, Switzerland. www.secheresse.info/spip.php?article28679
|
[31]
|
Hu W, Wei Y, Xia Z, Yan Y, Hou X, et al. 2015. Genome-Wide Identification and Expression Analysis of the NAC Transcription Factor Family in Cassava. PLoS One 10(8):0136993 doi: 10.1371/journal.pone.0136993
CrossRef Google Scholar
|
[32]
|
Li S, Zhao P, Yu X, Liao W, Peng M, et al. 2022. Cell signaling during drought and/or cold stress in cassava. Tropical Plants 1:6 doi: 10.48130/TP-2022-0006
CrossRef Google Scholar
|
[33]
|
Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, et al. 2004. A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. The Plant Journal 39:863−76 doi: 10.1111/j.1365-313X.2004.02171.x
CrossRef Google Scholar
|
[34]
|
Li X, Chang Y, Ma S, Shen J, Hu H, et al. 2019. Genome-Wide Identification of SNAC1-Targeted Genes Involved in Drought Response in Rice. Frontiers in Plant Science 10:982 doi: 10.3389/fpls.2019.00982
CrossRef Google Scholar
|
[35]
|
Saad AS, Li X, Li HP, Huang T, Gao CS, et al. 2013. A rice stress-responsive NAC gene enhances tolerance of transgenic wheat to drought and salt stresses. Plant Science 204:33−40 doi: 10.1016/j.plantsci.2012.12.016
CrossRef Google Scholar
|
[36]
|
Nuruzzaman M, Manimekalai R, Sharoni AM, Satoh K, Kondoh H, et al. 2010. Genome-wide analysis of NAC transcription factor family in rice. Gene 465:30−44 doi: 10.1016/j.gene.2010.06.008
CrossRef Google Scholar
|
[37]
|
Shinozaki K, Yamaguchi-Shinozaki K. 2007. Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany 58(2):221−27 doi: 10.1093/jxb/erl164
CrossRef Google Scholar
|
[38]
|
Phillips K, Ludidi N. 2017. Drought and exogenous abscisic acid alter hydrogen peroxide accumulation and differentially regulate the expression of two maize RD22-like genes. Scientific Reports 7:8821 doi: 10.1038/s41598-017-08976-x
CrossRef Google Scholar
|
[39]
|
Matus JT, Aquea F, Espinoza C, Vega A, Cavallini E, et al. 2014. Inspection of the grapevine BURP superfamily highlights an expansion of RD22 genes with distinctive expression features in berry development and ABA-mediated stress responses. PLoS One 9(10):e110372 doi: 10.1371/journal.pone.0110372
CrossRef Google Scholar
|
[40]
|
Chen T, Li W, Hu X, Guo J, Liu A, et al. 2015. A cotton MYB transcription factor, GbMYB5, is positively involved in plant adaptive response to drought stress. Plant and Cell Physiology 56(5):917−29 doi: 10.1093/pcp/pcv019
CrossRef Google Scholar
|
[41]
|
Ye H, Liu S, Tang B, Chen J, Xie Z, Nolan TM, et al. 2017. RD26 mediates crosstalk between drought and brassinosteroid signaling pathways. Nature Communication 8:14573 doi: 10.1038/ncomms14573
CrossRef Google Scholar
|
[42]
|
Wang J, Zhang L, Cao Y, Qi C, Li S, et al. 2018. CsATAF1 Positively Regulates Drought Stress Tolerance by an ABA-Dependent Pathway and by Promoting ROS Scavenging in Cucumber. Plant Cell Physiology 59(5):930−45 doi: 10.1093/pcp/pcy030
CrossRef Google Scholar
|
[43]
|
Lokko Y, Anderson JV, Rudd S, Raji A, Horvath D, et al. 2007. Characterization of an 18, 166 EST dataset for cassava (Manihot esculenta Crantz) enriched for drought-responsive genes. Plant Cell Reports 26:1605−18 doi: 10.1007/s00299-007-0378-8
CrossRef Google Scholar
|
[44]
|
