[1]
|
Castaings L, Marchive C, Meyer C, Krapp A. 2011. Nitrogen signalling in Arabidopsis: how to obtain insights into a complex signalling network. Journal of Experimental Botany 62:1391−97 doi: 10.1093/jxb/erq375
CrossRef Google Scholar
|
[2]
|
Nacry P, Bouguyon E, Gojon A. 2013. Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. Plant and Soil 370:1−29 doi: 10.1007/s11104-013-1645-9
CrossRef Google Scholar
|
[3]
|
Wang YY, Cheng YH, Chen KE, Tsay YF. 2018. Nitrate transport, signaling, and use efficiency. Annual Review of Plant Biology 63:85−122 doi: 10.1146/annurev-arplant-042817-040056
CrossRef Google Scholar
|
[4]
|
Raytek LM, Dastmalchi M. 2022. Plant nutrition: an architect of nitrate-hunger cues. Current Biology 32:R1320−R1323 doi: 10.1016/j.cub.2022.10.055
CrossRef Google Scholar
|
[5]
|
Ahmed M, Rauf M, Akhtar M, Mukhtar Z, Saeed NA. 2020. Hazards of nitrogen fertilizers and ways to reduce nitrate accumulation in crop plants. Environmental Science and Pollution Research 27:17661−70 doi: 10.1007/s11356-020-08236-y
CrossRef Google Scholar
|
[6]
|
Bi YM, Kant S, Clark J, Gidda S, Ming F, et al. 2009. Increased nitrogen-use efficiency in transgenic rice plants over-expressing a nitrogen-responsive early nodulin gene identified from rice expression profiling. Plant, Cell & Environment 32:1749−60 doi: 10.1111/j.1365-3040.2009.02032.x
CrossRef Google Scholar
|
[7]
|
Bouguyon E, Perrine-Walker F, Pervent M, Rochette J, Cuesta C, et al. 2016. Nitrate controls root development through posttranscriptional regulation of the NRT1.1/NPF6.3 transporter/sensor. Plant Physiology 172:1237−48 doi: 10.1104/pp.16.01047
CrossRef Google Scholar
|
[8]
|
Tahir MM, Lu Z, Wang C, Shah K, Li S, et al. 2022. Nitrate application induces adventitious root growth by regulating gene expression patterns in apple rootstocks. Journal of Plant Growth Regulation 41:3467−78 doi: 10.1007/s00344-021-10527-8
CrossRef Google Scholar
|
[9]
|
Tahir MM, Li S, Mao J, Liu Y, Li K, et al. 2021. High nitrate inhibited adventitious roots formation in apple rootstock by altering hormonal contents and miRNAs expression profiles. Scientia Horticulturae 286:110230 doi: 10.1016/j.scienta.2021.110230
CrossRef Google Scholar
|
[10]
|
Ishikawa K, Ohmori T, Miyamoto H, Ito T, Kumagai Y, et al. 2013. Denitrification in soil amended with thermophile-fermented compost suppresses nitrate accumulation in plants. Applied Microbiology and Biotechnology 97:1349−59 doi: 10.1007/s00253-012-4004-5
CrossRef Google Scholar
|
[11]
|
Jian S, Liao Q, Song H, Liu Q, Lepo JE, et al. 2018. NRT1.1-related NH4+ toxicity is associated with a disturbed balance between NH4+ uptake and assimilation. Plant Physiology 178:1473−88 doi: 10.1104/pp.18.00410
CrossRef Google Scholar
|
[12]
|
Rashid M, Bera S, Medvinsky AB, Sun GQ, Li BL, et al. 2018. Adaptive regulation of nitrate transceptor NRT1.1 in fluctuating soil nitrate conditions. iScience 2:41−50 doi: 10.1016/j.isci.2018.03.007
CrossRef Google Scholar
|
[13]
|
Unkefer PJ, Knight TJ, Martinez RA. 2023. The intermediate in a nitrate-responsive ω-amidase pathway in plants may signal ammonium assimilation status. Plant Physiology 191:715−28 doi: 10.1093/plphys/kiac501
CrossRef Google Scholar
|
[14]
|
Fang X, Fang S, Ye Z, Liu D, Zhao K, et al. 2021. NRT1.1 dual-affinity nitrate transport/signalling and its roles in plant abiotic stress resistance. Frontiers in Plant Science 12:715694 doi: 10.3389/fpls.2021.715694
