-
In this study, five CsSPSs (CsSPS1-5) and one CsSPP were identified from three tea plant genomes by using the conserved HMM models of SPS (PF00862, PF00534 and PF05116) and SPP (PF05116 and PF08472), respectively. As shown in Table 1, CsSPP is highly conserved among three tea plant cultivars, except for two and one non-synonymous mutations in 'SCZ' and 'HD' genomes, respectively (Supplemental Fig. S1). In terms of CsSPSs, although the amino acid sequence length of the same SPS may be varied in different tea plant cultivars, each CsSPS was also highly conserved among these three tea plant cultivars. In particular, the amino acid sequence of CsSPS5 was identical in these three cultivars except for a non-synonymous mutation in the 'SCZ' genome. Besides, CsSPS1 was only identified in the 'SCZ' genome, which may be the product of the tandem repeat of CsSPS2 in the 'SCZ' genome, as CsSPS1 and CsSPS2 shared 99.4% amino acid sequence identity, located on the same chromosome, and only separated by six genes. Subcellular localization further predicted that CsSPP and CsSPSs were located in cytoplasm. In brief, these results indicate that CsSPP and CsSPSs in different tea plant cultivars possess the same function as the 'switch' of Suc biosynthesis.
Table 1. Basic information of CsSPP and CsSPSs.
Gene Accession number ORF (bp) AA MW (KDa) pI Aliphatic index Loc SignalP TMHs CsSPP CSS0017072.1('SCZ')
GWHPASIV039206 ('TGY')
GWHPAZTZ037371 ('HD')
GWHPBAUV077964 ('HD'-HB)
GWHPASIX044577 ('TGY'-HA)
GWHPASIX046144 ('TGY'-HB)1,275 424 48.13
48.11
48.10
48.11
48.11
48.115.55
5.62
5.55
5.62
5.62
5.6281.37
82.29
82.29
82.29
82.29
82.29Cytoplasm NO NO CsSPS1 CSS0047114.1('SCZ') 2,988 995 111.15 5.65 86.04 Cytoplasm NO NO CsSPS2 CSS0020276.1 ('SCZ')
GWHPASIV037217 ('TGY')
GWHPAZTZ035335 ('HD')
GWHPBAUV071117 ('HD'-HA)
GWHPBAUV073449 ('HD'-HB)3,057
2,796
2,916
2,916
2,9161018
931
971
971
971113.16
103.18
107.81
107.81
107.835.71
5.76
5.76
5.76
5.7686.58
87.65
86.86
86.86
86.86CsSPS3 CSS0009603.1 ('SCZ')
GWHPASIV029409 ('TGY')
GWHPAZTZ027893 ('HD')
GWHPBAUV055399 ('HD'-HA)
GWHPBAUV058548 ('HD'-HB)
GWHPASIX032838 ('TGY'-HA)
GWHPASIX034616 ('TGY'-HB)3,111
3,120
2,916
3,192
3,120
3,120
3,1201036
1039
1039
1039
1039
1039
1039116.78
117.77
117.66
215.79
117.66
117.66
117.775.92
6.32
6.26
6.53
6.26
6.21
6.3290.52
88.59
88.21
94.36
88.21
88.59
88.59Cytoplasm NO NO CsSPS4 CSS0024623.1('SCZ')
GWHPAZTZ027407('HD')
GWHPASIV029106('TGY')
GWHPBAUV054918('HD'-HA)
GWHPBAUV058088 ('HD'-HB)3,192
2,916
3,864
3,237
3,1921063
1063
1287
1078
1063119.71
119.64
144.79
119.19
119.646.05
6.00
6.01
6.10
6.0083.57
83.47
86.83
83.40
83.47Cytoplasm NO NO ORF, Opening reading fame; AA, The numbers of amino acid residues; MW, Molecule weight; pI, Theoretical isoelectric point; Loc, Subcellular location; SignalP, Signal peptide; TMHs, Transmembrane helices. 'SCZ', 'TGY' and 'HD' mean 'Shuchazao', 'Tieguanyin', and 'Huangdan', respectively. 'HA' and 'HB' represent haplotype A and haplotype B genomes of 'Huangdan' and 'Tieguanyin' cultivars, respectively. Phylogenetic analysis of CsSPSs and CsSPP
-
To explore the phylogenetic relationship among different SPSs and SPPs in different plant species, a phylogenetic tree was constructed. As shown in Fig. 1, all of these SPSs could be divided into four subfamilies (I−IV). As a typical dicotyledonous plant, CsSPS1 and CsSPS2 of tea plant were clustered into subfamily I and showed the closest relationship with MD02G1022300 and MD15G1164900. CsSPS5 was also clustered into subfamily I and showed the closest relationship with StSPS. CsSPS3 belonged to subfamily III, and showed the closest relationship with NtSPS3 and AtSPS4, while CsSPS4 belonged to subfamily II and showed the closet relationship with NtSPS2 and SlSPS2. In addition, the phylogenetic analysis of SPPs showed that the unique CsSPP presented the closest relationship with MD12G1045400 and MD14G1044300.
