[1]
|
Styles BT. 1988. "Book-review" Manual of cultivated broad-leaved Trees & Shrubs. Vol. III. The Commonwealth Forestry Review 67:82
Google Scholar
|
[2]
|
Fan S, Liang T, Yu H, Bi Q, Li G, et al. 2016. Kernel characteristics, oil contents, fatty acid compositions and biodiesel properties in developing Siberian apricot (Prunus sibirica L.) seeds. Industrial Crops and Products 89:195−99 doi: 10.1016/j.indcrop.2016.05.012
CrossRef Google Scholar
|
[3]
|
Yin M, Wuyun T, Jiang Z, Zeng J. 2020. Amino acid profiles and protein quality of Siberian apricot (Prunus sibirica L.) kernels from Inner Mongolia. Journal of Forestry Research 31:1391−97 doi: 10.1007/s11676-019-00882-4
CrossRef Google Scholar
|
[4]
|
Rampáčková E, Göttingerová M, Gála P, Kiss T, Ercişli S, et al. 2021. Evaluation of protein and antioxidant content in apricot kernels as a sustainable additional source of nutrition. Sustainability 13:4742 doi: 10.3390/su13094742
CrossRef Google Scholar
|
[5]
|
Yıldırım F, Aşkın M. 2010. Variability of amygdalin content in seeds of sweet andbitter apricot cultivars in Turkey. African Journal of Biotechnology 9:6522−24
Google Scholar
|
[6]
|
Guo M, Kong Q, Wang W, Yu H. 2023. Biotransformation of amygdalin by lactic acid bacteria fermentation. Process Biochemistry 132:221−27 doi: 10.1016/j.procbio.2023.07.022
CrossRef Google Scholar
|
[7]
|
Ramalingam S, Bahuguna A, Al-Ansari MM, Shanmugam G, Al-Humaid L, et al. 2022. Whole-genome analysis guided molecular mechanism of cyanogenic glucoside degradation by yeast isolated from Prunus mume fruit syrup. Chemosphere 307:136061 doi: 10.1016/j.chemosphere.2022.136061
CrossRef Google Scholar
|
[8]
|
Zhang G, Liu M, Ma Z, Wang M, Sun L, et al. 2023. Analysis of bitter almonds and processed products based on HPLC-fingerprints and chemometry. Chemistry & Biodiversity 20:e202200989 doi: 10.1002/cbdv.202200989
CrossRef Google Scholar
|
[9]
|
Makovi CM, Parker CH, Zhang K. 2023. Determination of amygdalin in apricot kernels and almonds using LC-MS/MS. Journal of AOAC International 106:457−63 doi: 10.1093/jaoacint/qsac154
CrossRef Google Scholar
|
[10]
|
Bolarinwa IF, Orfila C, Morgan MRA. 2014. Amygdalin content of seeds, kernels and food products commercially-available in the UK. Food Chemistry 152:133−39 doi: 10.1016/j.foodchem.2013.11.002
CrossRef Google Scholar
|
[11]
|
Figurová D, Tokárová K, Greifová H, Knížatová N, Kolesárová A, et al. 2021. Inflammation, it's regulation and antiphlogistic effect of the cyanogenic glycoside amygdalin. Molecules 26:5972 doi: 10.3390/molecules26195972
CrossRef Google Scholar
|
[12]
|
Cortés V, Talens P, Barat MJ, Lerma-García JM. 2018. Potential of NIR spectroscopy to predict amygdalin content established by HPLC in intact almonds and classification based on almond bitterness. Food Control 91:68−75 doi: 10.1016/j.foodcont.2018.03.040
CrossRef Google Scholar
|
[13]
|
Ellithy MM, Tarek HE, Shalash HN. 2023. Nutraceutical with a promising oral anticancer effect: in vitro study on apricot oil extract. Bulletin of the National Research Centre 47:1 doi: 10.1186/s42269-022-00976-w
CrossRef Google Scholar
|
[14]
|
Arshi A, Hosseini SM, Hosseini FSK, Amiri ZY, Hosseini FS, et al. 2019. The anti-cancer effect of amygdalin on human cancer cell lines. Molecular Biology Reports 46:2059−66 doi: 10.1007/s11033-019-04656-3
CrossRef Google Scholar
|
[15]
|
Zhang N, Zhang Q, Yao J, Zhang X. 2019. Changes of amygdalin and volatile components of apricot kernels during the ultrasonically-accelerated debitterizing. Ultrasonics Sonochemistry 58:104614 doi: 10.1016/j.ultsonch.2019.104614
