[1]
|
Clay GR, Daniel TC. 2000. Scenic landscape assessment: the effects of land management jurisdiction on public perception of scenic beauty. Landscape and Urban Planning 49:1−13 doi: 10.1016/s0169-2046(00)00055-4
CrossRef Google Scholar
|
[2]
|
Adebayo IA, Pam VK, Arsad H, Samian MR. 2020. The global floriculture industry: status and future prospects. In The Global Floriculture Industry. New York, USA: Apple Academic Press. pp. 1−14. doi: 10.1201/9781003000723-1
|
[3]
|
Jula G, Kim DG, Nigatu S. 2024. Potential of floriculture waste-derived charcoal briquettes as an alternative energy source and means of mitigating indoor air pollution in Ethiopia. Energy for Sustainable Development 79:101390 doi: 10.1016/j.esd.2024.101390
CrossRef Google Scholar
|
[4]
|
Gebhardt A. 2014. Holland flowering: how the Dutch flower industry conquered the world. Amsterdam: Amsterdam University Press. 23 pp. doi: 10.1515/9789048522590
|
[5]
|
Thörning R, Ahlklo ÅK, Spendrup S. 2022. The Slow Flower Movement - exploring alternative sustainable cut-flower production in a Swedish context. Heliyon 8:e11086 doi: 10.1016/j.heliyon.2022.e11086
CrossRef Google Scholar
|
[6]
|
Darras AI. 2020. Implementation of sustainable practices to ornamental plant cultivation worldwide: a critical review. Agronomy 10:1570 doi: 10.3390/agronomy10101570
CrossRef Google Scholar
|
[7]
|
Derksen DM, Mithöfer D. 2022. Thinking sustainably? Identifying Stakeholders' positions toward corporate sustainability in floriculture with Q methodology. Applied Economic Perspectives and Policy 44:1762−87 doi: 10.1002/aepp.13284
CrossRef Google Scholar
|
[8]
|
Ferrante A, Ferrini F. 2023. Floriculture and landscapes: perspectives and challenges. Frontiers in Horticulture 2:1123298 doi: 10.3389/fhort.2023.1123298
CrossRef Google Scholar
|
[9]
|
Lazzerini G, Lucchetti S, Nicese FP. 2016. Green House Gases (GHG) emissions from the ornamental plant nursery industry: a Life Cycle Assessment (LCA) approach in a nursery district in central Italy. Journal of Cleaner Production 112:4022−30 doi: 10.1016/j.jclepro.2015.08.065
CrossRef Google Scholar
|
[10]
|
Tamiru SM, Leta S. 2017. Assessment of the ecological impacts of floriculture Industries using physico-chemical parameters along Wedecha River, Debrezeit, Ethiopia. Water Utility Journal 15:53−65
Google Scholar
|
[11]
|
Yin X, Feng L, Gong Y. 2023. Mitigating ecotoxicity risks of pesticides on ornamental plants based on life cycle assessment. Toxics 11:360 doi: 10.3390/toxics11040360
CrossRef Google Scholar
|
[12]
|
Kütt L, Lõhmus K, Rammi IJ, Paal T, Paal J, et al. 2016. The quality of flower-based ecosystem services in field margins and road verges from human and insect pollinator perspectives. Ecological Indicators 70:409−19 doi: 10.1016/j.ecolind.2016.06.009
CrossRef Google Scholar
|
[13]
|
Genty L, Kazakou E, Metay A, Baude M, Gardarin A, et al. 2023. Flowers of ruderal species are numerous but small, short and low-rewarding. Oikos 2023:e10219 doi: 10.1111/oik.10219
CrossRef Google Scholar
|
[14]
|
Zytynska SE, Eicher M, Fahle R, Weisser WW. 2021. Effect of flower identity and diversity on reducing aphid populations via natural enemy communities. Ecology and Evolution 11:18434−45 doi: 10.1002/ece3.8432
CrossRef Google Scholar
|
[15]
|
Jin Z, Nie L. 2023. Functional rice: a new direction for sustainable development of rice production. Tropical Plants 2:13 doi: 10.48130/tp-2023-0013
CrossRef Google Scholar
|
[16]
|
Famulari S, Witz K. 2015. A user-friendly phytoremediation database: creating the searchable database, the users, and the broader implications. International Journal of Phytoremediation 17:737−44 doi: 10.1080/15226514.2014.987369
CrossRef Google Scholar
|
[17]
|
Van Oosten MJ, Maggio A. 2015. Functional biology of halophytes in the phytoremediation of heavy metal contaminated soils. Environmental and Experimental Botany 111:135−46 doi: 10.1016/j.envexpbot.2014.11.010
CrossRef Google Scholar
|
[18]
|