Utsumi Y, Tanaka M, Morosawa T, Kurotani A, Yoshida T, et al. 2012. Transcriptome analysis using a high-density oligomicroarray under drought stress in various genotypes of cassava: An important tropical crop. DNA Research 19(4):335−45 doi: 10.1093/dnares/dss016
CrossRef Google Scholar
|
[45]
|
Arango J, Wüst F, Beyer P, Welsch R. 2010. Characterization of phytoene synthases from cassava and their involvement in abiotic stress-mediated responses. Planta 232:1251−62 doi: 10.1007/s00425-010-1250-6
CrossRef Google Scholar
|
[46]
|
Ding Z, Yan Y, Fu L, Meng H, Weiwei T, Wei H. 2016. Clone and expression of NAC transcription factor RD26 gene from Manihot esculenta Crantz. Journal of Southern Agriculture 47(11):1822−26 doi: 10.3969/jissn.2095-1191.2016.11.1822
CrossRef Google Scholar
|
[47]
|
Guo J, Sun B, He H, Zhang Y, Tian H, et al. 2021. Current understanding of bHLH transcription factors in plant abiotic stress tolerance. International Journal of Molecular Science 22(9):4921 doi: 10.3390/ijms22094921
CrossRef Google Scholar
|
[48]
|
Wang P, Wang H, Wang Y, Ren F, Liu W. 2018. Analysis of bHLH genes from foxtail millet (Setaria italica) and their potential relevance to drought stress. PLoS One 13:e0207344 doi: 10.1371/journal.pone.0207344
CrossRef Google Scholar
|
[49]
|
Seo JS, Joo J, Kim MJ, Kim YK, Nahm BH et al. 2011. OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. The Plant Journal 65:907−21 doi: 10.1111/j.1365-313X.2010.04477.x
CrossRef Google Scholar
|
[50]
|
Castilhos G, Lazzarotto F, Spagnolo-Fonini L, Bodanese-Zanettini MH, Margis-Pinheiro M. 2014. Possible roles of basic helix-loop-helix transcription factors in adaptation to drought. Plant Science 223:1−7 doi: 10.1016/j.plantsci.2014.02.010
CrossRef Google Scholar
|
[51]
|
Sun X, Shantharaj D, Kang X, Ni M. 2010. Transcriptional and hormonal signaling control of Arabidopsis seed development. Current Opinion in Plant Biology 13:611−20 doi: 10.1016/j.pbi.2010.08.009
CrossRef Google Scholar
|
[52]
|
Ling J, Jiang W, Zhang Y, Yu H, Mao Z, et al. 2011. Genome-wide analysis of WRKY gene family in Cucumis sativus. BMC Genomics 12:471 doi: 10.1186/1471-2164-12-471
CrossRef Google Scholar
|
[53]
|
Han M, Kim CY, Lee J, Lee SK, Jeon JS. 2014. OsWRKY42 represses OsMT1d and induces reactive oxygen species and leaf senescence in rice. Molecular Cells 37:532−39 doi: 10.14348/molcells.2014.0128
CrossRef Google Scholar
|
[54]
|
Rushton DL, Tripathi P, Rabara RC, Lin J, Ringler P, et al. 2012. WRKY transcription factors: key components in abscisic acid signalling. Plant Biotechnology Journal 10:2−11 doi: 10.1111/j.1467-7652.2011.00634.x
CrossRef Google Scholar
|
[55]
|
Raineri J, Wang S, Peleg Z, Blumwald E, Chan RL. 2015. The rice transcription factor OsWRKY47 is a positive regulator of the response to water deficit stress. Plant Molecular Biology 88:401−13 doi: 10.1007/s11103-015-0329-7
CrossRef Google Scholar
|
[56]
|
EI-Esawi MA, Al-Ghamdi AA, Ali HM, Ahmad M. 2019. Overexpression of AtWRKY30 transcription factor enhances heat and drought stress tolerance in wheat (Triticum aestivum L.). Genes 10:163−76 doi: 10.3390/genes10020163
CrossRef Google Scholar
|
[57]
|
Wei Y, Liu W, Hu W, Yan Y, Shi H. 2020. The chaperone MeHSP90 recruits MeWRKY20 and MeCatalase1 to regulate drought stress resistance in cassava. New Phytologist 226:476−91 doi: 10.1111/nph.16346
