[1]
|
Etienne A, Génard M, Lobit P, Mbeguié-A-Mbéguié D, Bugaud C. 2013. What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. Journal of Experimental Botany 64:1451−69 doi: 10.1093/jxb/ert035
CrossRef Google Scholar
|
[2]
|
Wu W, Chen F. 2016. Malate transportation and accumulation in fruit cell. Endocytobiosis and Cell Research 27:107−12
Google Scholar
|
[3]
|
Jaeger SR, Andani Z, Wakeling IN, MacFie HJH. 1998. Consumer preferences for fresh and aged apples: a cross-cultural comparison. Food Quality and Preference 9:355−66 doi: 10.1016/s0950-3293(98)00031-7
CrossRef Google Scholar
|
[4]
|
Huang XY, Wang CK, Zhao YW, Sun CH, Hu DG. 2021. Mechanisms and regulation of organic acid accumulation in plant vacuoles. Horticulture Research 8:227 doi: 10.1038/s41438-021-00702-z
CrossRef Google Scholar
|
[5]
|
Yang M, Hou G, Peng Y, Wang L, Liu X, et al. 2023. FaGAPC2/FaPKc2.2 and FaPEPCK reveal differential citric acid metabolism regulation in late development of strawberry fruit. Frontiers in Plant Science 14:1138865 doi: 10.3389/fpls.2023.1138865
CrossRef Google Scholar
|
[6]
|
Yao YX, Li M, Liu Z, You CX, Wang DM, et al. 2009. Molecular cloning of three malic acid related genes MdPEPC, MdVHA-A, MdcyME and their expression analysis in apple fruits. Scientia Horticulturae 122:404−8 doi: 10.1016/j.scienta.2009.05.033
CrossRef Google Scholar
|
[7]
|
Gao M, Zhao H, Zheng L, Zhang L, Peng Y, et al. 2022. Overexpression of apple Ma12, a mitochondrial pyrophosphatase pump gene, leads to malic acid accumulation and the upregulationof malate dehydrogenase in tomato and apple calli. Horticulture Research 9:uhab053 doi: 10.1093/hr/uhab053
CrossRef Google Scholar
|
[8]
|
Zhang L, Wang C, Jia R, Yang N, Jin L, et al. 2022. Malate metabolism mediated by the cytoplasmic malate dehydrogenase gene MdcyMDH affects sucrose synthesis in apple fruit. Horticulture Research 9:uhac194 doi: 10.1093/hr/uhac194
CrossRef Google Scholar
|
[9]
|
Gao M, Yang N, Shao Y, Shen T, Li W, et al. 2024. An insertion in the promoter of a malate dehydrogenase gene regulates malic acid content in apple fruit. Plant Physiology 00:kiae303 doi: 10.1093/plphys/kiae303
CrossRef Google Scholar
|
[10]
|
Sweetman C, Deluc LG, Cramer GR, Ford CM, Soole KL. 2009. Regulation of malate metabolism in grape berry and other developing fruits. Phytochemistry 70:1329−44 doi: 10.1016/j.phytochem.2009.08.006
CrossRef Google Scholar
|
[11]
|
Hu DG, Li YY, Zhang QY, Li M, Sun CH, et al. 2017. The R2R3-MYB transcription factor MdMYB73 is involved in malate accumulation and vacuolar acidification in apple. The Plant Journal 91:443−54 doi: 10.1111/tpj.13579
CrossRef Google Scholar
|
[12]
|
Ma B, Liao L, Fang T, Peng Q, Ogutu C, et al. 2019. A Ma10 gene encoding P-type ATPase is involved in fruit organic acid accumulation in apple. Plant Biotechnology Journal 17:674−86 doi: 10.1111/pbi.13007
CrossRef Google Scholar
|
[13]
|
Martinoia E. 2018. Vacuolar transporters – companions on a longtime journey. Plant Physiology 176:1384−407 doi: 10.1104/pp.17.01481
CrossRef Google Scholar
|
[14]
|
Alabd A, Cheng H, Ahmad M, Wu X, Peng L, et al. 2023. ABRE-BINDING FACTOR3-WRKY DNA-BINDING PROTEIN44 module promotes salinity-induced malate accumulation in pear. Plant Physiology 192:1982−96 doi: 10.1093/plphys/kiad168
CrossRef Google Scholar
|
[15]
|
Zhang C, Geng Y, Liu H, Wu M, Bi J, et al. 2023. Low-acidity ALUMINUM-DEPENDENT MALATE TRANSPORTER4 genotype determines malate content in cultivated jujube. Plant Physiology 191:414−27 doi: 10.1093/plphys/kiac491
CrossRef Google Scholar
