[1]
|
Wang G, Zhang L, Wang G, Cao F. 2022. Growth and flavonol accumulation of Ginkgo biloba leaves affected by red and blue light. Industrial Crops and Products 187:115488 doi: 10.1016/j.indcrop.2022.115488
CrossRef Google Scholar
|
[2]
|
Wang Q, Jiang Y, Mao X, Yu W, Lu J, et al. 2022. Integration of morphological, physiological, cytological, metabolome and transcriptome analyses reveal age inhibited accumulation of flavonoid biosynthesis in Ginkgo biloba leaves. Industrial Crops and Products 187:115405 doi: 10.1016/j.indcrop.2022.115405
CrossRef Google Scholar
|
[3]
|
Liu Y, Xin H, Zhang Y, Che F, Shen N, et al. 2022. Leaves, seeds and exocarp of Ginkgo biloba L. (Ginkgoaceae): a comprehensive review of traditional uses, phytochemistry, pharmacology, resource utilization and toxicity. Journal of Ethnopharmacology 298:115645 doi: 10.1016/j.jep.2022.115645
CrossRef Google Scholar
|
[4]
|
Mao D, Zhong L, Zhao X, Wang L. 2023. Function, biosynthesis, and regulation mechanisms of flavonoids in Ginkgo biloba. Fruit Research 3:18 doi: 10.48130/FruRes-2023-0018
CrossRef Google Scholar
|
[5]
|
Sabater-Jara AB, Souliman-Youssef S, Novo-Uzal E, Almagro L, Belchí-Navarro S, et al. 2013. Biotechnological approaches to enhance the biosynthesis of ginkgolides and bilobalide in Ginkgo biloba. Phytochemistry Reviews 12:191−205 doi: 10.1007/s11101-013-9275-7
CrossRef Google Scholar
|
[6]
|
Abdul Ghani MA, Ugusman A, Latip J, Zainalabidin S. 2023. Role of terpenophenolics in modulating inflammation and apoptosis in cardiovascular diseases: a review. International Journal of Molecular Sciences 24:5339 doi: 10.3390/ijms24065339
CrossRef Google Scholar
|
[7]
|
Liu X, Lu X, Gao W, Li P, Yang H. 2022. Structure, synthesis, biosynthesis, and activity of the characteristic compounds from Ginkgo biloba L. Natural Product Reports 39:474−511 doi: 10.1039/D1NP00026H
CrossRef Google Scholar
|
[8]
|
Nagegowda DA, Gupta P. 2020. Advances in biosynthesis, regulation, and metabolic engineering of plant specialized terpenoids. Plant Science 294:110457 doi: 10.1016/j.plantsci.2020.110457
CrossRef Google Scholar
|
[9]
|
Yan N, Liu Y, Zhang H, Du Y, Liu X, et al. 2017. Solanesol biosynthesis in plants. Molecules 22:510 doi: 10.3390/molecules22040510
CrossRef Google Scholar
|
[10]
|
Feng W, Mehari TG, Fang H, Ji M, Qu Z, et al. 2023. Genome-wide identification of the geranylgeranyl pyrophosphate synthase (GGPS) gene family involved in chlorophyll synthesis in cotton. BMC Genomics 24:176 doi: 10.1186/s12864-023-09249-w
CrossRef Google Scholar
|
[11]
|
Kim YB, Kim SM, Sathasivam R, Kim YK, Park SU, et al. 2021. Overexpression of Ginkgo biloba Hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase 2 gene (GbHDR2) in Nicotiana tabacum cv. Xanthi. 3 Biotech 11:337 doi: 10.1007/s13205-021-02887-5
CrossRef Google Scholar
|
[12]
|
Srivastava Y, Tripathi S, Mishra B, Sangwan NS. 2022. Cloning and homologous characterization of geranylgeranyl pyrophosphate synthase (GGPPS) from Withania somnifera revealed alterations in metabolic flux towards gibberellic acid biosynthesis. Planta 256:4 doi: 10.1007/s00425-022-03912-4
CrossRef Google Scholar
|
[13]
|
Aubourg S, Lecharny A, Bohlmann J. 2002. Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabidopsis thaliana. Molecular Genetics and Genomics 267:730−745 doi: 10.1007/s00438-002-0709-y
CrossRef Google Scholar
|
[14]
|
Zhou F, Pichersky E. 2020. More is better: the diversity of terpene metabolism in plants. Current Opinion in Plant Biology 55:1−10 doi: 10.1016/j.pbi.2020.01.005
CrossRef Google Scholar
|
[15]
|
Ruiz-Sola MÁ, Coman D, Beck G, Barja MV, Colinas M, et al. 2016. Arabidopsis GERANYLGERANYL DIPHOSPHATE SYNTHASE 11 is a hub isozyme required for the production of most photosynthesis-related isoprenoids. New Phytologist 209:252−64 doi: 10.1111/nph.13580
CrossRef Google Scholar
|
[16]
|
Barja MV, Rodriguez-Concepcion M. 2021. Plant geranylgeranyl diphosphate synthases: every (gene) family has a story. aBIOTECH 2:289−98 doi: 10.1007/s42994-021-00050-5
