[1]
|
Wageningen. 2019. Report on use of plastics in agriculture. Report. Schuttelaar & Partners, Netherlands. https://saiplatform.org/wp-content/uploads/2019/06/190528-report_use-of-plastics-in-agriculture.pdf
|
[2]
|
Dong H, Yang G, Zhang Y, Yang Y, Wang D, et al. 2022. Recycling, disposal, or biodegradable-alternative of polyethylene plastic film for agricultural mulching? A life cycle analysis of their environmental impacts Journal of Cleaner Production 380:134950 doi: 10.1016/j.jclepro.2022.134950
CrossRef Google Scholar
|
[3]
|
Kasirajan S, Ngouajio M. 2012. Polyethylene and biodegradable mulches for agricultural applications: a review. Agronomy for Sustainable Development 32:501−29 doi: 10.1007/s13593-011-0068-3
CrossRef Google Scholar
|
[4]
|
Sintim HY, Flury M. 2017. Is biodegradable plastic mulch the solution to agriculture's plastic problem? Environmental Science & Technology 51(3):1068−69 doi: 10.1021/acs.est.6b06042
CrossRef Google Scholar
|
[5]
|
Miles C, Wallace R, Wszelaki A, Martin J, Cowan J, et al. 2012. Deterioration of potentially biodegradable alternatives to black plastic mulch in three tomato production regions. HortScience 47(9):1270−77 doi: 10.21273/HORTSCI.47.9.1270
CrossRef Google Scholar
|
[6]
|
Hill DE, Hankin L, Stephens GR. 1982. Mulches: Their effect on fruit set, timing and yields of vegetables. USA: Bulletin/Connecticut Agricultural Experiment Station.
|
[7]
|
Shogren RL, Hochmuth RC. 2004. Field evaluation of watermelon grown on paper-polymerized vegetable oil mulches. HortScience 39:1588−91 doi: 10.21273/hortsci.39.7.1588
CrossRef Google Scholar
|
[8]
|
Fessesden M. 2015. Most Plastic Trash Comes From Farms. Smart News, Smithsonian Magazine. www.smithsonianmag.com/smart-news/most-plastic-trash-comes-farms-heres-what-were-trying-do-about-it-180954873/
|
[9]
|
Markets and Markets. 2023. Agricultural Films Market by Type (LLDPE, LDPE, REclaim, EVA, HDPE), Application ((Greenhouse Films (Classic Greenhouse, Macro Tunnels), Silage Films (Silage Stretch Wraps), & Mulch Films (Transparent, Clear Mulches)), and Region - Global Forecast to 2028. Report. www.marketsandmarkets.com/Market-Reports/agricultural-mulch-films-market-741.html?gclid=CjwKCAjwx_eiBhBGEiwA15gLNzkPPqi__oySs2uqtTiYacozDD_Q8_XD3WqZiQy7jNJ1Ho-GN1mQ-BoCkJ4QAvD_BwE
|
[10]
|
Wang D, Xi Y, Shi XY, Zhong YJ, Guo CL, et al. 2021. Effect of plastic film mulching and film residues on phthalate esters concentrations in soil and plants, and its risk assessment. Environmental Pollution 286:117546 doi: 10.1016/j.envpol.2021.117546
CrossRef Google Scholar
|
[11]
|
Ngouajio M, Goldy R, Zandstra B, Warncke D. 2007. Plasticulture for Michigan vegetable production. Extension Bulletin E-2980.
|
[12]
|
Lamont WJ. 2005. Plastics: modifying the microclimate for the production of vegetable crops. HortTechnology 15:477−81 doi: 10.21273/horttech.15.3.0477
CrossRef Google Scholar
|
[13]
|
Zhang H, Miles C, Gerdeman B, LaHue DG, DeVetter L. 2021. Plastic mulch use in perennial fruit cropping systems – A review. Scientia Horticulturae 281:109975 doi: 10.1016/j.scienta.2021.109975
CrossRef Google Scholar
|
[14]
|
Chamas A, Moon H, Zheng J, Qiu Y, Tabassum T, et al. 2020. Degradation rates of plastics in the environment. ACS Sustainable Chemistry & Engineering 8:3511 doi: 10.1021/acssuschemeng.9b06635
CrossRef Google Scholar
|
[15]
|
Ghimire S, Miles C. 2016. Dimensions and costs of polyethylene, paper and biodegradable plastic mulch. Department of Horticulture, Washington State University Northwestern Research and Extension Center Mount Vernon, WA.