CrossRef Google Scholar
|
[58]
|
Wei Y, Shi H, Xia Z, Tie W, Ding Z, et al. 2016. Genome-wide identification and expression analysis of the WRKY gene family in cassava. Frontiers in Plant Science 7:25 doi: 10.3389/fpls.2016.00025
CrossRef Google Scholar
|
[59]
|
Ding Z, Tie W, Fu L, Yan Y, Liu G, et al. 2019. Strand-specific RNA-seq. based identification and functional prediction of drought-responsive lncRNAs in cassava. BMC Genomics 20:214 doi: 10.1186/s12864-019-5585-5
CrossRef Google Scholar
|
[60]
|
Yan Y, Wang P, Lu Y, Bai Y, Wei Y, et al. 2021. MeRAV5 promotes drought stress resistance in cassava by modulating hydrogen peroxide and lignin accumulation. The Plant Journal 107:847−60 doi: 10.1111/tpj.15350
CrossRef Google Scholar
|
[61]
|
Wang X, Niu Y, Zheng Y. 2021. Multiple functions of MYB transcription factors in abiotic stress responses. International Journal of Molecular Sciences 22(11):6125 doi: 10.3390/ijms22116125
CrossRef Google Scholar
|
[62]
|
Ruan MB, Guo X, Wang B, Yang YL, Li WQ, et al. 2017. Genome-wide characterization and expression analysis enables identification of abiotic stress-responsive MYB transcription factors in cassava (Manihot esculenta Crantz). Journal of Experimental Botany 68:3657−72 doi: 10.1093/jxb/erx202
CrossRef Google Scholar
|
[63]
|
Baldoni E, Genga A, Cominelli E. 2015. Plant MYB Transcription Factors: Their Role in Drought Response Mechanisms. International Journal of Molecular Sciences 16(7):15811−51 doi: 10.3390/ijms160715811
CrossRef Google Scholar
|
[64]
|
Shin D, Moon SJ, Han S, Kim BG, Park SR, et al. 2011. Expression of StMYB1R-1, a novel potato single MYB-like domain transcription factor, increases drought tolerance. Plant Physiology 155:421−32 doi: 10.1104/pp.110.163634
CrossRef Google Scholar
|
[65]
|
Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, et al. 1997. Role of arabidopsis MYC and MYB homologs in drought and abscisic acid-regulated gene expression. The Plant Cell 9:1859−68 doi: 10.1105/tpc.9.10.1859
CrossRef Google Scholar
|
[66]
|
Seo PJ, Park CM. 2011. Cuticular wax biosynthesis as a way of inducing drought resistance. Plant Signaling & Behavior 6(7):1043−45 doi: 10.4161/psb.6.7.15606
CrossRef Google Scholar
|
[67]
|
Liao W, Yang Y, Li Y, Wang G, Peng M. 2016. Genome-wide identification of cassava R2R3 MYB family genes related to abscission zone separation after environmental-stress-induced abscission. Scientific Reports 6:32006 doi: 10.1038/srep32006
CrossRef Google Scholar
|
[68]
|
Wang B, Guo X, Zhao P, Liao W, Zeng C, et al. 2021. MeMYB26, a drought-responsive transcription factor in cassava (Manihot esculenta Crantz). Crop Breeding and Applied Biotechnology 21(1):e34432114 doi: 10.1590/1984-70332021v21n1a4
CrossRef Google Scholar
|
[69]
|
Yang J, Ruan M, Guo X, Peng M. 2021. Characterization and functional analysis of cassava MYB transcription factor MeMYB2. Chinese Journal of Tropical Crops 42(4):936−44 doi: 10.3969/j.issn.1000-2561.2021.04.004
CrossRef Google Scholar
|
[70]
|
Wang B, Li S, Zou L, Guo X, Liang J, et al. 2022. Natural variation MeMYB108 associated with tolerance to stress-induced leaf abscission linked to enhanced protection against reactive oxygen species in cassava. Plant Cell Reports 41:1573−1587 doi: 10.1007/s00299-022-02879-6