CrossRef Google Scholar
|
[17]
|
Orlova I, Nagegowda DA, Kish CM, Gutensohn M, Maeda H, et al. 2009. The small subunit of snapdragon geranyl diphosphate synthase modifies the chain length specificity of tobacco geranylgeranyl diphosphate synthase in planta. The Plant Cell 21:4002−17 doi: 10.1105/tpc.109.071282
CrossRef Google Scholar
|
[18]
|
Sabzehzari M, Zeinali M, Naghavi MR. 2020. Alternative sources and metabolic engineering of Taxol: advances and future perspectives. Biotechnology Advances 43:107569 doi: 10.1016/j.biotechadv.2020.107569
CrossRef Google Scholar
|
[19]
|
Ali F, Qanmber G, Wei Z, Yu D, Li Y, et al. 2020. Genome-wide characterization and expression analysis of geranylgeranyl diphosphate synthase genes in cotton (Gossypium spp.) in plant development and abiotic stresses. BMC Genomics 21:561 doi: 10.1186/s12864-020-06970-8
CrossRef Google Scholar
|
[20]
|
Zheng J, Zhang X, Fu M, Zeng H, Ye J, et al. 2020. Effects of different stress treatments on the total terpene trilactone content and expression levels of key genes in Ginkgo biloba leaves. Plant Molecular Biology Reporter 38:521−30 doi: 10.1007/s11105-020-01220-3
CrossRef Google Scholar
|
[21]
|
Chen W, He S, Liu D, Patil GB, Zhai H, et al. 2015. A sweetpotato geranylgeranyl pyrophosphate synthase gene, IbGGPS, increases carotenoid content and enhances osmotic stress tolerance in Arabidopsis thaliana. PLoS ONE 10:e0137623 doi: 10.1371/journal.pone.0137623
CrossRef Google Scholar
|
[22]
|
Zhang C, Liu H, Zong Y, Tu Z, Li H. 2021. Isolation, expression, and functional analysis of the geranylgeranyl pyrophosphate synthase (GGPPS) gene from Liriodendron tulipifera. Plant Physiology and Biochemistry 166:700−11 doi: 10.1016/j.plaphy.2021.06.052
CrossRef Google Scholar
|
[23]
|
Yan L, Fang Z, Zhang N, Yang L, Zhang Y, et al. 2023. Genome-wide identification, characterization, and expression analysis of the geranylgeranyl pyrophosphate synthase (GGPPS) gene family reveals its importance in chloroplasts of Brassica oleracea L. Agriculture 13:1615 doi: 10.3390/agriculture13081615
CrossRef Google Scholar
|
[24]
|
Liao Z, Chen M, Gong Y, Guo L, Tan Q, et al. 2004. A new geranylgeranyl diphosphate synthase gene from Ginkgo biloba, which intermediates the biosynthesis of the key precursor for ginkgolides. DNA Sequence 15:153−58 doi: 10.1080/10425170410001667348
CrossRef Google Scholar
|
[25]
|
Xu F, Huang X, Li L, Deng G, Cheng H, et al. 2013. Molecular cloning and characterization of GbDXS and GbGGPPS gene promoters from Ginkgo biloba. Genetics Molecular Research 12:293−301 doi: 10.4238/2013.February.4.3
CrossRef Google Scholar
|
[26]
|
Sun S, Li Y, Chu L, Kuang X, Song J, et al. 2020. Full-length sequencing of ginkgo transcriptomes for an in-depth understanding of flavonoid and terpenoid trilactone biosynthesis. Gene 758:144961 doi: 10.1016/j.gene.2020.144961
CrossRef Google Scholar
|
[27]
|
Liu H, Wang X, Wang G, Cui P, Wu S, et al. 2021. The nearly complete genome of Ginkgo biloba illuminates gymnosperm evolution. Nature Plants 7:748−56 doi: 10.1038/s41477-021-00933-x
CrossRef Google Scholar
|
[28]
|
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202 doi: 10.1016/j.molp.2020.06.009
CrossRef Google Scholar
|
[29]
|
Liu W, Xie Y, Ma J, Luo X, Nie P, et al. 2015. IBS: an illustrator for the presentation and visualization of biological sequences. Bioinformatics 31:3359−61 doi: 10.1093/bioinformatics/btv362
CrossRef Google Scholar
|
[30]
|
Wang Q, Xu G, Zhao X, Zhang Z, Wang X, et al. 2020. Transcription factor TCP20 regulates peach bud endodormancy by inhibiting DAM5/DAM6 and interacting with ABF2. Journal of Experimental Botany 71:1585−97 doi: 10.1093/jxb/erz516
CrossRef Google Scholar
|
[31]
|
Lu J, Tong P, Xu Y, Liu S, Jin B, et al. 2023. SA-responsive transcription factor GbMYB36 promotes flavonol accumulation in Ginkgo biloba. Forestry Research 3:19 doi: 10.48130/FR-2023-0019
