-
An ethanol reformer model was developed and validated [ 25] with the experimental measurements from López et al. [ 19] . The reforming mechanism consists of the following three reactions:
$\begin{array}{*{20}{l}} \mathrm{C}_2\mathrm{H}_5\mathrm{O}\mathrm{H}\to\mathrm{C}\mathrm{H}_4+\mathrm{H}_2+\mathrm{C}\mathrm{O}\; \; \Delta\rm{H}=49.3\; kJ/mol &\quad {\rm{R1}} \\\mathrm{C}\mathrm{O}+{\mathrm{H}}_{2}\mathrm{O}\rightleftharpoons \mathrm{ }\mathrm{C}{\mathrm{O}}_{2}+{\mathrm{H}}_{2}\;\; \Delta \rm H = -41.16\;kJ/mol&\quad{\rm{ R2}}\\ \rm CH_4 + H_2O \rightleftharpoons 3H_2 + CO\;\; \Delta H = 206.17\;kJ/mol &\quad {\rm{R3}}\end{array}$ The optimized activation energy and pre-exponential factors are reported in Table 1.
Table 1. Global reaction rate expressions for the three reactions of ethanol reforming.
Reactions Reaction rate expression (mol/m 3/s) $ {\rm{C}_2H_5OH\to CH_4+H_2+CO }$ $ {716.67\;\mathrm{*}\;\mathrm{exp}\left(-\dfrac{87}{\mathrm{R}\mathrm{T}}\right)\;\mathrm{*}\;{\mathrm{p}}_{{\mathrm{C}}_{2}{\mathrm{H}}_{5}\mathrm{O}\mathrm{H}}\;\mathrm{*}\;{\mathrm{\rho }}_{\mathrm{c}\mathrm{a}\mathrm{t}} }$ $ {\mathrm{C}\mathrm{O}+{\mathrm{H}}_{2}\mathrm{O}\mathrm{ }\rightleftharpoons \mathrm{ }\mathrm{C}{\mathrm{O}}_{2}+{\mathrm{H}}_{2}} $ $ {6\;\mathrm{*}\;\mathrm{exp}\left(-\dfrac{70}{\mathrm{R}\mathrm{T}}\right)\;\mathrm{*}\;\left(\left({\mathrm{p}}_{\mathrm{C}\mathrm{O}}\;\mathrm{*}\;{\mathrm{p}}_{{\mathrm{H}}_{2}\mathrm{O}}\right)-\dfrac{\left({\mathrm{p}}_{\mathrm{C}{\mathrm{O}}_{2}}\;\mathrm{*}\;{\mathrm{p}}_{{\mathrm{H}}_{2}}\right)}{{\mathrm{K}}_{\mathrm{e}\mathrm{q}2}}\right)\;\mathrm{*}\;{\mathrm{\rho }}_{\mathrm{c}\mathrm{a}\mathrm{t}}} $ $ {\mathrm{C}{\mathrm{H}}_{4}+{\mathrm{H}}_{2}\mathrm{O}\mathrm{ }\rightleftharpoons \mathrm{ }3{\mathrm{H}}_{2}+\mathrm{C}\mathrm{O}} $ ${ 8833.33\;\mathrm{*}\;\mathrm{exp}\left(-\dfrac{162}{\mathrm{R}\mathrm{T}}\right)\;\mathrm{*}\;\left(\left({\mathrm{p}}_{\mathrm{C}{\mathrm{H}}_{4}}\;\mathrm{*}\;{\mathrm{p}}_{{\mathrm{H}}_{2}\mathrm{O}}\right)-\dfrac{\left({\mathrm{p}}_{\mathrm{C}\mathrm{O}}\;\mathrm{*}\;{{\mathrm{p}}_{{\mathrm{H}}_{2}}}^{3}\right)}{{\mathrm{K}}_{\mathrm{e}\mathrm{q}3}}\right)\;\mathrm{*}\;{\mathrm{\rho }}_{\mathrm{c}\mathrm{a}\mathrm{t}} }$ Where p x corresponds to the partial pressure of the corresponding species and K eq is the equilibrium constant. For additional details on the chemical kinetics, please refer to Hariharan et al. [ 25] .