CrossRef Google Scholar
|
[15]
|
Chai S, Li E, Zhang Y, Li S. 2020. NRT1.1-mediated nitrate suppression of root coiling relies on PIN2- and AUX1-mediated auxin transport. Frontiers in Plant Science 11:671 doi: 10.3389/fpls.2020.00671
CrossRef Google Scholar
|
[16]
|
Chiba Y, Shimizu T, Miyakawa S, Kanno Y, Koshiba T, et al. 2015. Identification of Arabidopsis thaliana NRT1/PTR FAMILY (NPF) proteins capable of transporting plant hormones. Journal of Plant Research 128:679−86 doi: 10.1007/s10265-015-0710-2
CrossRef Google Scholar
|
[17]
|
Kiba T, Krapp A. 2016. Plant nitrogen acquisition under low availability: regulation of uptake and root architecture. Plant and Cell Physiology 57:707−14 doi: 10.1093/pcp/pcw052
CrossRef Google Scholar
|
[18]
|
Krapp A, David LC, Chardin C, Girin T, Marmagne A, et al. 2014. Nitrate transport and signalling in Arabidopsis. Journal of Experimental Botany 65:789−98 doi: 10.1093/jxb/eru001
CrossRef Google Scholar
|
[19]
|
Su H, Wang T, Ju C, Deng J, Zhang T, et al. 2021. Abscisic acid signaling negatively regulates nitrate uptake via phosphorylation of NRT1.1 by SnRK2s in Arabidopsis. Journal of Integrative Plant Biology 63:597−610 doi: 10.1111/jipb.13057
CrossRef Google Scholar
|
[20]
|
Zhao Y. 2010. Auxin biosynthesis and its role in plant development. Annual Review of Plant Biology 61:49−64 doi: 10.1146/annurev-arplant-042809-112308
CrossRef Google Scholar
|
[21]
|
Hu Q, Shu J, Li W, Wang G. 2021. Role of auxin and nitrate signaling in the development of root system architecture. Frontiers in Plant Science 12:690363 doi: 10.3389/fpls.2021.690363
CrossRef Google Scholar
|
[22]
|
Zhang S, Zhu L, Shen C, Ji Z, Zhang H, et al. 2021. Natural allelic variation in a modulator of auxin homeostasis improves grain yield and nitrogen use efficiency in rice. The Plant Cell 33:566−80 doi: 10.1093/plcell/koaa037
CrossRef Google Scholar
|
[23]
|
Zhao Z, Wang C, Yu X, Tian Y, Wang W, et al. 2022. Auxin regulates source-sink carbohydrate partitioning and reproductive organ development in rice. Proceedings of the National Academy of Sciences of the United States of America 119:e2121671119 doi: 10.1073/pnas.2121671119
CrossRef Google Scholar
|
[24]
|
Ellis CM, Nagpal P, Young JC, Hagen G, Guilfoyle TJ, et al. 2005. AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development 132:4563−74 doi: 10.1242/dev.02012
CrossRef Google Scholar
|
[25]
|
Keller AH, Fallon MD. 2012. Auxins : structure, biosynthesis and functions. New York: Nova Science Publishers
|
[26]
|
Li S, Xie Z, Hu C, Zhang J. 2016. A review of auxin response factors (ARFs) in plants. Frontiers in Plant Science 7:47 doi: 10.3389/fpls.2016.00047
CrossRef Google Scholar
|
[27]
|
Chandler JW. 2016. Auxin response factors. Plant, Cell & Environment 39:1014−28 doi: 10.1111/pce.12662
CrossRef Google Scholar
|
[28]
|
Deng P, Jing W, Cao C, Sun M, Chi W, et al. 2022. Transcriptional repressor RST1 controls salt tolerance and grain yield in rice by regulating gene expression of asparagine synthetase. Proceedings of the National Academy of Sciences of the United States of America 119:e2210338119 doi: 10.1073/pnas.221033811
CrossRef Google Scholar
|
[29]
|
