[1]
|
De Rybel B, Audenaert D, Beeckman T, Kepinski S. 2009. The past, present, and future of chemical biology in auxin research. ACS Chemical Biology 4:987−98 doi: 10.1021/cb9001624
CrossRef Google Scholar
|
[2]
|
Friml J. 2022. Fourteen Stations of Auxin. Cold Spring Harbor Perspectives in Biology 14:a039859 doi: 10.1101/cshperspect.a039859
CrossRef Google Scholar
|
[3]
|
Ding T, Zhang F, Wang J, Wang F, Liu J, et al. 2021. Cell-type action specificity of auxin on Arabidopsis root growth. Plant Journal 106:928−41 doi: 10.1111/tpj.15208
CrossRef Google Scholar
|
[4]
|
Tan C, Li S, Song J, Zheng X, Zheng H, et al. 2024. 3, 4-Dichlorophenylacetic acid acts as an auxin analog and induces beneficial effects in various crops. Communications Biology 7:161 doi: 10.1038/s42003-024-05848-9
CrossRef Google Scholar
|
[5]
|
Marhavý P, Vanstraelen M, De Rybel B, Ding Z, Bennett MJ, et al. 2013. Auxin reflux between the endodermis and pericycle promotes lateral root initiation. The EMBO Journal 32:149−58 doi: 10.1038/emboj.2012.303
CrossRef Google Scholar
|
[6]
|
Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, et al. 2005. Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. The Plant Cell 17:444−63 doi: 10.1105/tpc.104.028316
CrossRef Google Scholar
|
[7]
|
Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M. 2007. ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. The Plant Cell 19:118−30 doi: 10.1105/tpc.106.047761
CrossRef Google Scholar
|
[8]
|
Chapman EJ, Estelle M. 2009. Mechanism of auxin-regulated gene expression in plants. Annual Review of Genetics 43:265−85 doi: 10.1146/annurev-genet-102108-134148
CrossRef Google Scholar
|
[9]
|
Tang LP, Zhang XS, Su YH. 2020. Regulation of cell reprogramming by auxin during somatic embryogenesis. aBIOTECH 1:185−93 doi: 10.1007/s42994-020-00029-8
CrossRef Google Scholar
|
[10]
|
Karami O, de Jong H, Somovilla VJ, Villanueva Acosta B, Sugiarta AB, et al. 2023. Structure-activity relationship of 2,4-D correlates auxinic activity with the induction of somatic embryogenesis in Arabidopsis thaliana. Plant Journal 116:1355−69 doi: 10.1111/tpj.16430
CrossRef Google Scholar
|
[11]
|
Grossmann K. 2010. Auxin herbicides: current status of mechanism and mode of action. Pest Management Science 66:113−20 doi: 10.1002/ps.1860
CrossRef Google Scholar
|
[12]
|
Todd OE, Figueiredo MRA, Morran S, Soni N, Preston C, et al. 2020. Synthetic auxin herbicides: finding the lock and key to weed resistance. Plant Science 300:110631 doi: 10.1016/j.plantsci.2020.110631
CrossRef Google Scholar
|
[13]
|
Quareshy M, Prusinska J, Li J, Napier R. 2018. A cheminformatics review of auxins as herbicides. Journal of Experimental Botany 69:265−75 doi: 10.1093/jxb/erx258
CrossRef Google Scholar
|
[14]
|
Parry G, Calderon-Villalobos LI, Prigge M, Peret B, Dharmasiri S, et al. 2009. Complex regulation of the TIR1/AFB family of auxin receptors. Proceedings of the National Academy of Sciences of the United States of America 106:22540−45 doi: 10.1073/pnas.0911967106
CrossRef Google Scholar
|
[15]
|
Pazmiño DM, Rodríguez-Serrano M, Romero-Puertas MC, Archilla-Ruiz A, Del Río LA, et al. 2011. Differential response of young and adult leaves to herbicide 2,4-dichlorophenoxyacetic acid in pea plants: role of reactive oxygen species. Plant, Cell & Environment 34:1874−89 doi: 10.1111/j.1365-3040.2011.02383.x
CrossRef Google Scholar
|
[16]
|
Song Y. 2014. Insight into the mode of action of 2,4-dichlorophenoxyacetic acid (2,4-D) as an herbicide. Journal of Integrative Plant Biology 56:106−13 doi: 10.1111/jipb.12131
CrossRef Google Scholar
|
[17]
|
Teale W, Palme K. 2018. Naphthylphthalamic acid and the mechanism of polar auxin transport. Journal of Experimental Botany 69:303−12 doi: 10.1093/jxb/erx323
CrossRef Google Scholar
|
[18]
|
Bromilow RH. 2004. Paraquat and sustainable agriculture. Pest Management Science 60:340−49 doi: 10.1002/ps.823
CrossRef Google Scholar
|
[19]
|
Farrington JA, Ebert M, Land EJ, Fletcher K. 1973. Bipyridylium quaternary salts and related compounds. V. Pulse radiolysis studies of the reaction of paraquat radical with oxygen. Implications for the mode of action of bipyridyl herbicides. Biochimica et Biophysica Acta (BBA) - Bioenergetics 314:372−81 doi: 10.1016/0005-2728(73)90121-