CrossRef Google Scholar
|
[71]
|
Ding Z, Fu L, Yan Y, Tie W, Xia Z, Wang W, et al. 2017. Genome-wide characterization and expression profiling of HD-Zip gene family related to abiotic stress in cassava. PLoS One 12:e0173043 doi: 10.1371/journal.pone.0173043
CrossRef Google Scholar
|
[72]
|
Söderman E, Hjellström M, Fahleson J, Engström P. 1999. The HD-Zip gene ATHB6 in Arabidopsis is expressed in developing leaves, roots and carpels and up-regulated by water deficit conditions. Plant Molecular Biology 40:1073−83 doi: 10.1023/A:1006267013170
CrossRef Google Scholar
|
[73]
|
Johannesson H, Wang Y, Hanson J, Engström P. 2003. The Arabidopsis thaliana homeobox gene ATHB5 is a potential regulator of abscisic acid responsiveness in developing seedlings. Plant Molecular Biology 51:719−29 doi: 10.1023/A:1022567625228
CrossRef Google Scholar
|
[74]
|
Yu X, Ruan M, Wang S, Peng M. 2014. Cloning and functional analysis of MeHDS1 from cassava in response to drought. Biotechnology Bulletin 10:76−81
Google Scholar
|
[75]
|
Yu X, Guo X, Zhao P, Li S, Zou L, et al. 2023. A Homeodomain-leucine zipper I transcription factor, MeHDZ14, regulates internode elongation and leaf rolling in cassava (Manihot esculenta Crantz). The Crop Journal In press doi: 10.1016/j.cj.2023.03.001
CrossRef Google Scholar
|
[76]
|
Li S. 2015. The Arabidopsis thaliana TCP transcription factors: A broadening horizon beyond development. Plant Signaling & Behavior 10(7):e1044192 doi: 10.1080/15592324.2015.1044192
CrossRef Google Scholar
|
[77]
|
Danisman S. 2016. TCP transcription factors at the interface between environmental challenges and the plant's growth responses. Frontiers in Plant Science 7:1930 doi: 10.3389/fpls.2016.01930
CrossRef Google Scholar
|
[78]
|
Liu H, Gao Y, Wu M, Shi Y, Wang H, et al. 2020. TCP10, a TCP transcription factor in moso bamboo (Phyllostachys edulis), confers drought tolerance to transgenic plants. Environmental & Experimental Botany 172:104002 doi: 10.1016/j.envexpbot.2020.104002
CrossRef Google Scholar
|
[79]
|
Mukhopadhyay P, Tyagi AK. 2015. OsTCP19 influences developmental and abiotic stress signaling by modulating ABI4-mediated pathways. Scientific Reports 5:9998 doi: 10.1038/srep09998
CrossRef Google Scholar
|
[80]
|
Ding S, Cai Z, Du H, Wang H. 2019. Genome-wide analysis of TCP family genes in Zea mays L. identified a role for ZmTCP42 in drought tolerance. International Journal of Molecular Sciences 20(11):2761 doi: 10.3390/ijms20112762
CrossRef Google Scholar
|
[81]
|
Lei N, Yu X, Li S, Zeng C, Zou L, et al. 2017. Phylogeny and expression pattern analysis of TCP transcription factors in cassava seedlings exposed to cold and/or drought stress. Scientific reports 7:10016 doi: 10.1038/s41598-017-09398-5
CrossRef Google Scholar
|
[82]
|
Guo M, Liu JH, Ma X, Luo DX, Gong ZH, et al. 2016. The plant heat stress transcription factors (HSFs): Structure, regulation, and function in response to abiotic stresses. Frontiers in Plant Science 7:114 doi: 10.3389/fpls.2016.00114
CrossRef Google Scholar
|
[83]
|