Tan BZ, Close DC, Quin PR, Swarts ND. 2021. Nitrogen use efficiency, allocation, and remobilization in apple trees: uptake is optimized with pre-harvest N supply. Frontiers in Plant Science 12:657070 doi: 10.3389/fpls.2021.657070
CrossRef Google Scholar
|
[30]
|
Kowalczyk W, Wrona D, Przybylko S. 2022. Effect of nitrogen fertilization of apple orchard on soil mineral nitrogen content, yielding of the apple trees and nutritional status of leaves and fruits. Agriculture 12:2169 doi: 10.3390/agriculture12122169
CrossRef Google Scholar
|
[31]
|
Liu G, Rui L, Yang Y, Liu R, Li H, et al. 2023. Identification and functional characterization of MdNRT1.1 in nitrogen utilization and abiotic stress tolerance in Malus domestica. International Journal of Molecular Sciences 24:9291 doi: 10.3390/ijms24119291
CrossRef Google Scholar
|
[32]
|
Zheng P, Wang X, Yang Y, You C, Zhang Z, et al. 2020. Identification of phytochrome-interacting factor family members and functional analysis of MdPIF4 in Malus domestica. International Journal of Molecular Sciences 21:7350 doi: 10.3390/ijms21197350
CrossRef Google Scholar
|
[33]
|
Feng Z, Li T, Wang X, Sun W, Zhang T, et al. 2022. Identification and characterization of apple MdNLP7 transcription factor in the nitrate response. Plant Science 316:111158 doi: 10.1016/j.plantsci.2021.111158
CrossRef Google Scholar
|
[34]
|
Liu R, Li H, Rui L, Liu G, Wang T, et al. 2023. An apple NITRATE REDUCTASE 2 gene positively regulates nitrogen utilization and abiotic stress tolerance in Arabidopsis and apple callus. Plant Physiology and Biochemistry 196:23−32 doi: 10.1016/j.plaphy.2023.01.026
CrossRef Google Scholar
|
[35]
|
Wang D, Yang K, Wang X, Lin X, Rui L, et al. 2022. Overexpression of MdZAT5, an C2H2-type zinc finger protein, regulates anthocyanin accumulation and salt stress response in apple calli and Arabidopsis. International Journal of Molecular Sciences 23:1897 doi: 10.3390/ijms23031897
CrossRef Google Scholar
|
[36]
|
Rui L, Yang Y, Zheng P, Wang C, Wang X, et al. 2022. Genome-wide analysis of MdABF Subfamily and functional identification of MdABF1 in drought tolerance in apple. Environmental and Experimental Botany 199:104904 doi: 10.1016/j.envexpbot.2022.104904
CrossRef Google Scholar
|
[37]
|
Liu Y, Gao N, Ma Q, Zhang J, Wang X, et al. 2021. The MdABI5 transcription factor interacts with the MdNRT1.5/MdNPF7.3 promoter to fine-tune nitrate transport from roots to shoots in apple. Horticulture Research 8:236 doi: 10.1038/s41438-021-00667-z
CrossRef Google Scholar
|
[38]
|
Yang Y, Zheng P, Ren Y, Yao Y, You C, et al. 2021. Apple MdSAT1 encodes a bHLHm1 transcription factor involved in salinity and drought responses. Planta 253:46 doi: 10.1007/s00425-020-03528-6
CrossRef Google Scholar
|
[39]
|
Liu X, Liu H, Li H, An X, Song L, et al. 2022. MdMYB10 affects nitrogen uptake and reallocation by regulatingthe nitrate transporter MdNRT2.4-1 in red flesh apple. Horticulture Research 9:uhac016 doi: 10.1093/hr/uhac016
CrossRef Google Scholar
|
[40]
|
An J, Zhang X, Liu Y, Wang X, You C, et al. 2021. ABI5 regulates ABA-induced anthocyanin biosynthesis by modulating the MYB1-bHLH3 complex in apple. Journal of Experimental Botany 72:1460−72 doi: 10.1093/jxb/eraa525
CrossRef Google Scholar
|
[41]
|
Ji X, Li H, Qiao Z, Zhang J, Sun W, et al. 2022. The BTB protein MdBT2 recruits auxin signaling components to regulate adventitious root formation in apple. Plant Physiology 189:1005−20 doi: 10.1093/plphys/kiac084