|
[16]
|
Jones G. 2018. Ag film mulch contanimation. Ag Plastic Conference, Orlando, Florida, 2018. Orlando: Ag Plastic Recycling News. https://agplasticconference.com/news/f/ag-film-mulch-contanimation
|
[17]
|
Levitan L, Barros A. 2003. Recycling agricultural plastics in New York State. Executive Summary. Cornell Environmental Risk Analysis Program. www.cfe.cornell.edu/erap/C&ER/PlasticsDisposal/AgPlasticsRecycling.
|
[18]
|
Madrid B, Wortman S, Hayes DG, DeBruyn JM, Miles C, et al. 2022. End-of-life management options for agricultural mulch films in the United States—a review. Frontiers in Sustainable Food Systems 6:921496 doi: 10.3389/fsufs.2022.921496
CrossRef Google Scholar
|
[19]
|
Steinmetz Z, Wollmann C, Schaefer M, Buchmann C, David J, et al. 2016. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? The Science of the Total Environment 550:690−705 doi: 10.1016/j.scitotenv.2016.01.153
CrossRef Google Scholar
|
[20]
|
Maughan T, Drost D. 2016. Use of plastic mulch for vegetable production. Factsheet. Utah State University Extension. https://extension.usu.edu/productionhort/files/Use-of-Plastic-Mulch-for-Vegetable-Production.pdf
|
[21]
|
Guo B, Meng J, Wang X, Yin C, Hao W, et al. 2019. Quantification of pesticide residues on plastic mulching films in typical farmlands of the North China. Frontiers of Environmental Science & Engineering 14:2 doi: 10.1007/s11783-019-1181-9
CrossRef Google Scholar
|
[22]
|
Brodhagen M, Peyron M, Miles C, Inglis DA. 2015. Biodegradable plastic agricultural mulches and key features of microbial degradation. Applied Microbiology and Biotechnology 99(3):1039−56 doi: 10.1007/s00253-014-6267-5
CrossRef Google Scholar
|
[23]
|
Miles C, DeVetter L, Ghimire S, Hayes DG. 2017. Suitability of biodegradable plastic mulches for organic and sustainable agricultural production systems. HortScience 52(1):10−15 doi: 10.21273/hortsci11249-16
CrossRef Google Scholar
|
[24]
|
Hochmuth GJ, Hochmuth RC, Olson SM. 2018. Polyethylene mulching for early vegetable production in North Florida. https://edis.ifas.ufl.edu/publication/CV213
|
[25]
|
Krone P. 2020. Agricultural use of plastic in Monterey County: An assessment of plastic pollution risk and reduction for regional waterways. http://awqa.org/wp-content/toolkits/Other/White%20Paper%20V12.pdf
|
[26]
|
Perdue S, Hamer H. 2019. 2017 Census of Agriculture - Specialty Crops. Volume 2. Subject Series, Part 8. United States Department of Agriculture. www.nass.usda.gov/Publications/AgCensus/2017/Online_Resources/Specialty_Crops/SCROPS.pdf
|
[27]
|
USDA. 2023. Noncitrus Fruits and Nuts 2022 Summary. United States Department of Agriculture, National Agricultural Statistics Service. https://downloads.usda.library.cornell.edu/usda-esmis/files/zs25x846c/zk51wx21m/k356bk214/ncit0523.pdf (cited 13 Nov 2023)
|
[28]
|
Devetter L, Bolda M, Krone P. 2020. Use of Polyethylene (PE) Mulch in Strawberry Production. US: Washington State University. https://s3.wp.wsu.edu/uploads/sites/2181/2021/10/2.-PE-mulch-in-strawberry.pdf
|
[29]
|
Goldberger JR, Devetter LW, Dentzman KE. 2019. Polyethylene and Biodegradable Plastic Mulches for Strawberry Production in the United States: Experiences and Opinions of Growers in Three Regions. Horttechnology 29(5):619−28
Google Scholar
|
[30]
|
CalRecycle. 2021. State of disposal and recycling in California for calendar year 2020. www.calrecycle.ca.gov/Publications
|
[31]
|