Figure 1.
Phylogenetic analysis of SPPs and SPSs originating from 15 different plant species. Pink area: SPS family; Light blue area: SPP family. Blue circle: tea plant; red star: Arabidopsis; red triangle: rice; blue star: maize; yellow star: tomato; dark red star: spinach; dark red triangle: tobacco; black star: melon; green star: citrus; purple star: grape; gray star: wheat; pink star: potato; orange star: litchi; white star: sorghum; black triangle; apple. Bootstrap values of all branches are above 50%.
Chromosomal distribution and collinearity analysis of CsSPSs and CsSPP
-
The chromosomal distribution of CsSPP and CsSPSs in three tea plant genomes was predicted and visualized by TBtools software. As shown in Fig. 2a and Supplemental Fig. S2, CsSPSs and CsSPP shared same chromosomal distribution in these three tea plant genomes, respectively. In detail, CsSPP located on Chr13, CsSPS1 and CsSPS2 co-located on Chr12, CsSPS3 and CsSPS4 co-located on Chr9, and CsSPS5 located on Chr14.
Figure 2.
Chromosomal location and collinearity analysis of CsSPP and CsSPSs. (a) Chromosomal distribution of CsSPP and CsSPSs in 'Shuchazao' genome. (b) Interspecies synteny analysis of CsSPP and CsSPSs in 'Shuchazao' associated with Arabidopsis, 'Huangdan' and 'Tieguanyin' genomes.
To further understand the evolutionary relationships of CsSPP and CsSPSs among different plant species, the inter-species collinearity relationships between 'SCZ' and 'HD', 'TGY' and Arabidopsis were constructed, respectively. As shown in Fig. 2b, both CsSPS1 and CsSPS2 belong to orthologous genes with AtSPS1 (NP197528.1) and AtSPS2 (NP196672.3) in Arabidopsis, HD.09G0012280.t1 and HD.12GOO24590.t1 in 'HD' cultivar, and TGY103558.t1 in 'TGY' cultivar. Besides, CsSPS3 and CsSPS4 are orthologous genes of HD.10G0021440.t1 and HD.10G0017080.t1 in 'HD' cultivar, and TGY080122.t1 and TGY081105.t1 in 'TGY' cultivar, respectively. These results also corresponded to the results of chromosome localization and phylogenetic analysis. In addition, the distribution and numbers of CsSPP and CsSPSs homologous genes in 'SCZ' genome were further explored through intra-special collinearity analysis, while there has no genome replication or fragment replication events occurred between CsSPSs and CsSPP (data not shown), indicating that CsSPSs and CsSPP are highly conserved in different tea plant cultivars.
cis-acting elements prediction and co-expression network analysis of CsSPP and CsSPSs
-
To understand whether CsSPP and CsSPSs are involved in stress and hormone responses, the cis-acting elements contained in 2000-bp 5'-terminal untranslated region (UTR) sequences of CsSPP and CsSPSs were predicted. As shown in Fig. 3a, the type, number and distribution of cis-acting elements in UTR sequences of CsSPP and CsSPSs were varied among each other. Overall, all of them contain numerous light responsiveness related elements (data not shown). Besides, myeloblastosis (MYB) and myelocytomatosis (MYC) elements were also enriched in these promoter regions. Meanwhile, different numbers of anaerobic induction element (ARE) were also found in these promoters, indicating that CsSPSs and CsSPP play important roles in photosynthesis and respiration of tea plants. Besides, different numbers of hormone response elements, such as auxin-responsive element (TGA), MeJA-responsiveness (MeJA) element, abscisic acid responsiveness element (ABRE), and gibberellin (GA) element were predicted in these promoters, especially 3 MeJA elements were respectively enriched in the promoter regions of CsSPS2 and CsSPS4, suggesting their central roles in responding to hormones. Moreover, low-temperature response element (LTR) elements were enriched in the promoter regions of the CsSPP and CsSPS1/3/5, indicating these genes participate in cold stress response of tea plants. Furthermore, we found the numbers and types of cis-acting elements were most abundant in promoter of CsSPS4, which suggested that CsSPS4 may be widely involved in various stress responses of tea plants. In short, the above results showed that CsSPP and CsSPSs play important roles in mediating hormones and abiotic stress responses.
