[1]
|
Khorasanizadeh S. 2004. The nucleosome: from genomic organization to genomic regulation. Cell 116:259−72 doi: 10.1016/S0092-8674(04)00044-3
CrossRef Google Scholar
|
[2]
|
Goldberg AD, Allis CD, Bernstein E. 2007. Epigenetics: a landscape takes shape. Cell 128:635−38 doi: 10.1016/j.cell.2007.02.006
CrossRef Google Scholar
|
[3]
|
Clapier CR, Cairns BR. 2009. The biology of chromatin remodeling complexes. Annual Review of Biochemistry 78:273−304 doi: 10.1146/annurev.biochem.77.062706.153223
CrossRef Google Scholar
|
[4]
|
Hernández-García J, Diego-Martin B, Kuo PH, Jami-Alahmadi Y, Vashisht AA, et al. 2022. Comprehensive identification of SWI/SNF complex subunits underpins deep eukaryotic ancestry and reveals new plant components. Communication Biology 5:549 doi: 10.1038/s42003-022-03490-x
CrossRef Google Scholar
|
[5]
|
Sarnowski TJ, Ríos G, Jásik J, Świeżewski S, Kaczanowski S, et al. 2005. SWI3 subunits of putative SWI/SNF chromatin-remodeling complexes play distinct roles during Arabidopsis development. The Plant Cell 17:2454−72 doi: 10.1105/tpc.105.031203
CrossRef Google Scholar
|
[6]
|
Han SK, Wu MF, Cui S, Wagner D. 2015. Roles and activities of chromatin remodeling ATPases in plants. The Plant Journal 83:62−77 doi: 10.1111/tpj.12877
CrossRef Google Scholar
|
[7]
|
Lin X, Yuan C, Zhu B, Yuan T, Li X, et al. 2021. LFR physically and genetically interacts with SWI/SNF component SWI3B to regulate leaf blade development in Arabidopsis. Frontiers in Plant Science 12:717649 doi: 10.3389/fpls.2021.717649
CrossRef Google Scholar
|
[8]
|
Ho L, Crabtree GR. 2010. Chromatin remodelling during development. Nature 463:474−84 doi: 10.1038/nature08911
CrossRef Google Scholar
|
[9]
|
Jakada BH, Aslam M, Fakher B, Greaves JG, Li Z, et al. 2019. Identification of SWI2/SNF2-Related 1 chromatin remodeling complex (SWR1-C) subunits in pineapple and the role of pineapple SWR1 COMPLEX 6 (AcSWC6) in biotic and abiotic stress response. Biomolecules 9:364 doi: 10.3390/biom9080364
CrossRef Google Scholar
|
[10]
|
Zhao Z, Li T, Peng X, Wu K, Yang S. 2019. Identification and characterization of tomato SWI3-like proteins: overexpression of SlSWIC increases the leaf size in transgenic Arabidopsis. International Journal of Molecular Science 20:5121 doi: 10.3390/ijms20205121
CrossRef Google Scholar
|
[11]
|
Albertini MV, Carcouet E, Pailly O, Gambotti C, Luro F, et al. 2006. Changes in organic acids and sugars during early stages of development of acidic and acidless citrus fruit. Journal of Agricultural and Food Chemistry 54:8335−39 doi: 10.1021/jf061648j
CrossRef Google Scholar
|
[12]
|
Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, et al. 2021. Pfam: the protein families database in 2021. Nucleic Acids Research 49:D412−D419 doi: 10.1093/nar/gkaa913
CrossRef Google Scholar
|
[13]
|
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202 doi: 10.1016/j.molp.2020.06.009
CrossRef Google Scholar
|
[14]
|
Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, et al. 2012. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Research 40:W597−W603 doi: 10.1093/nar/gks400
CrossRef Google Scholar
|
[15]
|
Stecher G, Tamura K, Kumar S. 2020. Molecular Evolutionary Genetics Analysis (MEGA) for macOS. Molecular Biology and Evolution 37:1237−39 doi: 10.1093/molbev/msz312
CrossRef Google Scholar
|
[16]
|
Sievers F, Higgins DG. 2018. Clustal Omega for making accurate alignments of many protein sequences. Protein Science 27:135−45 doi: 10.1002/pro.3290
CrossRef Google Scholar
|
[17]
|
Letunic I, Bork P. 2021. Interactive Tree of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research 49:W293−W296 doi: 10.1093/nar/gkab301
CrossRef Google Scholar
|
[18]
|
BaileyTL, Boden M, Buske FA, Frith M, Grant CE, et al. 2009. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Research 37:W202−W208 doi: 10.1093/nar/gkp335
CrossRef Google Scholar
|
[19]
|
Nelson BK, Cai X, Nebenführ A. 2007. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. The Plant Journal 51:1126−36 doi: 10.1111/j.1365-313X.2007.03212.x
CrossRef Google Scholar
|
[20]
|
Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, et al. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research 30:325−27 doi: 10.1093/nar/30.1.325
CrossRef Google Scholar
|
[21]
|
Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, et al. 2012. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Research 40:D1178−D1186 doi: 10.1093/nar/gkr944
CrossRef Google Scholar
|
[22]
|
Li S, Yin X, Wang W, Liu X, Zhang B, et al. 2017. Citrus CitNAC62 cooperates with CitWRKY1 to participate in citric acid degradation via up-regulation of CitACO3. Journal of Experimental Botany 68:3419−26 doi: 10.1093/jxb/erx187
CrossRef Google Scholar
|
[23]
|
Shang J, He X. 2022. Chromatin-remodeling complexes: conserved and plant-specific subunits in Arabidopsis. Journal of Integrative Plant Biology 64:499−515 doi: 10.1111/jipb.13208
CrossRef Google Scholar
|
[24]
|
Hargreaves DC, Crabtree GR. 2011. ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Research 21:396−420 doi: 10.1038/cr.2011.32
CrossRef Google Scholar
|
[25]
|
Wittkopp PJ, Kalay G. 2012. Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nature Reviews Genetics 13:59−69 doi: 10.1038/nrg3095
CrossRef Google Scholar
|
[26]
|
Sarnowski TJ, Świeżewski S, Pawlikowska K, Kaczanowski S, Jerzmanowski A. 2002. AtSWI3B, an Arabidopsis homolog of SWI3, a core subunit of yeast Swi/Snf chromatin remodeling complex, interacts with FCA, a regulator of flowering time. Nucleic Acids Research 30:3412−21 doi: 10.1093/nar/gkf458
CrossRef Google Scholar
|