US Environmental Protection Agency. 2018. Agriculture and Air Quality. www.epa.gov/agriculture/agriculture-and-air-quality#backyardburn
|
[32]
|
Velandia M, Delong KL, Wszelaki A, Schexnayder S, Clark C, et al. 2020. Use of Polyethylene and Plastic Biodegradable Mulches among Tennessee Fruit and Vegetable Growers. Horttechnology 30(2):212−18
Google Scholar
|
[33]
|
The Environmental Research and Education Foundation. 2023. Analysis of MSW Landfill Tipping Fees – 2022. https://erefdn.org/product/analysis-of-msw-landfill-tipping-fees-2022-pdf/
|
[34]
|
National Conference of State Legislatures. 2021. State plastic bag legislation. www.ncsl.org/environment-and-natural-resources/state-plastic-bag-legislation
|
[35]
|
Hemphill DD. 1993. Agricultural plastics as solid waste: what are the options for disposal? HortTechnology 3:70−73 doi: 10.21273/horttech.3.1.70
CrossRef Google Scholar
|
[36]
|
Moore J, Wszelaki A. 2016. Plastic mulch in fruit and vegetable production: Challenges for disposal. Report. FA-2016-02. https://biodegradablemulch.tennessee.edu/wp-content/uploads/sites/214/2020/12/Plastic_Mulch_in_Fruit_and_Vegetable_Production_12_20factsheet.pdf
|
[37]
|
Baptista AI, Perovich A. 2019. US municipal solid waste incinerators: An industry in decline. Report. Tishman Environment and Design Center at The New School. https://grist.org/wp-content/uploads/2020/07/1ad71-cr_gaiareportfinal_05.21.pdf
|
[38]
|
Baptista AI, Amarnath KK. 2017. Garbage, Power, and Environmental Justice: The Clean Power Plan Rule. Mary Envtl L & Pol'y Rev. 403. https://scholarship.law.wm.edu/wmelpr/vol41/iss2/4
|
[39]
|
Washington State Department of Ecology. n.d. Outdoor & residential burning - Washington State Department of Ecology. https://ecology.wa.gov/Air-Climate/Air-quality/Smoke-fire/Outdoor-residential-burning
|
[40]
|
Pathak G, Nichter M, Hardon A, Moyer E, Latkar A, et al. 2023. Plastic pollution and the open burning of plastic wastes. Global Environmental Change 80:102648 doi: 10.1016/j.gloenvcha.2023.102648
CrossRef Google Scholar
|
[41]
|
Kim R. 2021. To mulch or not to mulch: Problems with plastic mulch and how to address them. Journal of the National Association of Administrative Law Judiciary 42(1):1
Google Scholar
|
[42]
|
Government Accountability Office. 2022. Biorecycling of Plastics. Science & Tech Spotlight, GAO-23-106261. www.gao.gov/assets/gao-23-106261.pdf
|
[43]
|
Brooks B. 2021. Recycled plastics market becoming more liquid and globalized as demand soars. S&P Global Commodity Insights. www.spglobal.com/commodityinsights/en/market-insights/blogs/petrochemicals/031121-recycled-plastics-global-market-commoditization-standards-pricing
|
[44]
|
Briassoulis D, Hiskakis M, Babou E. 2013. Technical specifications for mechanical recycling of agricultural plastic waste. Waste Management 33:1516−30 doi: 10.1016/j.wasman.2013.03.004
CrossRef Google Scholar
|
[45]
|
Kim RK, Kang M, Kim JP, Kim YH, Lee JS, et al. 1997. Wood-polymer composites with recycled polyethylene films. In Fourth International Conference On Woodfiber-plastic Composites. Madison, WI, USA: Forest Products Society. pp. 275–79
|
[46]
|
Day M, Awadalla FT, Lynhiavu A. 1994. Chemical association of lead in auto shredder residue. Environmental Technology 15:585−92 doi: 10.1080/09593339409385464
CrossRef Google Scholar
|
[47]
|
Day M, Cooney JD, MacKinnon M. 1995. Degradation of contaminated plastics: a kinetic study. Polymer Degradation and Stability 48:341−49 doi: 10.1016/0141-3910(95)00088-4
CrossRef Google Scholar
|
[48]
|