Figure 3.
The cis-acting elements in the promoters of CsSPP and CsSPSs, and co-expression networks of CsSPP and CsSPSs. (a) cis-acting elements in promoters of CsSPP and CsSPSs. The heat map displays the type and number of cis-acting elements and the bar chart displays the number of cis-acting elements. MYB: myeloblastosis; MYC: myelocytomatosis; DSR: defense and stress responsiveness; LTR: low-temperature responsiveness; ABRE: abscisic acid responsiveness; GA: gibberellin-responsiveness; ARE: anaerobic induction; TGA: auxin-responsive element; MeJA: MeJA-responsiveness. (b) Co-expression networks of CsSPP and CsSPSs 3/4.
Here, the co-expression networks of CsSPP and CsSPSs were also predicted with the help of the TeaCoN web server. As a result, only CsSPP, CsSPS3 and CsSPS4 predicted to contain 31, 70, and 110 co-expressed genes with strong associations (PCC-value > 0.7), respectively (Fig. 3b). Among them, most of the co-expressed genes of CsSPP are related to photosynthesis and respiration in plants. For example, a co-expressed gene of CsSPP, CSS0031288.1, encodes zeaxanthin epoxidase, which is involved in zeaxanthin synthesis and could adapt to different light intensity by controlling the amount of zeaxanthin accumulation in plant photosynthesis. Similar to CsSPP, the highly correlated genes of CsSPS3 were also related to photosynthesis and respiration. Besides, the expression profiles of two transcription factors, including CsMYB35 (CSS0014516) and CsGLOBOSA-like (CSS0022940), were highly correlated with CsSPS3, suggesting there may be a potential transcriptional regulatory relationship between them. Moreover, CSS0030453 (ATP synthase) and CSS0006328 (Peroxisomal membrane protein) are two highly correlated co-expressed genes in the co-expression network of CsSPS4. Among them, CSS0030453 plays an important role in cellular energy metabolism, plant photosynthesis and respiration, and CSS0006328 participates in scavenging free radicals.
DNA structures and conserved motifs of CsSPP and CsSPSs
-
The DNA structure analysis results showed that each of these genes contains more than 10 exons. Among them, CsSPP contains eight exons, CsSPS1 contains 14 exons, CsSPS3 contains 13 exons, CsSPS5 contains 11 exons, while CsSPS2 and CsSPS4 contain 12 exons, respectively (Fig. 4a). Based on the complex structures of these genes, we speculated that the functions of these genes may be irreplaceable in tea plants. Conserved motif analysis result showed that CsSPSs are highly conserved, and all of them contain 15 motifs except motif 14 which is missing in CsSPS3 (Fig. 4b). Besides, CsSPP is distinct from CsSPSs, indicating the different functions they played. This conclusion is further proved in Fig. 4c, where we found each CsSPS contains three conserved domains, including Sucrose_synth, Glycos_transf_1 and S6PP, while CsSPP contains the conserved S6PP and S6PP_C domains. In addition, the S6PP domain and the S6PP_C domain of CsSPP is closely connected. However, there are some amino acid sequences between the CsSPSs domains and a variable Linker between Glycos_transf_1 and S6PP. Moreover, some potential conserved serine phosphorylation sites were also identified in all five CsSPSs. Among them, two of the same phosphorylation sites, Ser191 and Ser385, were identified both in CsSPS1 and CsSPS2. Besides, Ser148 and Ser217 in CsSPS4, and Ser221 and Ser416 in CsSPS5 are also potential conserved phosphorylation sites, respectively. Moreover, three phosphorylation sites, Ser146, Ser220 and Ser409, were identified in CsSPS3. These results further confirmed that CsSPP and CsSPSs own Suc biosynthesis ability, and their activities are regulated by phosphorylation.
Figure 4.
The exon-intron structures CsSPP and CsSPSs, conserved motifs and domains of CsSPP and CsSPSs. (a) The exon-intron structures CsSPP and CsSPSs. Green boxes represent exons, yellow boxes represent untranslated upstream/downstream regions, and lines indicate introns. (b) Conserved motifs of CsSPP and CsSPSs. Different motifs are presented by different colored squares. (c) Conserved domains of CsSPP and CsSPSs. Different domains are shown in different colors.