CrossRef Google Scholar
|
[32]
|
Yang W, Chen X, Li Y, Guo S, Wang Z, et al. 2020. Advances in pharmacological activities of terpenoids. Natural Product Communications 15:1934578X20903555 doi: 10.1177/1934578X20903555
CrossRef Google Scholar
|
[33]
|
Dong C, Wang Z, Qin L, Zhang C, Cao L, et al. 2023. Overexpression of geranyl diphosphate synthase 1 (NnGGPPS1) from Nelumbo nucifera enhances carotenoid and chlorophyll content and biomass. Gene 881:147645 doi: 10.1016/j.gene.2023.147645
CrossRef Google Scholar
|
[34]
|
Vandermoten S, Haubruge É, Cusson M. 2009. New insights into short-chain prenyltransferases: structural features, evolutionary history and potential for selective inhibition. Cellular and Molecular Life Sciences 66:3685−95 doi: 10.1007/s00018-009-0100-9
CrossRef Google Scholar
|
[35]
|
Perez-Matas E, Garcia-Perez P, Miras-Moreno B, Lucini L, Bonfill M, et al. 2023. Exploring the interplay between metabolic pathways and taxane production in elicited Taxus baccata cell suspensions. Plants 12:2696 doi: 10.3390/plants12142696
CrossRef Google Scholar
|
[36]
|
Zhou F, Wang C, Gutensohn M, Jiang L, Zhang P, et al. 2017. A recruiting protein of geranylgeranyl diphosphate synthase controls metabolic flux toward chlorophyll biosynthesis in rice. Proceedings of the National Academy of Sciences of the United States of America 114:6866−71 doi: 10.1073/pnas.1705689114
CrossRef Google Scholar
|
[37]
|
Bao S, Hua C, Shen L, Yu H. 2020. New insights into gibberellin signaling in regulating flowering in Arabidopsis. Journal of Integrative Plant Biology 62:118−31 doi: 10.1111/jipb.12892
CrossRef Google Scholar
|
[38]
|
Tata SK, Jung J, Kim YH, Choi JY, Jung JY, et al. 2016. Heterologous expression of chloroplast-localized geranylgeranyl pyrophosphate synthase confers fast plant growth, early flowering and increased seed yield. Plant Biotechnology Journal 14:29−39 doi: 10.1111/pbi.12333
CrossRef Google Scholar
|
[39]
|
Von Lintig J, Welsch R, Bonk M, Giuliano G, Batschauer A, et al. 1997. Light-dependent regulation of carotenoid biosynthesis occurs at the level of phytoene synthase expression and is mediated by phytochrome in Sinapis alba and Arabidopsis thaliana seedlings. The Plant Journal 12:625−34 doi: 10.1046/j.1365-313X.1997.d01-16.x
CrossRef Google Scholar
|
[40]
|
Dong C, Qu G, Guo J, Wei F, Gao S, et al. 2022. Rational design of geranylgeranyl diphosphate synthase enhances carotenoid production and improves photosynthetic efficiency in Nicotiana tabacum. Science Bulletin 67:315−27 doi: 10.1016/j.scib.2021.07.003
CrossRef Google Scholar
|
[41]
|
Wang C, Chen Q, Fan D, Li J, Wang G, et al. 2016. Structural analyses of short-chain prenyltransferases identify an evolutionarily conserved GFPPS clade in Brassicaceae plants. Molecular Plant 9:195−204 doi: 10.1016/j.molp.2015.10.010
CrossRef Google Scholar
|
[42]
|
Forman V, Luo D, Geu-Flores F, Lemcke R, Nelson DR, et al. 2022. A gene cluster in Ginkgo biloba encodes unique multifunctional cytochrome P450s that initiate ginkgolide biosynthesis. Nature Communications 13:5143 doi: 10.1038/s41467-022-32879-9
CrossRef Google Scholar
|
[43]
|
Ezquerro M, Li C, Pérez-Pérez J, Burbano-Erazo E, Barja MV, et al. 2023. Tomato geranylgeranyl diphosphate synthase isoform 1 is involved in the stress-triggered production of diterpenes in leaves and strigolactones in roots. New Phytologist 239:2292−306 doi: 10.1111/nph.19109
CrossRef Google Scholar
|
[44]
|
Wang X, Chen X, Wang Q, Chen M, Liu X, et al. 2019. MdBZR1 and MdBZR1-2like transcription factors improves salt tolerance by regulating gibberellin biosynthesis in apple. Frontiers in Plant Science 10:1473 doi: 10.3389/fpls.2019.01473
CrossRef Google Scholar
|
[45]
|
Wang Y, Gong X, Liu W, Kong L, Si X, et al. 2020. Gibberellin mediates spermidine-induced salt tolerance and the expression of GT-3b in cucumber. Plant Physiology and Biochemistry 152:147−56 doi: 10.1016/j.plaphy.2020.04.041
CrossRef Google Scholar
|