[1]
|
Lin Z, Zhong S, Grierson D. 2009. Recent advances in ethylene research. Journal of Experimental Botany 60:3311−36 doi: 10.1093/jxb/erp204
CrossRef Google Scholar
|
[2]
|
Barry CS, Giovannoni JJ. 2007. Ethylene and fruit ripening. Journal of Plant Growth Regulation 26:143−59 doi: 10.1007/s00344-007-9002-y
CrossRef Google Scholar
|
[3]
|
Kumar R, Khurana A, Sharma AK. 2014. Role of plant hormones and their interplay in development and ripening of fleshy fruits. Journal of Experimental Botany 65:4561−75 doi: 10.1093/jxb/eru277
CrossRef Google Scholar
|
[4]
|
Alexander L, Grierson D. 2002. Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. Journal of Experimental Botany 53:2039−55 doi: 10.1093/jxb/erf072
CrossRef Google Scholar
|
[5]
|
Klee HJ, Giovannoni JJ. 2011. Genetics and control of tomato fruit ripening and quality attributes. Annual Review of Genetics 45:41−59 doi: 10.1146/annurev-genet-110410-132507
CrossRef Google Scholar
|
[6]
|
Shinozaki Y, Hao S, Kojima M, Sakakibara H, Ozeki-Iida Y, et al. 2015. Ethylene suppresses tomato (Solanum lycopersicum) fruit set through modification of gibberellin metabolism. The Plant Journal 83:237−51 doi: 10.1111/tpj.12882
CrossRef Google Scholar
|
[7]
|
Martínez C, Manzano S, Megías Z, Garrido D, Picó B, et al. 2013. Involvement of ethylene biosynthesis and signalling in fruit set and early fruit development in zucchini squash (Cucurbita pepo L.). BMC Plant Biology 13:139 doi: 10.1186/1471-2229-13-139
CrossRef Google Scholar
|
[8]
|
Dussi MC, Sosa D, Calvo GS. 2002. Effects of RetainTM on fruit maturity and fruit set of pear cultivars Williams and Packham¿s Triumph. Acta Horticulturae 596:767−71 doi: 10.17660/actahortic.2002.596.132
CrossRef Google Scholar
|
[9]
|
Adams DO, Yang SF. 1979. Ethylene biosynthesis: Identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proceedings of the National Academy of Sciences of the United States of America 76:170−74 doi: 10.1073/pnas.76.1.170
CrossRef Google Scholar
|
[10]
|
Boller T, Herner RC, Kende H. 1979. Assay for and enzymatic formation of an ethylene precursor, 1-aminocyclopropane-1-carboxylic acid. Planta 145:293−303 doi: 10.1007/BF00454455
CrossRef Google Scholar
|
[11]
|
Kende H. 1993. Ethylene biosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 44:283−307 doi: 10.1146/annurev.pp.44.060193.001435
CrossRef Google Scholar
|
[12]
|
Yamagami T, Tsuchisaka A, Yamada K, Haddon WF, Harden LA, et al. 2003. Biochemical diversity among the 1-amino-cyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family. Journal of Biological Chemistry 278:49102−12 doi: 10.1074/jbc.M308297200
CrossRef Google Scholar
|
[13]
|
Tsuchisaka A, Theologis A. 2004. Heterodimeric interactions among the 1-amino-cyclopropane-1-carboxylate synthase polypeptides encoded by the Arabidopsis gene family. Proceedings of the National Academy of Sciences of the United States of America 101:2275−80 doi: 10.1073/pnas.0308515101
CrossRef Google Scholar
|
[14]
|
Nakatsuka A, Murachi S, Okunishi H, Shiomi S, Nakano R, et al. 1998. Differential expression and internal feedback regulation of 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, and ethylene receptor genes in tomato fruit during development and ripening. Plant Physiology 118:1295−305 doi: 10.1104/pp.118.4.1295
CrossRef Google Scholar
|
[15]
|
Barry CS, Llop-Tous MI, Grierson D. 2000. The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato. Plant Physiology 123:979−86 doi: 10.1104/pp.123.3.979
CrossRef Google Scholar
|
[16]
|
Li T, Tan D, Yang X, Wang A. 2013. Exploring the apple genome reveals six ACC synthase genes expressed during fruit ripening. Scientia Horticulturae 157:119−23 doi: 10.1016/j.scienta.2013.04.016
CrossRef Google Scholar
|
[17]
|
Tan D, Li T, Wang A. 2013. Apple 1-aminocyclopropane-1-carboxylic acid synthase genes, MdACS1 and MdACS3a, are expressed in different systems of ethylene biosynthesis. Plant Molecular Biology Reporter 31:204−9 doi: 10.1007/s11105-012-0490-y
CrossRef Google Scholar
|
[18]
|
Lelièvre JM, Latchè A, Jones B, Bouzayen M, Pech JC. 1997. Ethylene and fruit ripening. Physiologia Plantarum 101:727−39 doi: 10.1111/j.1399-3054.1997.tb01057.x