Rahim HU, Akbar WA, Begum N, Uddin M, Qaswar M, et al. 2022. Mulches and microplastic pollution in the agroecosystem. In Mulching in Agroecosystems, eds. Akhtar K, Arif M, Riaz M, Wang H. Singapore: Springer. pp. 315−28. https://doi.org/10.1007/978-981-19-6410-7_18
|
[49]
|
Tzankova Dintcheva N, La Mantia FP, Acierno D, Di Maio L, Camino G, et al. 2001. Characterization and reprocessing of greenhouse films. Polymer Degradation and Stability 72:141−46 doi: 10.1016/s0141-3910(01)00008-8
CrossRef Google Scholar
|
[50]
|
Wang K. 2012. Die swell of complex polymeric systems. In Viscoelasticity - From Theory to Biological Applications, ed. de Vicente J. InTech. pp. 77–96. https://doi.org/10.5772/50137
|
[51]
|
PlasticsEurope. 2015. Plastics: The Facts 2014/2015: An analysis of European plastics production, demand and waste data. https://plasticseurope.org/de/wp-content/uploads/sites/3/2021/11/2014-Plastics-the-facts.pdf
|
[52]
|
Hopewell J, Dvorak R, Kosior E. 2009. Plastics recycling: Challenges and opportunities. Philosophical Transactions of the Royal Society B: Biological Sciences 364(1526):2115−26 doi: 10.1098/rstb.2008.0311
CrossRef Google Scholar
|
[53]
|
Geyer R, Jambeck JR, Law KL. 2017. Production, use, and fate of all plastics ever made. Science Advances 3(7):e1700782 doi: 10.1126/sciadv.1700782
CrossRef Google Scholar
|
[54]
|
de Camargo RV, Saron C. 2020. Mechanical–Chemical Recycling of Low-Density Polyethylene Waste with Polypropylene. Journal of Polymers and the Environment 28(3):794−802
Google Scholar
|
[55]
|
Lerici LC, Renzini MS, Pierella LB. 2015. Chemical catalyzed recycling of polymers: catalytic conversion of PE, PP and PS into fuels and chemicals over H-Y. Procedia Materials Science 8:297−303 doi: 10.1016/j.mspro.2015.04.076
CrossRef Google Scholar
|
[56]
|
Damayanti D, Saputri DR, Marpaung DSS, Yusupandi F, Sanjaya A, et al. 2022. Current prospects for plastic waste treatment. Polymers 14(15):3133 doi: 10.3390/polym14153133
CrossRef Google Scholar
|
[57]
|
Serranti S, Bonifazi G. 2019. Techniques for separation of plastic wastes. In Use of Recycled Plastics in Eco-efficient Concrete, eds. Pacheco-Torgal F, Khatib J, Colangelo F, Tuladhar R. UK: Woodhead Publishing. pp. 9–37. www.sciencedirect.com/science/article/pii/B9780081026762000025
|
[58]
|
Soto JM, Martín-Lara MA, Blázquez G, Godoy V, Quesada L, et al. 2020. Novel pre-treatment of dirty post-consumer polyethylene film for its mechanical recycling. Process Safety and Environmental Protection 139:315−24 doi: 10.1016/j.psep.2020.04.044
CrossRef Google Scholar
|
[59]
|
Andersson T, Stålbom B, Wesslén B. 2004. Degradation of polyethylene during extrusion. II. Degradation of low-density polyethylene, linear low-density polyethylene, and high-density polyethylene in film extrusion. Journal of Applied Polymer Science 92:684−85 doi: 10.1002/app.20183
CrossRef Google Scholar
|
[60]
|
Boz Noyan EC, Venkatesh A, Boldizar A. 2022. Washing post-consumer flexible polyethylene packaging waste. Recycling 7(6):90 doi: 10.3390/recycling7060090
CrossRef Google Scholar
|
[61]
|
Picuno P, Sica C, Laviano R, Dimitrijević A, Scarascia-Mugnozza G. 2012. Experimental tests and technical characteristics of regenerated films from agricultural plastics. Polymer Degradation and Stability 97:1654−61 doi: 10.1016/j.polymdegradstab.2012.06.024
CrossRef Google Scholar
|
[62]
|