Li CY, He R, Tian CY, Song J. 2023. Utilization of halophytes in saline agriculture and restoration of contaminated salinized soils from genes to ecosystem: Suaeda salsa as an example. Marine Pollution Bulletin 197:115728 doi: 10.1016/j.marpolbul.2023.115728
CrossRef Google Scholar
|
[19]
|
Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C. 2005. Landscape perspectives on agricultural intensification and biodiversity – ecosystem service management. Ecology Letters 8:857−74 doi: 10.1111/j.1461-0248.2005.00782.x
CrossRef Google Scholar
|
[20]
|
Geiger F, Bengtsson J, Berendse F, Weisser WW, Emmerson M, et al. 2010. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic and Applied Ecology 11:97−105 doi: 10.1016/j.baae.2009.12.001
CrossRef Google Scholar
|
[21]
|
Bretzel F, Vannucchi F, Romano D, Malorgio F, Benvenuti S, et al. 2016. Wildflowers: from conserving biodiversity to urban greening — a review. Urban Forestry & Urban Greening 20:428−36 doi: 10.1016/j.ufug.2016.10.008
CrossRef Google Scholar
|
[22]
|
Venturini EM, Drummond FA, Hoshide AK, Dibble AC, Stack LB. 2017. Pollination reservoirs for wild bee habitat enhancement in cropping systems: a review. Agroecology and Sustainable Food Systems 41:101−42 doi: 10.1080/21683565.2016.1258377
CrossRef Google Scholar
|
[23]
|
Kovács-Hostyánszki A, Espíndola A, Vanbergen AJ, Settele J, Kremen C, et al. 2017. Ecological intensification to mitigate impacts of conventional intensive land use on pollinators and pollination. Ecology Letters 20:673−89 doi: 10.1111/ele.12762
CrossRef Google Scholar
|
[24]
|
Albrecht M, Kleijn D, Williams NM, Tschumi M, Blaauw BR, et al. 2020. The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield: a quantitative synthesis. Ecology Letters 23:1488−98 doi: 10.1111/ele.13576
CrossRef Google Scholar
|
[25]
|
Klein AM, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, et al. 2007. Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences 274:303−13 doi: 10.1098/rspb.2006.3721
CrossRef Google Scholar
|
[26]
|
Balzan MV, Bocci G, Moonen AC. 2014. Augmenting flower trait diversity in wildflower strips to optimise the conservation of arthropod functional groups for multiple agroecosystem services. Journal of Insect Conservation 18:713−28 doi: 10.1007/s10841-014-9680-2
CrossRef Google Scholar
|
[27]
|
Grass I, Albrecht J, Jauker F, Diekötter T, Warzecha D, et al. 2016. Much more than bees — Wildflower plantings support highly diverse flower-visitor communities from complex to structurally simple agricultural landscapes. Agriculture, Ecosystems & Environment 225:45−53 doi: 10.1016/j.agee.2016.04.001
CrossRef Google Scholar
|
[28]
|
Pfiffner L, Cahenzli F, Steinemann B, Jamar L, Bjørn MC, et al. 2019. Design, implementation and management of perennial flower strips to promote functional agrobiodiversity in organic apple orchards: a pan-European study. Agriculture, Ecosystems & Environment 278:61−71 doi: 10.1016/j.agee.2019.03.005
CrossRef Google Scholar
|
[29]
|
Hellwig N, Schubert LF, Kirmer A, Tischew S, Dieker P. 2022. Effects of wildflower strips, landscape structure and agricultural practices on wild bee assemblages – A matter of data resolution and spatial scale? Agriculture, Ecosystems & Environment 326:107764 doi: 10.1016/j.agee.2021.107764
CrossRef Google Scholar
|
[30]
|
Gardarin A. 2023. Aphid biological control in arable crops via flower strips: the predominant role of food resources over diversity effects. Journal of Applied Ecology 60:2118−31 doi: 10.1111/1365-2664.14495
CrossRef Google Scholar
|
[31]
|
Szitár K, Deák B, Halassy M, Steffen C, Batáry P. 2022. Combination of organic farming and flower strips in agricultural landscapes–A feasible method to maximise functional diversity of plant traits related to pollination. Global Ecology and Conservation 38:e02229 doi: 10.1016/j.gecco.2022.e02229
CrossRef Google Scholar
|
[32]
|
Russell M. 2015. A meta-analysis of physiological and behavioral responses of parasitoid wasps to flowers of individual plant species. Biological Control 82:96−103 doi: 10.1016/j.biocontrol.2014.11.014