CrossRef Google Scholar
|
[19]
|
Ji Y, Wang A. 2021. Recent advances in phytohormone regulation of apple fruit ripening. Plants 10:2061 doi: 10.3390/plants10102061
CrossRef Google Scholar
|
[20]
|
Zeng W, Pan L, Liu H, Niu L, Lu Z, et al. 2015. Characterization of 1-aminocyclopropane-1-carboxylic acid synthase (ACS) genes during nectarine fruit development and ripening. Tree Genetics & Genomes 11:18 doi: 10.1007/s11295-015-0833-6
CrossRef Google Scholar
|
[21]
|
Tatsuki M, Haji T, Yamaguchi M. 2006. The involvement of 1-aminocyclopropane-1-carboxylic acid synthase isogene, Pp-ACS1, in peach fruit softening. Journal of Experimental Botany 57:1281−89 doi: 10.1093/jxb/erj097
CrossRef Google Scholar
|
[22]
|
Cheng X, Cui Z, Jiang Y, Chen Y, Tan B, et al. 2023. PpeERF115 regulates peach fruit ripening by increasing polyamine turnover through up-regulation of genes involved in polyamine synthesis and catabolism. Postharvest Biology and Technology 204:112432 doi: 10.1016/j.postharvbio.2023.112432
CrossRef Google Scholar
|
[23]
|
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202 doi: 10.1016/j.molp.2020.06.009
CrossRef Google Scholar
|
[24]
|
Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, et al. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research 30:325−27 doi: 10.1093/nar/30.1.325
CrossRef Google Scholar
|
[25]
|
Hall T. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nuclc Acids Symposium Series 41:95−98
Google Scholar
|
[26]
|
Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, et al. 2012. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Research 40:D1178−D1186 doi: 10.1093/nar/gkr944
CrossRef Google Scholar
|
[27]
|
Tong Z, Gao Z, Wang F, Zhou J, Zhang Z. 2009. Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC Molecular Biology 10:71 doi: 10.1186/1471-2199-10-71
CrossRef Google Scholar
|
[28]
|
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402−8 doi: 10.1006/meth.2001.1262
CrossRef Google Scholar
|
[29]
|
Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, et al. 2012. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134 doi: 10.1186/1471-2105-13-134
CrossRef Google Scholar
|
[30]
|
Chae HS, Kieber JJ. 2005. Eto Brute? Role of ACS turnover in regulating ethylene biosynthesis Trends in Plant Science 10:291−96 doi: 10.1016/j.tplants.2005.04.006
CrossRef Google Scholar
|
[31]
|
Yoshida H, Wang KLC, Chang CM, Mori K, Uchida E, et al. 2006. The ACC synthase TOE sequence is required for interaction with ETO1 family proteins and destabilization of target proteins. Plant Molecular Biology 62:427−37 doi: 10.1007/s11103-006-9029-7
CrossRef Google Scholar
|
[32]
|
Wei C, Zhang R, Yang X, Zhu C, Li H, et al. 2019. Comparative analysis of calcium-dependent protein kinase in Cucurbitaceae and expression studies in watermelon. International Journal of Molecular Sciences 20:2527 doi: 10.3390/ijms20102527
CrossRef Google Scholar
|
[33]
|
Lü P, Yu S, Zhu N, Chen Y, Zhou B, et al. 2018. Genome encode analyses reveal the basis of convergent evolution of fleshy fruit ripening. Nature Plants 4:784−91 doi: 10.1038/s41477-018-0249-z
CrossRef Google Scholar
|
[34]
|
Guo Z, Zhang Y, Yao J, Xie Z, Zhang Y, et al. 2021. The NAM/ATAF1/2/CUC2 transcription factor PpNAC. A59 enhances PpERF. A16 expression to promote ethylene biosynthesis during peach fruit ripening. Horticulture Research 8:209 doi: 10.1038/s41438-021-00644-6
CrossRef Google Scholar
|
[35]
|
Li T, Tan D, Liu Z, Jiang Z, Wei Y, et al. 2015. Apple MdACS6 regulates ethylene biosynthesis during fruit development involving ethylene-responsive factor. Plant and Cell Physiology 56:1909−17 doi: 10.1093/pcp/pcv111
CrossRef Google Scholar
|
[36]
|
Tonutti P, Casson P, Ramina A. 1991. Ethylene biosynthesis during peach fruit development. Journal of the American Society for Horticultural Science 116:274−79 doi: 10.21273/jashs.116.2.274
CrossRef Google Scholar
|
[37]
|
Bonghi C, Trainotti L, Botton A, Tadiello A, Rasori A, et al. 2011. A microarray approach to identify genes involved in seed-pericarp cross-talk and development in peach. BMC Plant Biology 11:107 doi: 10.1186/1471-2229-11-107
CrossRef Google Scholar
|