Lima AC, Monteiro SN, Satyanarayana KG. 2012. Recycled polyethylene composites reinforced with jute fabric from sackcloth: part I - preparation and preliminary assessment. Journal of Polymers and the Environment 20:245−53 doi: 10.1007/s10924-011-0373-6
CrossRef Google Scholar
|
[63]
|
Amin AR. 2001. LDPE/EPDM multilayer films containing recycled LDPE for greenhouse applications. Journal of Polymers and the Environment 9:25−30 doi: 10.1023/A:1016040403779
CrossRef Google Scholar
|
[64]
|
Singh AK, Bedi R, Kaith BS. 2020. Mechanical properties of composite materials based on waste plastic – A review. Materials Today: Proceedings 26:1293−301 doi: 10.1016/j.matpr.2020.02.258
CrossRef Google Scholar
|
[65]
|
Englund K, Villechevrolle V. 2011. Flexure and water sorption properties of wood thermoplastic composites made with polymer blends. Journal of Applied Polymer Science 120:1034−39 doi: 10.1002/app.33237
CrossRef Google Scholar
|
[66]
|
Selke SE, Wichman I. 2004. Wood fiber/polyolefin composites. Composites Part A: Applied Science and Manufacturing 35:321−26 doi: 10.1016/j.compositesa.2003.09.010
CrossRef Google Scholar
|
[67]
|
Smith PM, Wolcott MP. 2006. Opportunities for wood/natural fiber-plastic composites in residential and industrial applications. Forest Products Journal 56(3):4−11
Google Scholar
|
[68]
|
Kazemi-Najafi S, Nikray SJ, Ebrahimi G. 2012. A comparison study on creep behavior of wood–plastic composite, solid wood, and polypropylene. Journal of Composite Materials 46(7):801−8 doi: 10.1177/0021998311410499
CrossRef Google Scholar
|
[69]
|
Kazemi M, Faisal Kabir S, Fini EH. 2021. State of the art in recycling waste thermoplastics and thermosets and their applications in construction. Resources, Conservation and Recycling 174:105776 doi: 10.1016/j.resconrec.2021.1057
CrossRef Google Scholar
|
[70]
|
Hama SM, Hilal NN. 2017. Fresh properties of self-compacting concrete with plastic waste as partial replacement of sand. International Journal of Sustainable Built Environment 6(2):299−308 doi: 10.1016/J.IJSBE.2017.01.001
CrossRef Google Scholar
|
[71]
|
Khalid FS, Irwan JM, Ibrahim MHW, Othman N, Shahidan S. 2018. Performance of plastic wastes in fiber-reinforced concrete beams. Construction and Building Materials 183:451−64 doi: 10.1016/j.conbuildmat.2018.06.122
CrossRef Google Scholar
|
[72]
|
Naderi Kalali E, Lotfian S, Entezar Shabestari M, Khayatzadeh S, et al. 2023. A critical review of the current progress of plastic waste recycling technology in structural materials. Current Opinion in Green and Sustainable Chemistry 40:100763 doi: 10.1016/j.cogsc.2023.100763
CrossRef Google Scholar
|
[73]
|
Brasileiro L, Moreno-Navarro F, Tauste-Martínez R, Matos J, Rubio-Gámez M del C. 2019. Reclaimed Polymers as Asphalt Binder Modifiers for More Sustainable Roads: A Review. Sustainability 11(3):646 doi: 10.3390/su11030646
CrossRef Google Scholar
|
[74]
|
Casey D, McNally C, Gibney A, Gilchrist MD. 2008. Development of a recycled polymer modified binder for use in stone mastic asphalt. Resources, Conservation and Recycling 52:1167−74 doi: 10.1016/j.resconrec.2008.06.002
CrossRef Google Scholar
|
[75]
|
Dalhat MA, Al-Abdul Wahhab HI. 2015. Performance of recycled plastic waste modified asphalt binder in Saudi Arabia. International Journal of Pavement Engineering 18(4):349−57 doi: 10.1080/10298436.2015.1088150
CrossRef Google Scholar
|
[76]
|
Willis R, Yin F, Moraes R. 2020. Recycled plastics in Asphalt part A: State of the knowledge. www.asphaltinstitute.org/wp-content/uploads/RecycledPlasticsInAsphaltPartA.pdf.