CrossRef Google Scholar
|
[33]
|
Nadot S, Carrive L. 2021. The colourful life of flowers. Botany Letters 168:120−30 doi: 10.1080/23818107.2020.1839789
CrossRef Google Scholar
|
[34]
|
Arnold SEJ, Le Comber SC, Chittka L. 2009. Flower color phenology in European grassland and woodland habitats, through the eyes of pollinators. Israel Journal of Plant Sciences 57:211−30 doi: 10.1560/ijps.57.3.211
CrossRef Google Scholar
|
[35]
|
Wang H, Chen Z, Feng L, Chen Z, Owens G, et al. 2024. Uptake and transport mechanisms of rare earth hyperaccumulators: a review. Journal of Environmental Management 351:119998 doi: 10.1016/j.jenvman.2023.119998
CrossRef Google Scholar
|
[36]
|
Chen J, Wang Y. 2024. Understanding the salinity resilience and productivity of halophytes in saline environments. Plant Science: an International Journal of Experimental Plant Biology 346:112171 doi: 10.1016/j.plantsci.2024.112171
CrossRef Google Scholar
|
[37]
|
Aziz I, Mujeeb A. 2022. Halophytes for phytoremediation of hazardous metal(loid)s: a terse review on metal tolerance, bio-indication and hyperaccumulation. Journal of Hazardous Materials 424:127309 doi: 10.1016/j.jhazmat.2021.127309
CrossRef Google Scholar
|
[38]
|
Liang Z, Neményi A, Kovács GP, Gyuricza C. 2024. Incorporating functional traits into heavy metals phytoremediation: the future of field-based phytoremediation. Ecological Indicators 166:112262 doi: 10.1016/j.ecolind.2024.112262
CrossRef Google Scholar
|
[39]
|
Xin Y, Du M, Yu X, Paithoonrangsarid K, Mao Y, et al. 2023. Exploring value-added compounds from tropical marine plants. Tropical Plants 2:10 doi: 10.48130/tp-2023-0010
CrossRef Google Scholar
|
[40]
|
Zou J, Song F, Lu Y, Zhuge Y, Niu Y, et al. 2021. Phytoremediation potential of wheat intercropped with different densities of Sedum plumbizincicola in soil contaminated with cadmium and zinc. Chemosphere 276:130223 doi: 10.1016/j.chemosphere.2021.130223
CrossRef Google Scholar
|
[41]
|
Tang L, Hamid Y, Zehra A, Sahito ZA, He Z, et al. 2020. Fava bean intercropping with Sedum alfredii inoculated with endophytes enhances phytoremediation of cadmium and lead co-contaminated field. Environmental Pollution 265:114861 doi: 10.1016/j.envpol.2020.114861
CrossRef Google Scholar
|
[42]
|
Ventura Y, Eshel A, Pasternak D, Sagi M. 2015. The development of halophyte-based agriculture: past and present. Annals of Botany 115:529−40 doi: 10.1093/aob/mcu173
CrossRef Google Scholar
|
[43]
|
Smith GR. 2015. Phytoremediation-by-design: community-scale landscape systems design for healthy communities. International Journal of Sustainable Development & World Ecology 22:413−19 doi: 10.1080/13504509.2015.1079276
CrossRef Google Scholar
|
[44]
|
Cassaniti C, Romano D. 2011. The Use of Halophytes for Mediterranean Landscaping. The European Journal of Plant Science and Biotechnology 5:57−63
Google Scholar
|
[45]
|
Sağlam C, Önder S. 2018. The use of native halophytes in landscape design in the central Anatolia, Turkey. Turkish Journal of Agriculture - Food Science and Technology 6:1718−26 doi: 10.24925/turjaf.v6i12.1718-1726.1954
CrossRef Google Scholar
|
[46]
|
Xiao J, Liu H, Tian Y, An P, Liu B, et al. 2023. TropCRD (Tropical Crop Resources Database): the multi-tropical crop variation information system. Tropical Plants 2:9 doi: 10.48130/tp-2023-0009
CrossRef Google Scholar
|
[47]
|
Rai KK. 2022. Integrating speed breeding with artificial intelligence for developing climate-smart crops. Molecular Biology Reports 49:11385−402 doi: 10.1007/s11033-022-07769-4
CrossRef Google Scholar
|
[48]
|
Nerkar G, Devarumath S, Purankar M, Kumar A, Valarmathi R, et al. 2022. Advances in crop breeding through precision genome editing. Frontiers in Genetics 13:880195 doi: 10.3389/fgene.2022.880195
CrossRef Google Scholar
|
[49]
|
Van Huylenbroeck J, Bhattarai K. 2022. Ornamental plant breeding: entering a new era? Ornamental Horticulture 28:297−305 doi: 10.1590/2447-536x.v28i3.2516
CrossRef Google Scholar
|