Ma H, Wang C, Yang B, Cheng H, Wang Z, et al. 2016. CarHSFB2, a class B heat shock transcription factor, is involved in different developmental processes and various stress responses in chickpea (Cicer arietinum L.). lant Molecular Biology Reporter 34:1−14 doi: 10.1007/s11105-015-0892-8
CrossRef Google Scholar
|
[84]
|
Yu XY, Yao Y, Hong YH, Hou PY, Li CX, et al. 2019. Differential expression of the HSF family in cassava under biotic and abiotic stresses. Genome 62(8):563−69 doi: 10.1139/gen-2018-0163
CrossRef Google Scholar
|
[85]
|
Zeng J, Wu C, Wang C, Liao F, Mo J, et al. 2020. Genomic analyses of heat stress transcription factors (HSFs) in simulated drought stress response and storage root deterioration after harvest in cassava. Molecular Biology Reports 47(8):5997−6007 doi: 10.1007/s11033-020-05673-3
CrossRef Google Scholar
|
[86]
|
Li WX, Oono Y, Zhu J, He XJ, Wu JM, et al. 2008. The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and post-transcriptionally to promote drought resistance. The Plant Cell 20(8):2238−51 doi: 10.1105/tpc.108.059444
CrossRef Google Scholar
|
[87]
|
Geiger D, Scherzer S, Mumm P, Stange A, Marten I, et al. 2009. Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. PNAS 106(50):21425−30 doi: 10.1073/pnas.0912021106
CrossRef Google Scholar
|
[88]
|
Merlot S, Gosti F, Guerrier D, Vavasseur A, Giraudat J. 2001. The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. The Plant Journal 25(3):295−303 doi: 10.1046/j.1365-313x.2001.00965.x
CrossRef Google Scholar
|
[89]
|
Lind C, Dreyer I, López-Sanjurjo EJ, von Meyer K, Ishizaki K, et al. 2015. Stomatal guard cells co-opted an ancient ABA-dependent desiccation survival system to regulate stomatal closure. Current Biology 25:928−35 doi: 10.1016/j.cub.2015.01.067
CrossRef Google Scholar
|
[90]
|
Utsumi Y, Utsumi C, Tanaka M, Ha CV, Takahashi S, et al. 2019. Acetic Acid Treatment Enhances Drought Avoidance in Cassava (Manihot esculenta Crantz). Frontiers in Plant Science 10:521 doi: 10.3389/fpls.2019.00521
CrossRef Google Scholar
|
[91]
|
Li X, Gao Y, Wu W, Chen L, Wang Y. 2021. Two calcium-dependent protein kinases enhance maize drought tolerance by activating anion channel ZmSLAC1 in guard cells. Plant Biotechnology Journal 20(1):143−57 doi: 10.1111/pbi.13701
CrossRef Google Scholar
|
[92]
|
Suksamran R, Saithong T, Thammarongtham C, Kalapanulak S. 2020. Genomic and Transcriptomic Analysis Identified Novel Putative Cassava lncRNAs Involved in Cold and Drought Stress. Genes 11:366 doi: 10.3390/genes11040366
CrossRef Google Scholar
|
[93]
|
Ruan MB, Yang YL, Li KM, Guo X, Wang B, et al. 2018. Identification and characterization of drought-responsive CC-type glutaredoxins from cassava cultivars reveals their involvement in ABA signalling. BMC Plant Biology 18:329 doi: 10.1186/s12870-018-1528-6
CrossRef Google Scholar
|
[94]
|
Guo Y, Xiong L, Song CP, Gong D, Halfter U, et al. 2002. A Calcium Sensor and Its Interacting Protein Kinase Are Global Regulators of Abscisic Acid Signaling in Arabidopsis. Developmental Cell 3:233−44 doi: 10.1016/S1534-5807(02)00229-0
CrossRef Google Scholar
|
[95]
|
Uraji M, Katagiri T, Okuma E, Ye W, Hossain MA, et al. 2012. Cooperative function of PLDδ and PLDα1 in abscisic acid-induced stomatal closure in Arabidopsis. Plant Physiology 159(1):450−60 doi: 10.1104/pp.112.195578