CrossRef Google Scholar
|
[16]
|
Del Cueto J, Møller BL, Dicenta F, Sánchez-Pérez R. 2018. β-Glucosidase activity in almond seeds. Plant Physiology and Biochemistry 126:163−72 doi: 10.1016/j.plaphy.2017.12.028
CrossRef Google Scholar
|
[17]
|
Sánchez-Pérez R, Jørgensen K, Olsen CE, Dicenta F, Møller BL. 2008. Bitterness in almonds. Plant Physiology 146:1040−52 doi: 10.1104/pp.107.112979
CrossRef Google Scholar
|
[18]
|
Mirzaei H, Rezaei K. 2019. Amygdalin contents of oil and meal from wild almond: effect of different heat pretreatment and extraction methods. Journal of the American Oil Chemists' Society 96:1163−71 doi: 10.1002/aocs.12257
CrossRef Google Scholar
|
[19]
|
Zhang N, Zhang Q, Wei C, Fan X. 2019. Aqueous two-phase system for the extraction of amygdalin from the debitterized water of apricot kernels. CyTA - Journal of Food 17:527−35 doi: 10.1080/19476337.2019.1609586
CrossRef Google Scholar
|
[20]
|
Pang Y, Liu H, Wang L. 2019. Determination of amygdalin in nectarine nucleolus by capillary electrophoresis. IOP Conference Series: Earth and Environmental Science 218:012160 doi: 10.1088/1755-1315/218/1/012160
CrossRef Google Scholar
|
[21]
|
Jaszczak-Wilke E, Polkowska Ż, Koprowski M, Owsianik K, Mitchell AE, et al. 2021. Amygdalin: toxicity, anticancer activity and analytical procedures for its determination in plant seeds. Molecules 26:2253 doi: 10.3390/molecules26082253
CrossRef Google Scholar
|
[22]
|
Attia AA, Salama AF, Eldiasty JG, Mosallam SAER, Ali El-Naggar S, et al. 2022. Amygdalin potentiates the anti-cancer effect of Sorafenib on Ehrlich ascites carcinoma and ameliorates the associated liver damage. Scientific Reports 12:6494 doi: 10.1038/s41598-022-10517-0
CrossRef Google Scholar
|
[23]
|
Zhang D, Ye J, Song Y, Wei Y, Jiang S, et al. 2023. Isomerization and stabilization of amygdalin from peach kernels. Molecules 28:4550 doi: 10.3390/molecules28114550
CrossRef Google Scholar
|
[24]
|
Zhu L, Guo M, Xue Y, Pan H, Wang J, et al. 2017. Inspection of grain and oils—Determination of amygdalin content by high-performance liquid chromatography. National Food and Strategic Reserves Administration. 7 pp. www.huoshuiyuan.org/uploadfile/2017/0926/20170926020715511.pdf
|
[25]
|
Bray NL, Pimentel H, Melsted P, Pachter L. 2016. Erratum: near-optimal probabilistic RNA-seq quantification. Nature Biotechnology 34:888 doi: 10.1038/nbt0816-888d
CrossRef Google Scholar
|
[26]
|
Ernst J, Bar-Joseph Z. 2006. STEM: a tool for the analysis of short time series gene expression data. BMC Bioinformatics 7:191 doi: 10.1186/1471-2105-7-191
CrossRef Google Scholar
|
[27]
|
Livak JK, Schmittgen DT. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−8 doi: 10.1006/meth.2001.1262
CrossRef Google Scholar
|
[28]
|
Gómez E, Burgos L, Soriano C, Marín J. 1998. Amygdalin content in the seeds of several apricot cultivars. Journal of the Science of Food and Agriculture 77:184−86 doi: 10.1002/(SICI)1097-0010(199806)77:2<184::AID-JSFA22>3.0.CO;2-H
CrossRef Google Scholar
|
[29]
|
Deng P, Cui B, Zhu H, Buangurn P, Zhang D, et al. 2021. Accumulation Pattern of amygdalin and prunasin and its correlation with fruit and kernel agronomic characteristics during apricot (Prunus armeniaca L.) kernel development. Foods 10:397 doi: 10.3390/foods10020397
CrossRef Google Scholar
|
[30]
|
Wu Y, Xu M, Dong S, Liu M. 2019. Analysis of nutritional composition of bitter almond from different growing areas. Science and Technology of Food Industry 40:300−5 doi: 10.13386/j.issn1002-0306.2019.23.049
CrossRef Google Scholar
|
[31]