Tissue-specific analysis of CsSPSs and CsSPP in different tea plant tissues
-
Tissue-specifics of CsSPSs and CsSPP were detected in nine different tissues of the 'SCZ' cultivar. As shown in Fig. 5, CsSPP and CsSPSs transcripts were detected in all tissues, but the transcription abundance of each gene varied among the detected tissues. Among them, the transcription abundance of CsSPP was highest in immature stem, while significantly lower in other tissues. Besides, all of CsSPSs showed highest transcription abundances in flower than that in other tissues, except for CsSPS2 that showed a similar expression level in senescent leaf. Meanwhile, all CsSPSs showed extremely low transcription abundances in root. In addition, the transcription abundance of CsSPS5 in each detected tissue was significantly higher than that in other CsSPSs, which speculated that CsSPS5 may play a leading role in Suc synthesis during the growth and development of tea plants. In brief, it followed that CsSPP and CsSPSs mediated entire vegetative and reproductive progress of tea plants. In particular, CsSPSs may play important roles in floral nectar production of flower, and CsSPP is necessary for the immature stem growth of tea plants.
Expression analysis of CsSPSs and CsSPP under various abiotic stress conditions
-
The spatial-temporal expression patterns of CsSPP and CsSPSs were analyzed under various abiotic stress conditions. As shown in Fig. 6, CsSPP and CsSPSs are differentially expressed under different stress conditions. Under salt treatment (ST) conditions, the expression of CsSPP was up-regulated nearly 3-fold after 1 d of ST, and then decreased when the treatment time continued. CsSPS4 was down-regulated within 2 d of ST. CsSPS2 was slightly up-regulated after 12 h and 48 h of ST, respectively, while down-regulated after 24 h of ST. Besides, CsSPS1/3/5 showed similar expression patterns under ST condition, which were highly induced within 12 h of ST, and then decreased when the treatment time continued. Under cold treatment (CT) condition, CsSPP and CsSPS1-3 showed similar expression patterns, all of them were down-regulated firstly within 12 h of CT, and then up-regulated by CT, of which CsSPS2/3 transcripts were respectively induced more than 3- and 2-fold after 48 h of CT as compared to 0 h. Besides, CsSPS4 was inhibited by CT within 2 d of CT, while CsSPS5 was continuously induced with the increased treatment time. Under drought treatment (DT) conditions, CsSPP and CsSPS2/4 showed similar expression patterns, all of them were constantly induced, and reached maximum expression levels after 24 h of DT, and then to some extent reduced. Similarly, CsSPS3/5 were constantly induced and reached maximum expression levels at 12 h. In addition, CsSPS1 was not significantly affected by DT. Briefly, CsSPP and CsSPSs participated in different stress responses of tea plants, but the time and degree of their effects were different.
Figure 6.
Expression analysis of CsSPP and CsSPSs under different abiotic stress conditions. (a) Expression profiles of CsSPP and CsSPSs under salt stress conditions. (b) Expression profiles of CsSPP and CsSPSs under cold stress conditions. (c) Expression profiles of CsSPP and CsSPSs under drought stress conditions.
Expression analysis of CsSPSs and CsSPP in different tea plant cultivars under cold stress conditions
-
In this study, the cold tolerance of two tea plant cultivars, 'SCZ' and 'BY1', were compared with different physiological indexes. As shown in Fig. 7a, the Fv/Fm and NP values of 'SCZ' cultivar were higher than that of the 'BY1' cultivar, but the EL value and MDA content in 'SCZ' cultivar were lower than that of the 'BY1' cultivar (Fig. 7a), indicating that the cold resistance of the 'SCZ' cultivar was higher than that of the 'BY1' cultivar. Therefore, these two cultivars were further used to investigate the relationships among the expression of CsSPSs and CsSPP, SPS activity, soluble sugar content and cold stress. As shown in Fig. 7b, except for CsSPS1, all of them were up-regulated under 0 oC treatment for 5 d both in these two cultivars, and returned to normal levels after 3 d of recovery. Specifically, CsSPP and CsSPS2/4/5 transcripts were increased more than 2-fold after 5 d of CT, respectively. Besides, we found the expression level of CsSPS2 was significantly higher in the 'BY1' cultivar than that in the 'SCZ' cultivar, while the expression level of CsSPS5 was significantly higher in the 'SCZ' cultivar than that in the 'BY1' cultivar, indicating the different roles of CsSPSs in coping with cold stress in different tea plant cultivars. Moreover, we found the SPS activity was obviously increased in the 'SCZ' cultivar, but not significantly changed in the 'BY1' cultivar after 5 d of CT. After 3 d of recovery growth, the SPS activity was decreased in the 'SCZ' cultivar, while