Figure 1 shows the model validation for ethanol conversion and H 2 yield for different reactor temperatures. Ethanol conversion reaches 100% above 700 K, whereas hydrogen yield increases linearly until 700 K, primarily from ethanol decomposition. From 700 and 850 K, a marginal increase in H2 yield occurs which is due to the WGS reaction, followed by a sharp increase from methane reforming reactions. The model was also able to capture all species mole fractions for the entire operating temperature range of 500 to 1,000 K.
Figure 1.
Model validation on the effects of various operating temperatures on (a) ethanol conversion and H 2 yield, and (b) species mole fraction (lines represent the model results and the dots represent experimental measurements from López et al. [ 19] ).
-
An SOFC model with direct internal reforming of ethanol was developed based on the validated kinetics of ethanol reformer model as shown in Fig. 2. A schematic representation of the two-stage process of reforming ethanol to hydrogen and then to power with water as a byproduct is shown in Fig. 3. Laminar flow is assumed in the channel as the Reynolds numbers encountered in the fuel cells are less than 2,000 even at the highest current densities and the flow is assumed to be fully developed. Additionally, the axial diffusion in the channel is assumed negligible as flow is dominated by convection and radial diffusion in the channel is accounted for using the widely used mass transfer coefficient approach [ 27] .
The governing equation of species concentrations in both the anode and cathode channels is given by:
$ \dfrac{\partial {\mathrm{\omega }}_{\mathrm{g},\mathrm{j}}}{\partial \mathrm{t}}=-\mathrm{u}\dfrac{\partial {\mathrm{\omega }}_{\mathrm{g},\mathrm{j}}}{\partial \mathrm{z}}-{\mathrm{k}}_{\mathrm{m}\mathrm{e},\mathrm{j}}{\mathrm{S}}_{\mathrm{f}\mathrm{l}\mathrm{u}\mathrm{x}}\left({\mathrm{\omega }}_{\mathrm{g},\mathrm{j}}-{\left.{\mathrm{\omega }}_{\mathrm{s},\mathrm{j}}\right|}_{\mathrm{y}=0}\right) $ (1) where,
$ {S}_{flux} $ $ {S}_{flux}=\dfrac{{A}_{s}}{{V}_{f}} $ Table 2. Sherwood number as a function of aspect ratio.
Aspect ratio 0.2 0.4 0.7 1.0 2.0 2.5 5.0 10.0 Sh 0.96 1.60 2.26 2.71 3.54 3.78 4.41 4.85 The governing reaction-diffusion equation for species balance in the anode support layer is:
$ \dfrac{\mathrm{d}{\mathrm{\omega }}_{\mathrm{s},\mathrm{j}}}{\mathrm{d}\mathrm{t}}=\dfrac{1}{{\mathrm{\epsilon }}_{\mathrm{s}}{\mathrm{\rho }}_{\mathrm{s}}}\left[{\mathrm{D}}_{\mathrm{s},\mathrm{j}}{\mathrm{\rho }}_{\mathrm{s}}\dfrac{{\partial }^{2}{\mathrm{\omega }}_{\mathrm{s},\mathrm{j}}}{\partial {\mathrm{y}}^{2}}+{\mathrm{R}}_{\mathrm{s},\mathrm{j}}\right]$ (2) with the boundary condition given as:
$ {\left.-{\mathrm{D}}_{\mathrm{s},\mathrm{j}}{\mathrm{\rho }}_{\mathrm{s}}\dfrac{\partial {\mathrm{\omega }}_{\mathrm{s},\mathrm{j}}}{\partial \mathrm{y}}\right|}_{\mathrm{y}=0}={\mathrm{k}}_{\mathrm{m}\mathrm{e},\mathrm{j}}{{\mathrm{\rho }}_{\mathrm{g}}\mathrm{S}}_{\mathrm{f}\mathrm{l}\mathrm{u}\mathrm{x}}\left({\mathrm{\omega }}_{\mathrm{g},\mathrm{j}}-{\left.{\mathrm{\omega }}_{\mathrm{s},\mathrm{j}}\right|}_{\mathrm{y}=0}\right) $ (3) $ {\left.-{\rm D}_{\rm{s,j}}{\rho }_{s}\dfrac{\partial {\omega }_{s,j}}{\partial y}\right|}_{y=\delta }={\rm R}_{\rm{ct}} $ (4) These equations account for the simultaneous diffusion and reactions within the anode support layer and the charge transfer reactions.