CrossRef Google Scholar
|
[96]
|
Peng Y, Zhang J, Cao G, Xie Y, Liu X, et al. 2010. Overexpression of a PLDα1 gene from Setaria italica enhances the sensitivity of Arabidopsis to abscisic acid and improves its drought tolerance. Plant Cell Reports 29:793−802 doi: 10.1007/s00299-010-0865-1
CrossRef Google Scholar
|
[97]
|
Abreu FRM, Dedicova B, Vianello RP, Lanna AC, de Oliveira JAV, et al. 2018. Overexpression of a phospholipase (OsPLDα1) for drought tolerance in upland rice (Oryza sativa L.). Protoplasma 255:1751−1761 doi: 10.1007/s00709-018-1265-6
CrossRef Google Scholar
|
[98]
|
Wang W, Feng B, Xiao J, Xia Z, Zhou X, et al. 2014. Cassava genome from a wild ancestor to cultivated varieties. Nature Communications 5:5110 doi: 10.1038/ncomms6110
CrossRef Google Scholar
|
[99]
|
Fuchs S, Tischer SV, Wunschel C, Christmann A, Grill E. 2014. Abscisic acid sensor RCAR7/PYL13, specific regulator of protein phosphatase coreceptors. PNAS 111(15):5741−46 doi: 10.1073/pnas.1322085111
CrossRef Google Scholar
|
[100]
|
Okamoto M, Peterson FC, Defries A, Park SY, Endo A, et al. 2013. Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance. PNAS 110(29):12132−37 doi: 10.1073/pnas.1305919110
CrossRef Google Scholar
|
[101]
|
Tian X, Wang Z, Li X, Lv T, Liu H, et al. 2015. Characterization and functional analysis of pyrabactin resistance-like abscisic acid receptor family in rice. Rice 8:28 doi: 10.1186/s12284-015-0061-6
CrossRef Google Scholar
|
[102]
|
Mega R, Abe F, Kim JS, Tsuboi Y, Tanaka K, et al. 2019. Tuning water-use efficiency and drought tolerance in wheat using abscisic acid receptors. Nature Plants 5:153−59 doi: 10.1038/s41477-019-0361-8
CrossRef Google Scholar
|
[103]
|
Zhao H, Wu C, Yan Y, Tie W, Ding Z, et al. 2019. Genomic analysis of the core components of ABA signaling reveals their possible role in abiotic stress response in cassava. Environmental and Experimental Botany 167:103855 doi: 10.1016/j.envexpbot.2019.103855
CrossRef Google Scholar
|
[104]
|
Oluwasanya DN, Gisel A, Stavolone L, Setter TL. 2021. Environmental responsiveness of flowering time in cassava genotypes and associated transcriptome changes. PLoS One 16(7):e0253555 doi: 10.1371/journal.pone.0253555
CrossRef Google Scholar
|
[105]
|
Zeng C, Ding Z, Zhou F, Zhou Y, Yang R, et al. 2017. The discrepant and similar responses of genome-wide transcriptional profiles between drought and cold stresses in cassava. International Journal of Molecular Sciences 18:2668 doi: 10.3390/ijms18122668
CrossRef Google Scholar
|
[106]
|
Yamada Y, Sato F. 2013. Transcription factors in Alkaloid biosynthesis. International Review of Cell and Molecular Biology 305:339−82 doi: 10.1016/B978-0-12-407695-2.00008-1
CrossRef Google Scholar
|
[107]
|
Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. 2012. AP2/ERF family transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1819:86−96 doi: 10.1016/j.bbagrm.2011.08.004
CrossRef Google Scholar
|
[108]
|
Xu ZS, Chen M, Li LC, Ma YZ. 2011. Functions and application of the AP2/ERF transcription factor family in crop improvement. Journal of Integrative Plant Biology 53(7):570−85 doi: 10.1111/j.1744-7909.2011.01062.x
CrossRef Google Scholar
|
[109]
|