|
Gleadow RM, Møller BL. 2014. Cyanogenic glycosides: synthesis, physiology, and phenotypic plasticity. Annual Review of Plant Biology 65:155−85 doi: 10.1146/annurev-arplant-050213-040027
CrossRef Google Scholar
|
[32]
|
Bak S, Kahn RA, Nielsen HL, Moller BL, Halkier BA. 1998. Cloning of three A-type cytochromes P450, CYP71E1, CYP98, and CYP99 from Sorghum bicolor (L.) Moench by a PCR approach and identification by expression in Escherichia coli of CYP71E1 as a multifunctional cytochrome P450 in the biosynthesis of the cyanogenic glucoside dhurrin. Plant Molecular Biology 36:393−405 doi: 10.1023/A:1005915507497
CrossRef Google Scholar
|
[33]
|
Sørensen M, Neilson EHJ, Møller BL. 2018. Oximes: unrecognized chameleons in general and specialized plant metabolism. Molecular Plant 11:95−117 doi: 10.1016/j.molp.2017.12.014
CrossRef Google Scholar
|
[34]
|
Thodberg S, Del Cueto J, Mazzeo R, Pavan S, Lotti C, et al. 2018. Elucidation of the amygdalin pathway reveals the metabolic basis of bitter and sweet almonds (Prunus dulcis). Plant Physiology 178:1096−111 doi: 10.1104/pp.18.00922
CrossRef Google Scholar
|
[35]
|
Yamaguchi T, Yamamoto K, Asano Y. 2014. Identification and characterization of CYP79D16 and CYP71AN24 catalyzing the first and second stepsin l-phenylalanine-derived cyanogenic glycoside biosynthesisin the Japanese apricot, Prunus mume Sieb. et Zucc. Plant Molecular Biology 86:215−23 doi: 10.1007/s11103-014-0225-6
CrossRef Google Scholar
|
[36]
|
Franks TK, Yadollahi A, Wirthensohn MG, Guerin JR, Kaiser BN, et al. 2008. A seed coat cyanohydrin glucosyltransferase is associated with bitterness in almond (Prunus dulcis) kernels. Functional Plant Biology 35:236−46 doi: 10.1071/FP07275
CrossRef Google Scholar
|
[37]
|
Suelves M, Puigdomènech P. 1998. Molecular cloning of the cDNA coding for the (R)-(+)-mandelonitrile lyase of Prunus amygdalus: temporal and spatial expression patterns in flowers and mature seeds. Planta 206:388−93 doi: 10.1007/s004250050414
CrossRef Google Scholar
|
[38]
|
Sánchez-Pérez R, Belmonte FS, Borch J, Dicenta F, Møller BL, et al. 2012. Prunasin hydrolases during fruit development in sweet and bitter almonds. Plant Physiology 158:1916−32 doi: 10.1104/pp.111.192021
CrossRef Google Scholar
|
[39]
|
Pičmanová M, Neilson EH, Motawia MS, Olsen CE, Agerbirk N, et al. 2015. A recycling pathway for cyanogenic glycosides evidenced by the comparative metabolic profiling in three cyanogenic plant species. Biochemical Journal 469:375−89 doi: 10.1042/BJ20150390
CrossRef Google Scholar
|
[40]
|
Frehner M, Scalet M, Conn EE. 1990. Pattern of the cyanide-potential in developing fruits: implications for plants accumulating cyanogenic monoglucosides (Phaseolus lunatus) or cyanogenic diglucosides in their seeds (Linum usitatissimum, Prunus amygdalus). Plant Physiology 94:28−34 doi: 10.1104/pp.94.1.28
CrossRef Google Scholar
|
[41]
|
Song L, Li W, Chen X. 2022. Transcription factor is not just a transcription factor. Trends in Plant Science 27:1087−89 doi: 10.1016/j.tplants.2022.08.001
CrossRef Google Scholar
|
[42]
|
Guo L, Xie F, Huang X, Luo Z. 2023. A chromosome-level genome of 'Xiaobaixing' (Prunus armeniaca L.) provides clues to its domestication and identification of key bHLH genes in amygdalin biosynthesis. Plants 12:2756 doi: 10.3390/plants12152756
CrossRef Google Scholar
|
[43]
|
Sánchez-Pérez R, Pavan S, Mazzeo R, Moldovan C, Aiese Cigliano R, et al. 2019. Mutation of a bHLH transcription factor allowed almond domestication. Science 364:1095−98 doi: 10.1126/science.aav8197
CrossRef Google Scholar
|