$ {R}_{s,j} $ $ j $ $ {V}_{s} $ $ {R}_{ct} $ $ {A}_{CT} $ $ {V}_{s}={A}_{s}{\delta }_{s}{N}_{cells} $ $ {A}_{s} $ $ {A}_{s} $ $ {A}_{CT} $ $ {A}_{CT}={A}_{s}{N}_{cells} $ The effective diffusivities are calculated as follows:
$ {\mathrm{D}}_{\mathrm{s},\mathrm{j}}=\dfrac{\mathrm{\tau }}{{\mathrm{\varepsilon }}_{\mathrm{s}}}{\left(\dfrac{1}{{\mathrm{D}}_{\mathrm{f},\mathrm{j}}}+\dfrac{1}{{\mathrm{D}}_{\mathrm{k}\mathrm{n},\mathrm{j}}}\right)}^{-1} $ (5) $ {\mathrm{D}}_{\mathrm{k}\mathrm{n},\mathrm{j}}=\dfrac{{\mathrm{d}}_{\mathrm{p}}}{3}\sqrt{\dfrac{8\mathrm{R}{\mathrm{T}}_{\mathrm{s}}}{\mathrm{\pi }\mathrm{M}{\mathrm{W}}_{\mathrm{j}}}} $ (6) where,
$ {D}_{f,j} $ $ {D}_{kn,j} $ $ \text{j} $ $ {\varepsilon }_{s} $ $ \text{τ} $ $ {d}_{p} $ Alternatively, the effect of diffusional limitations on voltage output can be considered by an empirical approach as described in later sections. In the limit of negligible diffusional limitation, (Eqn 2) can be integrated along with the boundary conditions to obtain the following form:
$ \dfrac{\mathrm{d}{\mathrm{\omega }}_{\mathrm{s},\mathrm{j}}}{\mathrm{d}\mathrm{t}}=\dfrac{1}{{\mathrm{\varepsilon }}_{\mathrm{s}}{\mathrm{\rho }}_{\mathrm{s}}}\left[{\mathrm{k}}_{\mathrm{m}\mathrm{e},\mathrm{j}}{\mathrm{\rho }}_{\mathrm{g}}\dfrac{{\mathrm{A}}_{\mathrm{f}\mathrm{l}\mathrm{u}\mathrm{x}}}{{\mathrm{V}}_{\mathrm{s}}}\left({\mathrm{\omega }}_{\mathrm{g},\mathrm{j}}-{\mathrm{\omega }}_{\mathrm{s},\mathrm{j}}\right)+{\mathrm{R}}_{\mathrm{s},\mathrm{j}}+{\mathrm{R}}_{\mathrm{C}\mathrm{T}}\dfrac{{\mathrm{A}}_{\mathrm{C}\mathrm{T}}}{{\mathrm{V}}_{\mathrm{S}}}\right] $ (7) Once the species concentration fields are calculated with the above equations following the similar numerical solution approaches reported previously [ 29, 30] for a specified current density, SOFC voltage output is calculated by subtracting different voltage losses from the theoretical reversible cell voltage. It is known that oxidation of both H 2and CO species can contribute to the charge transfer:
$\begin{array}{*{20}{c}} \quad\mathrm{C}\mathrm{O}+1/2\;{\mathrm{O}}_{2}\to {\mathrm{C}\mathrm{O}}_{2}&\rm R4 \\ \quad \mathrm{H}_2+1/2\; \mathrm{O}_2\to\mathrm{H}_2\mathrm{O}& \rm{R}5\end{array}$ However, it is reported that the electrochemical oxidation of H 2 is about 10 times faster than that of CO. As a result, most of the CO is consumed indirectly via water gas shift reaction which converts CO to H 2. Jiang & Virkar [ 31] investigated different ratios of CO/H 2 and reported that even with 55% of CO in the mixture of H 2 and CO, the performance of the cell was only slightly different from pure H 2, since most of the CO undergoes the WGS reaction with the available water. Conversely, when enough water is in the mixture, which is true for the steam reforming of ethanol, charge transfer predominantly occurs via H 2 oxidation reaction. Thus, in this work, the H 2 oxidation reaction only was considered as this considerably simplifies voltage loss calculations.