significantly increased in the 'BY1' cultivar. Furthermore, the contents of TSS, Suc, Glc and Fru were increased after 5 d of CT except for TSS in the 'BY1' cultivar, and then decreased to normal levels after 3 d of NT. Furthermore, the 'BY1' cultivar contained a relatively higher content of TSS, Suc and Fru under CT and recovery conditions. As shown in Fig. 7c, CsSPP and CsSPS2-5 were positively correlated with SPS activity and the contents of soluble sugar (TSS, Suc, Glc and Fru) in the 'SCZ' cultivar, especially CsSPS2/4/5, significantly correlated with Suc content, respectively. Besides, CsSPS3 was also significantly and positively correlated with Glc and Fru contents in the 'SCZ' cultivar, respectively. These results indicated that the high expressions levels of CsSPP and CsSPSs contributed to the accumulation of different types of soluble sugars in the 'SCZ' cultivar, thus improving the adaptability to low temperatures. Different from the 'SCZ' cultivar, CsSPS1 was positively correlated with SPS activity in the 'BY1' cultivar. Meanwhile, although CsSPS2/4/5 were positively correlated with Suc, Glc, and Fru, all of them were negatively correlated with SPS activity, which suggested that SPS activity in the 'BY1' cultivar may be regulated by post-transcriptional and post-translational regulation, as some potential phosphorylation sites were identified in the amino acid sequences of CsSPSs (Fig. 4c). Different from the 'BY1' cultivar, the higher cold resistance of the 'SCZ' cultivar may be due to the up-regulated expression of CsSPSs leading to the increase of SPS activity, which promotes the synthesis of soluble sugar content to improve cold tolerance.
Figure 7.
Expression analysis of CsSPP and CsSPSs in different tea plant cultivars under cold stress conditions. (a) Relative electrolytic leakage, malondialdehyde and photosynthetic parameters of 'Shuchazao' and 'Baiye1' under cold stress conditions. (b) Expression levels of CsSPP and CsSPSs, SPS activity and different types of soluble sugar content. (c) Correlation analysis of CsSPP and CsSPSs, SPS activity and different types of soluble sugar components in 'Shuchazao' and 'Baiye1' cultivars, respectively. (c-i) Correlation analysis of CsSPP, CsSPSs, SPS activity and soluble sugars in the 'Shuchazao' cultivar. (c-ii) Correlation analysis of CsSPP, CsSPSs, SPS activity and soluble sugars in the 'Baiye1' cultivar. Green color means negative correlation, purple color means positive correlation.
-
The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.
-
About this article
Cite this article
Liang S, Wang H, Yamashita H, Zhang S, Lang X, et al. 2024. Genome-wide identification and expression analysis of sucrose phosphate synthase and sucrose-6-phosphate phosphatase family genes in Camellia sinensis. Beverage Plant Research 4: e015 doi: 10.48130/bpr-0024-0007
Genome-wide identification and expression analysis of sucrose phosphate synthase and sucrose-6-phosphate phosphatase family genes in Camellia sinensis
- Received: 25 December 2023
- Revised: 13 January 2024
- Accepted: 23 January 2024
- Published online: 07 May 2024
Abstract: Sucrose phosphate synthetase (SPS, EC 2.4.1.14) and sucrose phosphate phosphatase (SPP, EC 3.1.3.24) are two key enzymes for sucrose biosynthesis, which play essential roles in growth, development and stress responses of plants. However, the roles of SPS and SPP have not been illustrated well in tea plants until now. In this study, a unique CsSPP and five CsSPSs (CsSPS1-5) were identified from the tea plant genome. Bioinformatic analysis results found that CsSPP and CsSPSs were clustered together with the known SPPs and SPSs of other species, respectively, and their amino acid sequences contain the conserved domains required for sucrose biosynthesis. Tissue-specific analysis results showed that CsSPP and CsSPSs were widely involved in vegetative and reproductive growth of tea plant, among which the transcription levels of CsSPP was highest in immature stem, while CsSPSs were highest in flower. Spatio-temporal expression analysis results showed that all of these genes are involved in abiotic stress responses of tea plants. Meanwhile, SPS activity and the contents of sucrose, glucose, fructose, and total soluble sugar in 'Shuchazao' cultivar increased more than that of 'Baiye1' under low temperature conditions. Correlation analysis results showed that the expression profiles of CsSPS2/4/5 were significantly and positively correlated with sucrose content in 'Shuchazao' cultivars under low temperature conditions, suggesting the significant roles of these genes in sucrose accumulation. In conclusion, this study will provide a theoretical basis for further functional research of SPS and SPP in plants.
-
Key words:
- Camellia sinensis /
- SPP /
- SPS /
- Tissue-specific analysis /
- Spatio-temporal analysis