CrossRef Google Scholar
|
[20]
|
Nazish T, Huang YJ, Zhang J, Xia JQ, Alfatih A, et al. 2022. Understanding paraquat resistance mechanisms in Arabidopsis thaliana to facilitate the development of paraquat-resistant crops. Plant Communications 3:100321 doi: 10.1016/j.xplc.2022.100321
CrossRef Google Scholar
|
[21]
|
Bai F, Jia Y, Yang C, Li T, Wu Z, et al. 2019. Multiple physiological response analyses aid the understanding of sensitivity variation between Microcystis aeruginosa and Chlorella sp. under paraquat exposures. Environmental Sciences Europe 31:83 doi: 10.1186/s12302-019-0255-4
CrossRef Google Scholar
|
[22]
|
An J, Shen X, Ma Q, Yang C, Liu S, et al. 2014. Transcriptome profiling to discover putative genes associated with paraquat resistance in goosegrass (Eleusine indica L.). PLoS One 9:e99940 doi: 10.1371/journal.pone.0099940
CrossRef Google Scholar
|
[23]
|
Hawkes TR. 2014. Mechanisms of resistance to paraquat in plants. Pest Management Science 70:1316−23 doi: 10.1002/ps.3699
CrossRef Google Scholar
|
[24]
|
Yu Q, Cairns A, Powles SB. 2004. Paraquat resistance in a population of Lolium rigidum. Functional Plant Biology 31:247−54 doi: 10.1071/FP03234
CrossRef Google Scholar
|
[25]
|
Fujita M, Fujita Y, Iuchi S, Yamada K, Kobayashi Y, et al. 2012. Natural variation in a polyamine transporter determines paraquat tolerance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 109:6343−47 doi: 10.1073/pnas.1121406109
CrossRef Google Scholar
|
[26]
|
Jóri B, Soós V, Szegő D, Páldi E, Szigeti Z, et al. 2007. Role of transporters in paraquat resistance of horseweed Conyza canadensis (L.) Cronq. Pesticide Biochemistry and Physiology 88:57−65 doi: 10.1016/j.pestbp.2006.08.013
CrossRef Google Scholar
|
[27]
|
da Silva DRO, de Aguiar ACM, Basso CJ, Muraro DS. 2021. Application time affects synthetic auxins herbicides in tank-mixture with paraquat on hairy fleabane control. Revista Ceres 68:194−200 doi: 10.1590/0034-737x202168030005
CrossRef Google Scholar
|
[28]
|
Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, et al. 1999. An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99:463−72 doi: 10.1016/S0092-8674(00)81535-4
CrossRef Google Scholar
|
[29]
|
Overvoorde P, Fukaki H, Beeckman T. 2010. Auxin control of root development. Cold Spring Harbor Perspectives in Biology 2:a001537 doi: 10.1101/cshperspect.a001537
CrossRef Google Scholar
|
[30]
|
Casimiro I, Beeckman T, Graham N, Bhalerao R, Zhang H, et al. 2003. Dissecting Arabidopsis lateral root development. Trends in Plant Science 8:165−71 doi: 10.1016/S1360-1385(03)00051-7
CrossRef Google Scholar
|
[31]
|
Liu H, Luo Q, Tan C, Song J, Zhang T, et al. 2023. Biosynthesis- and transport-mediated dynamic auxin distribution during seed development controls seed size in Arabidopsis. Plant Journal 113:1259−77 doi: 10.1111/tpj.16109
CrossRef Google Scholar
|
[32]
|
Pilet PE, Saugy M. 1987. Effect on root growth of endogenous and applied IAA and ABA: a critical reexamination. Plant Physiology 83:33−8 doi: 10.1104/pp.83.1.33
CrossRef Google Scholar
|
[33]
|
Adamowski M, Friml J. 2015. PIN-dependent auxin transport: action, regulation, and evolution. The Plant Cell 27:20−32 doi: 10.1105/tpc.114.134874
CrossRef Google Scholar
|
[34]
|
Swarup R, Bhosale R. 2019. Developmental roles of AUX1/LAX auxin influx carriers in plants. Frontiers in Plant Science 10:1306 doi: 10.3389/fpls.2019.01306
CrossRef Google Scholar
|
[35]
|
Benina M, Ribeiro DM, Gechev TS, Mueller-Roeber B, Schippers JHM. 2015. A cell type-specific view on the translation of mRNAs from ROS-responsive genes upon paraquat treatment of Arabidopsis thaliana leaves. Plant, Cell & Environment 38:349−63 doi: 10.1111/pce.12355
CrossRef Google Scholar
|
[36]
|
Shen T, Jia N, Wei S, Xu W, Lv T, et al. 2022. Mitochondrial HSC70-1 regulates polar auxin transport through ROS homeostasis in Arabidopsis roots. Antioxidants 11:2035 doi: 10.3390/antiox11102035
CrossRef Google Scholar
|