|
[77]
|
Silva JdeAAe, Rodrigues JKG, de Carvalho MW, Lucena LCdeFL, Cavalcante EH. 2018. Mechanical performance of asphalt mixtures using polymer-micronized PET-modified binder. Road Materials and Pavement Design 19(4):1001−9 doi: 10.1080/14680629.2017.1283353
CrossRef Google Scholar
|
[78]
|
Wu S, Montalvo L. 2021. Repurposing waste plastics into cleaner asphalt pavement materials: a critical literature review. Journal of Cleaner Production 280:124355 doi: 10.1016/J.JCLEPRO.2020.124355
CrossRef Google Scholar
|
[79]
|
Yin F, Fortunatus M, Moraes R, Elwardany MD, Tran N, et al. 2021. Performance evaluation of asphalt mixtures modified with recycled polyethylene via the wet process. Transportation Research Record: Journal of the Transportation Research Board 2675(10):491−502 doi: 10.1177/03611981211011650
CrossRef Google Scholar
|
[80]
|
Yin F, Moraes R, Fortunatus M, Tran N, Elwardany MD, et al. 2020. Performance evaluation and chemical characterization of asphalt binders and mixtures containing recycled polyethylene. Plastic Industry Association: Washington, DC, USA. www.academia.edu/65456948/Performance_Evaluation_and_Chemical_Characterization_of_Asphalt_Binders_and_Mixtures_Containing_Recycled_Polyethylene?source=swp_share
|
[81]
|
Ho S, Church R, Klassen K, Law B, MacLeod D, et al. 2006. Study of recycled polyethylene materials as asphalt modifiers. Canadian Journal of Civil Engineering 33:968−81 doi: 10.1139/l06-044
CrossRef Google Scholar
|
[82]
|
Chen S. 2020. An evaluation of waste plastic in asphalt pavement towards a circular economy. Thesis. University of Missouri, Columbia. https://doi.org/10.32469/10355/88941
|
[83]
|
Englund K, Li H, Brandt K, Camenzind D, Dossey S, et al. 2021. Plastics recycling market development for Washington State and the Northwest Region. Report. Washington State University, US. https://s3.wp.wsu.edu/uploads/sites/164/2021/07/RDC-Report-7-15-2021-1.pdf
|
[84]
|
Paszun D, Spychaj T. 1997. Chemical Recycling of Poly(ethylene terephthalate). Industrial & Engineering Chemistry Research 36(4):1373−83 doi: 10.1021/ie960563c
CrossRef Google Scholar
|
[85]
|
Coates GW, Getzler YDYL. 2020. Chemical recycling to monomer for an ideal, circular polymer economy. Nature Reviews Materials 5(7):501−16 doi: 10.1038/s41578-020-0190-4
CrossRef Google Scholar
|
[86]
|
Das SK, Eshkalak SK, Chinnappan A, Ghosh R, Jayathilaka WADM, et al. 2021. Plastic recycling of polyethylene terephthalate (PET) and polyhydroxybutyrate (PHB)—a comprehensive review. Materials Circular Economy 3:9 doi: 10.1007/s42824-021-00025-3
CrossRef Google Scholar
|
[87]
|
Khalid MY, Arif ZU, Ahmed W, Arshad H. 2022. Recent trends in recycling and reusing techniques of different plastic polymers and their composite materials. Sustainable Materials and Technologies 31:e00382 doi: 10.1016/j.susmat.2021.e00382
CrossRef Google Scholar
|
[88]
|
Achilias DS, Roupakias C, Megalokonomos P, Lappas AA, Antonakou EV. 2007. Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP). Journal of Hazardous Materials 149:536−42 doi: 10.1016/j.jhazmat.2007.06.076
CrossRef Google Scholar
|
[89]
|
Mishra R, Kumar A, Singh E, Kumar S. 2023. Recent Research Advancements in Catalytic Pyrolysis of Plastic Waste. ACS Sustainable Chemistry & Engineering 11(6):2033−49 doi: 10.1021/acssuschemeng.2c05759
CrossRef Google Scholar
|
[90]
|
Wang LC, Lee WJ, Tsai PJ, Lee WS, Chang-Chien GP. 2003. Emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans from stack flue gases of sinter plants. Chemosphere 50:1123−29 doi: 10.1016/s0045-6535(02)00702-6
CrossRef Google Scholar
|
[91]
|
Kumar S, Singh E, Mishra R, Kumar A, Caucci S. 2021. Utilization of Plastic Wastes for Sustainable Environmental Management: A Review. ChemSusChem 14(19):3985−4006 doi: 10.1002/cssc.202101631
CrossRef Google Scholar
|
[92]
|
Dai L, Zhou N, Lv Y, Cheng Y, Wang Y, Liu Y, et al. 2022. Pyrolysis technology for plastic waste recycling: A state-of-the-art review. Prog Energy Combust Sci 93:101021 doi: 10.1016/j.pecs.2022.101021