CrossRef Google Scholar
|
[42]
|
Cox KL Jr. 2021. Nodding on and off: transcription factor cis-elements that regulate nitrate-dependent gene expression for root nodule symbiosis. The Plant Cell 33:2101−03 doi: 10.1093/plcell/koab108
CrossRef Google Scholar
|
[43]
|
Li S, Xiao F, Yang D, Lyu X, Ma C, et al. 2021. Nitrate transport and distribution in soybean plants with dual-root systems. Frontiers in Plant Science 12:661054 doi: 10.3389/fpls.2021.661054
CrossRef Google Scholar
|
[44]
|
Krouk G, Crawford NM, Coruzzi GM, Tsay YF. 2010. Nitrate signaling: adaptation to fluctuating environments. Current Opinion in Plant Biology 13:265−72 doi: 10.1016/j.pbi.2009.12.003
CrossRef Google Scholar
|
[45]
|
Hu J, Israeli A, Ori N, Sun T. 2018. The interaction between DELLA and ARF/IAA mediates crosstalk between gibberellin and auxin signaling to control fruit initiation in tomato. The Plant Cell 30:1710−28 doi: 10.1105/tpc.18.00363
CrossRef Google Scholar
|
[46]
|
Jia Z, Giehl RFH, Hartmann A, Estevez JM, Bennett MJ, et al. 2023. A spatially concerted epidermal auxin signaling framework steers the root hair foraging response under low nitrogen. Current Biology 33:3926−3941.e5 doi: 10.1016/j.cub.2023.08.040
CrossRef Google Scholar
|
[47]
|
Lin J, Ali A, Chu N, Fu H, Huang M, et al. 2023. Identification of ARF transcription factor gene family and its defense responses to bacterial infection and salicylic acid treatment in sugarcane. Frontiers in Microbiology 14:1257355 doi: 10.3389/fmicb.2023.1257355
CrossRef Google Scholar
|
[48]
|
Mo Z, Zhang Y, Hu L, Zhai M, Xuan J. 2023. Genome-wide identification and expression analysis of auxin response factor (ARF) gene family in pecan indicates its possible roles during graft union formation. Scientia Horticulturae 322:112401 doi: 10.1016/j.scienta.2023.112401
CrossRef Google Scholar
|
[49]
|
Chen X, Liu Y, Zhang X, Zheng B, Han Y, et al. 2023. PpARF6 acts as an integrator of auxin and ethylene signaling to promote fruit ripening in peach PpARF. Horticulture Research 10:uhad158 doi: 10.1093/hr/uhad158
CrossRef Google Scholar
|
[50]
|
Wang Y, Dai M, Wu X, Zhang S, Shi Z, et al. 2022. An ARF1-binding factor triggering programmed cell death and periderm development in pear russet fruit skin. Horticulture Research 9:uhab061 doi: 10.1093/hr/uhab061
CrossRef Google Scholar
|
[51]
|
Sun J, Zheng N. 2015. Molecular mechanism underlying the plant NRT1.1 dual-affinity nitrate transporter. Frontiers in Physiology 6:386 doi: 10.3389/fphys.2015.00386
CrossRef Google Scholar
|
[52]
|
Ye J, Tian W, Zhou M, Zhu Q, Du W, et al. 2021. STOP1 activates NRT1.1-mediated nitrate uptake to create a favorable rhizospheric pH for plant adaptation to acidity. The Plant Cell 33:3658−74 doi: 10.1093/plcell/koab226
CrossRef Google Scholar
|
[53]
|
Liu Z, Ma Z, Li J, Bian N, Guo Z, et al. 2023. Interfering small ubiquitin modifiers (SUMO) exhibits apple's enhanced tolerance to nitrogen deficiency. Fruit Research 3:24 doi: 10.48130/FruRes-2023-0024
CrossRef Google Scholar
|
[54]
|
Guo T, Yang Z, Bao R, Fu X, Wang N, et al. 2023. The m6A reader MhYTP2 regulates the stability of its target mRNAs contributing to low nitrogen tolerance in apple (Malus domestica). Horticulture Research 10:uhad094 doi: 10.1093/hr/uhad094
CrossRef Google Scholar
|