Wang X, Han H, Yan J, Chen F, Wei W. 2015. A New AP2/ERF transcription factor from the oil plant Jatropha curcas confers salt and drought tolerance to transgenic tobacco. Applied Biochemistry Biotechnology 176:582−97 doi: 10.1007/s12010-015-1597-z
CrossRef Google Scholar
|
[110]
|
Li Y, Zhang H, Zhang Q, Liu Q, Zhai H et al. 2019. An AP2/ERF gene, IbRAP2-12, from sweetpotato is involved in salt and drought tolerance in transgenic Arabidopsis. Plant Science 281:19−30 doi: 10.1016/j.plantsci.2019.01.009
CrossRef Google Scholar
|
[111]
|
Gahlaut V, Jaiswal V, Kumar A, Gupta PK. 2016. Transcription factors involved in drought tolerance and their possible role in developing drought tolerant cultivars with emphasis on wheat (Triticum aestivum L). Theoretical Applied Genetics 129:2019−42 doi: 10.1007/s00122-016-2794-z
CrossRef Google Scholar
|
[112]
|
Zhao SP, Xu ZS, Zheng WJ, Zhao W, Wang YX et al. 2017. Genome-wide analysis of the RAV family in Soybean and functional identification of GmRA-03 involvement in salt and drought stresses and exogenous ABA treatment. Frontiers in Plant Science 8:905 doi: 10.3389/fpls.2017.00905
CrossRef Google Scholar
|
[113]
|
Zhao L, Hu Y, Chong K, Wang T. 2010. ARAG1, an ABA-responsive DREB gene, plays a role in seed germination and drought tolerance of rice. Annals of Botany 105(3):401−9 doi: 10.1093/aob/mcp303
CrossRef Google Scholar
|
[114]
|
Shavrukov Y, Baho M, Lopato S, Langridge P. 2016. The TaDREB3 transgene transferred by conventional crossings to different genetic backgrounds of bread wheat improves drought tolerance. Plant Biotechnology Journal 14:313−22 doi: 10.1111/pbi.12385
CrossRef Google Scholar
|
[115]
|
Todaka D, Shinozaki K, Yamaguchi-Shinozaki K. 2015. Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Frontiers in Plant Science 6:84 doi: 10.3389/fpls.2015.00084
CrossRef Google Scholar
|
[116]
|
Liao W, Li Y, Yang Y, Wang G, Peng M. 2016. Exposure to various abscission-promoting treatments suggests substantial ERF subfamily transcription factors involvement in the regulation of cassava leaf abscission. BMC Genomics 17:538 doi: 10.1186/s12864-016-2845-5
CrossRef Google Scholar
|
[117]
|
Fan W, Hai M, Guo Y, Ding Z, Tie W, et al. 2016. The ERF transcription factor family in cassava: genome-wide characterization and expression analyses against drought stress. Scientific Reports 6:37379 doi: 10.1038/srep37379
CrossRef Google Scholar
|
[118]
|
Ren MY, Feng RJ, Shi HR, Lu LF, Yun TY, et al. 2017. Expression patterns of members of the ethylene signaling–related gene families in response to dehydration stresses in cassava. PLoS One 12(5):e0177621 doi: 10.1371/journal.pone.0177621
CrossRef Google Scholar
|
[119]
|
Kahraman M, Sevim G, Bor M. 2019. The Role of Proline, Glycinebetaine, and Trehalose in Stress-Responsive Gene Expression. In Osmoprotectant-Mediated Abiotic Stress Tolerance in Plants, eds. : Hossain M, Kumar V, Burritt D, Fujita M, Mäkelä P. Switzerland: Springer, Cham. pp. 241-56. https://doi.org/10.1007/978-3-030-27423-8_11
|
[120]
|
Koizumi M, Yamaguchi-Shinozaki K, Tsuji H, Shinozaki K. 1993. Structure and expression of two genes that encode distinct drought-inducible cysteine proteinases in Arabidopsis thaliana. Gene 129:175−82 doi: 10.1016/0378-1119(93)90266-6
CrossRef Google Scholar
|