CrossRef Google Scholar
|
[93]
|
Park SS, Seo DK, Lee SH, Yu TU, Hwang J. 2012. Study on pyrolysis characteristics of refuse plastic fuel using lab-scale tube furnace and thermogravimetric analysis reactor. Journal of Analytical and Applied Pyrolysis 97:29−38 doi: 10.1016/j.jaap.2012.06.009
CrossRef Google Scholar
|
[94]
|
Susastriawan AAP, Purnomo, Sandria A. 2020. Experimental study the influence of zeolite size on low-temperature pyrolysis of low-density polyethylene plastic waste. Thermal Science and Engineering Progress 17:100497 doi: 10.1016/j.tsep.2020.100497
CrossRef Google Scholar
|
[95]
|
Zhang Y, Duan D, Lei H, Villota E, Ruan R. 2019. Jet fuel production from waste plastics via catalytic pyrolysis with activated carbons. Applied Energy 251:113337 doi: 10.1016/j.apenergy.2019.113337
CrossRef Google Scholar
|
[96]
|
Lee N, Joo J, Lin KYA, Lee J. 2021. Waste-to-fuels: pyrolysis of low-density polyethylene waste in the presence of H-ZSM-11. Polymers 13(8):1198 doi: 10.3390/polym13081198
CrossRef Google Scholar
|
[97]
|
Singh E, Kumar A, Khapre A, Saikia P, Shukla SK, Kumar S, et al. 2020. Efficient removal of arsenic using plastic waste char: prevailing mechanism and sorption performance. Journal of Water Process Engineering 33:101095 doi: 10.1016/j.jwpe.2019.101095
CrossRef Google Scholar
|
[98]
|
Manžuch Z, Akelytė R, Camboni M, Carlander D. 2021. recycling of polymeric materials from waste in the circular eco. Final Report. ECHA/2020/571.
|
[99]
|
Soong YHV, Sobkowicz MJ, Xie D. 2022. Recent advances in biological recycling of polyethylene terephthalate (PET) plastic wastes. Bioengineering 9:98 doi: 10.3390/bioengineering9030098
CrossRef Google Scholar
|
[100]
|
United States FDA. 2021. Guidance for industry: Use of Recycled plastics in food packaging (chemistry considerations). US Department of Health and Human Services Food and Drug Administration Center for Food Safety and Applied Nutrition. www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-use-recycled-plastics-food-packaging-chemistry-considerations
|
[101]
|
Briassoulis D, Hiskakis M, Babou E, Antiohos SK, Papadi C. 2012. Experimental investigation of the quality characteristics of agricultural plastic wastes regarding their recycling and energy recovery potential. Waste Management 32:1075−90 doi: 10.1016/j.wasman.2012.01.018
CrossRef Google Scholar
|
[102]
|
Nark R, Xiao K. 2016. A film processor's guide to understanding materials & equipment.Plastic Technology, Gardner Business Media Inc. www.ptonline.com/articles/a-film-processors-guide-to-understanding-materials-equipment
|
[103]
|
Mariansky G. 2006. Plastics - Solution or pollution. Cal Engineering & Geology (CalEng). pp. 12–15.
|
[104]
|
Briassoulis D, Hiskakis M, Briassoulis C. 2012. Design of a common European agricultural plastic packaging waste management system in Europe. C-0296. Proceedings of the CIGR-AgEng, Valencia, Spain, July 8–12, 2012. Belgium: International Commission of Agricultural and Biosystems Engineering (CIGR-AgEng).
|
[105]
|
Patel M, Von Thienen N, Jochem E, Worrell E. 2000. Recycling of plastics in Germany. Resources, Conservation and Recycling 29:65−90 doi: 10.1016/S0921-3449(99)00058-0
CrossRef Google Scholar
|
[106]
|
Gendell A, Lahme V. 2022. Feedstock quality guidelines for pyrolysis of plastic waste. Report for the Alliance to End Plastic Waste. www.endplasticwaste.org
|
[107]
|
Schyns ZOG, Shaver MP. 2021. Mechanical recycling of packaging plastics: a review. Macromolecular Rapid Communications 42(3):2000415 doi: 10.1002/marc.202000415
CrossRef Google Scholar
|
[108]
|
Jeswani H, Krüger C, Russ M, Horlacher M, Antony F, et al. 2021. Life cycle environmental impacts of chemical recycling via pyrolysis of mixed plastic waste in comparison with mechanical recycling and energy recovery. Science of the Total Environment 769:144483 doi: 10.1016/j.scitotenv.2020.144483
CrossRef Google Scholar
|