The output voltage of the SOFC is calculated by subtracting different losses from the theoretical voltage calculated by the Nernst equation:
$ \mathrm{V=V_{Nernst}-\eta_{act,a}-\eta_{act,c}-\eta_{ohmic}-\eta_{conc,a}-\eta_{conc,c}} $ (8) Each term in the above equation is discussed next. Nernst potential is calculated by the Gibbs free energy of formation of species involved in the hydrogen reaction as:
$ {\mathrm{V}}_{\mathrm{N}\mathrm{e}\mathrm{r}\mathrm{n}\mathrm{s}\mathrm{t}}=-\dfrac{{\Delta \mathrm{G}}_{\mathrm{r}\mathrm{x}\mathrm{n}}}{2\mathrm{F}}=-\dfrac{{\Delta \mathrm{G}}_{\mathrm{f},{\mathrm{H}}_{2}\mathrm{O}}-{\Delta \mathrm{G}}_{\mathrm{f},{\mathrm{H}}_{2}}-{0.5\mathrm{ }\mathrm{ }\mathrm{ }\mathrm{ }\mathrm{ }\mathrm{ }\mathrm{ }\mathrm{ }\Delta \mathrm{G}}_{\mathrm{f},{\mathrm{O}}_{2}}}{2\mathrm{F}} $ (9) where,
$ {\Delta G}_{f} $ $ {\Delta \mathrm{G}}_{\mathrm{f}}={\Delta \mathrm{G}}_{\mathrm{f}}^{0}+\mathrm{R}\mathrm{T}\mathrm{l}\mathrm{n}\left(P/P_0\right) $ (10) Substituting the above equation in Eqn 9 gives the Nernst equation in terms of partial pressures of species:
$ {\mathrm{V}}_{\mathrm{N}\mathrm{e}\mathrm{r}\mathrm{n}\mathrm{s}\mathrm{t}}={\mathrm{E}}^{0}-\dfrac{\mathrm{R}\mathrm{T}}{2\mathrm{F}}\mathrm{l}\mathrm{n}\left(\dfrac{{\mathrm{P}}_{{\mathrm{H}}_{2}\mathrm{O}}}{{\mathrm{P}}_{{\mathrm{H}}_{2}}{\mathrm{P}}_{{\mathrm{O}}_{2}}^{1/2}}\right) $ (11) Activation loss,
$ {\eta }_{act} $ $ \mathrm{i}={\mathrm{i}}_{0}\left[\mathrm{e}\mathrm{x}\mathrm{p}\left(\dfrac{\mathrm{\alpha }\mathrm{F}{\mathrm{\eta }}_{\mathrm{a}\mathrm{c}\mathrm{t}}}{\mathrm{R}\mathrm{T}}\right)-\mathrm{e}\mathrm{x}\mathrm{p}\left(\dfrac{-\left(1-\mathrm{\alpha }\right)\mathrm{F}{\mathrm{\eta }}_{\mathrm{a}\mathrm{c}\mathrm{t}}}{\mathrm{R}\mathrm{T}}\right)\right] $ (12) where,
$ i $ $ {i}_{0} $ $ \alpha $ $ {\mathrm{i}}_{0}^{\mathrm{a}\mathrm{n}}={\mathrm{\gamma }}^{\mathrm{a}\mathrm{n}}{\left(\dfrac{{\mathrm{p}}_{{\mathrm{H}}_{2}}^{\mathrm{*}}}{{\mathrm{p}}_{\mathrm{r}\mathrm{e}\mathrm{f}}}\right)}^{\mathrm{a}}{\left(\dfrac{{\mathrm{p}}_{{\mathrm{H}}_{2}\mathrm{O}}^{\mathrm{*}}}{{\mathrm{p}}_{\mathrm{r}\mathrm{e}\mathrm{f}}}\right)}^{\mathrm{b}}\mathrm{exp}\left[-\dfrac{{\mathrm{E}}_{\mathrm{a}}^{\mathrm{a}\mathrm{n}}}{\mathrm{R}\mathrm{T}}\right] $ (13) $ {\mathrm{i}}_{0}^{\mathrm{c}\mathrm{a}}={\mathrm{\gamma }}^{\mathrm{c}\mathrm{a}}{\left(\dfrac{{\mathrm{p}}_{{\mathrm{O}}_{2}}^{\mathrm{*}}}{{\mathrm{p}}_{\mathrm{r}\mathrm{e}\mathrm{f}}}\right)}^{\mathrm{c}}\mathrm{exp}\left[-\dfrac{{\mathrm{E}}_{\mathrm{a}}^{\mathrm{c}\mathrm{a}}}{\mathrm{R}\mathrm{T}}\right] $ (14) Voltage losses due to concentration polarization are implicitly accounted for when the full reaction-diffusion equation is solved, whereas they need to be explicitly calculated when the simplified equation given by (Eqn 7) is used in the support layer. The following function is widely used to calculate the concentration polarization,
$ \mathrm{V}_{\mathrm{m}\mathrm{t}}=\mathrm{ }-\mathrm{C}\mathrm{\ \times\ }\mathrm{ln}\left(1-\dfrac{\mathrm{i}}{\mathrm{i}_{\mathrm{l}}}\right) $ (15) where, C represents the mass transport loss coefficient and i l is the limiting current density. They are related to physical variables as:
$ \mathrm{C}=\dfrac{\mathrm{R}\mathrm{T}}{\mathrm{n}\mathrm{F}}\left(1+\dfrac{1}{\mathrm{\alpha }}\right) $ (16) $ {\mathrm{i}}_{\mathrm{l}}=\dfrac{{\mathrm{C}}_{\mathrm{b}}{\mathrm{D}}_{\mathrm{e}}}{\mathrm{\delta }} $ (17) However, it is known that the theoretical limiting current density calculated using the above relations yields much higher current densities than the measured values as the additional resistances such as surface diffusion of adsorbed species on the catalysts can contribute to the voltage loss. Surface diffusion is a highly localized phenomenon, and it is difficult to separate it from kinetics resistance. Considering this, C and
$ {i}_{l} $ Ohmic losses are calculated as:
$ \mathrm{\eta}_{\mathrm{o}\mathrm{h}\mathrm{m}\mathrm{i}\mathrm{c}}=\mathrm{i}\mathrm{\ \times\ }\mathrm{A}\mathrm{S}\mathrm{R} $ (18) where, ASR represents the area species Ohmic resistance, which predominantly depends on the conductivity of the electrolyte. Conduction of oxygen ions in the YSZ electrolyte takes place via the hopping mechanism and is an activated process with an activation temperature of about 10,300 K (activation energy of about 85 kJ/mol) [ 32] . Conductivity is evaluated by using an Arrhenius expression as:
$ \mathrm{\sigma }={\mathrm{\sigma }}_{0}\mathrm{exp}\left[-\dfrac{10300}{\mathrm{T}}\right] $ (19) $ \mathrm{A}\mathrm{S}\mathrm{R}=\dfrac{\mathrm{l}}{\mathrm{\sigma}} $ (20) -
The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.
-
About this article
Cite this article
Hariharan D, Sarkar B, Gundlapally S. 2024. Modeling and analysis of direct internal reforming in ethanol-fueled SOFC. Emergency Management Science and Technology 4: e016 doi: 10.48130/emst-0024-0017
Modeling and analysis of direct internal reforming in ethanol-fueled SOFC
- Received: 30 April 2024
- Revised: 24 June 2024
- Accepted: 15 July 2024
- Published online: 13 August 2024
Abstract: Solid oxide fuel cells (SOFCs), in which the chemical energy of the fuel is directly converted to electrical energy, offer a compelling alternative to combustion-based power technologies due to their fuel flexibility, high efficiency, and low emissions, especially when coupled with combined heat and power (CHP) systems. SOFCs hold significant promise due to their potential to serve as distributed power sources and as reliable backup solutions during primary power disruptions. Among the various configurations of SOFC systems, those employing direct internal reforming stand out. This approach involves the in-situ conversion of hydrocarbon fuels like methane and diesel into hydrogen inside an SOFC device, which is subsequently electrochemically oxidized to generate power. This method offers distinct advantages over other configurations. In this study, a newly developed model is introduced that is specifically tailored for SOFCs with direct internal reforming of ethanol. By comparing the model's predictions with experimental data, its accuracy and reliability was validated. Additionally, a comprehensive analysis of polarization curves under varying operating conditions were conducted, examining factors such as hydrogen yield and species distribution along the channel length. This investigation enhanced our understanding of the internal reactions within SOFCs, providing valuable insights for optimizing their technology.
-
Key words:
- SOFC model /
- Ethanol /
- Hydrogen /
- Direct Internal Reforming