|
[16]
|
Li C, Krishnan S, Zhang M, Hu D, Meng D, et al. 2024. Alternative splicing underpins the ALMT9 transporter function for vacuolar malic acid accumulation in apple. Advanced Science 11:2310159 doi: 10.1002/advs.202310159
CrossRef Google Scholar
|
[17]
|
Li W, Lu X, Li J. 2022. The effect of organic nutrient solution on flavor in ripe cherry tomato fruit—Transcriptome and metabolomic analyses. Environmental and Experimental Botany 194:104721 doi: 10.1016/j.envexpbot.2021.104721
CrossRef Google Scholar
|
[18]
|
Zheng L, Ma W, Liu P, Song S, Wang L, et al. 2024. Transcriptional factor MdESE3 controls fruit acidity by activating genes regulating malic acid content in apple. Plant Physiology 00:kiae282 doi: 10.1093/plphys/kiae282
CrossRef Google Scholar
|
[19]
|
Cohen S, Itkin M, Yeselson Y, Tzuri G, Portnoy V, et al. 2014. The PH gene determines fruit acidity and contributes to the evolution of sweet melons. Nature Communications 5:4026 doi: 10.1038/ncomms5026
CrossRef Google Scholar
|
[20]
|
Jia D, Shen F, Wang Y, Wu T, Xu X, et al. 2018. Apple fruit acidity is genetically diversified by natural variations in three hierarchical epistatic genes: MdSAUR37, MdPP2CH and MdALMTII. The Plant Journal 95:427−43 doi: 10.1111/tpj.13957
CrossRef Google Scholar
|
[21]
|
Ban S, Xu K. 2020. Identification of two QTLs associated with high fruit acidity in apple using pooled genome sequencing analysis. Horticulture Research 7:171 doi: 10.1038/s41438-020-00393-y
CrossRef Google Scholar
|
[22]
|
Shi CY, Hussain SB, Yang H, Bai YX, Khan MA, et al. 2019. CsPH8, a P-type proton pump gene, plays a key role in the diversity of citric acid accumulation in citrus fruits. Plant Science 289:110288 doi: 10.1016/j.plantsci.2019.110288
CrossRef Google Scholar
|
[23]
|
Lu Z, Huang Y, Mao S, Wu F, Liu Y, et al. 2022. The high-quality genome of pummelo provides insights into the tissue-specific regulation of citric acid and anthocyanin during domestication. Horticulture Research 9:uhac175 doi: 10.1093/hr/uhac175
CrossRef Google Scholar
|
[24]
|
Zheng B, Zhao L, Jiang X, Cherono S, Liu J, et al. 2021. Assessment of organic acid accumulation and its related genes in peach. Food Chemistry 334:127567 doi: 10.1016/j.foodchem.2020.127567
CrossRef Google Scholar
|
[25]
|
Umer MJ, Bin Safdar L, Gebremeskel H, Zhao S, Yuan P, et al. 2020. Identification of key gene networks controlling organic acid and sugar metabolism during watermelon fruit development by integrating metabolic phenotypes and gene expression profiles. Horticulture Research 7:193 doi: 10.1038/s41438-020-00416-8
CrossRef Google Scholar
|
[26]
|
Yang J, Zhang J, Niu XQ, Zheng XL, Chen X, et al. 2021. Comparative transcriptome analysis reveals key genes potentially related to organic acid and sugar accumulation in loquat. PLoS One 16:e0238873 doi: 10.1371/journal.pone.0238873
CrossRef Google Scholar
|
[27]
|
Li M, Li P, Ma F, Dandekar AM, Cheng L. 2018. Sugar metabolism and accumulation in the fruit of transgenic apple trees with decreased sorbitol synthesis. Horticulture Research 5:60 doi: 10.1038/s41438-018-0064-8
CrossRef Google Scholar
|
[28]
|
Yao YX, Li M, Zhai H, You CX, Hao YJ. 2011. Isolation and characterization of an apple cytosolic malate dehydrogenase gene reveal its function in malate synthesis. Journal of Plant Physiology 168:474−80 doi: 10.1016/j.jplph.2010.08.008
CrossRef Google Scholar
|
[29]
|
Diakou P, Svanella L, Raymond P, Gaudillère JP, Moing A. 2000. Phosphoenolpyruvate carboxylase during grape berry development: protein level, enzyme activity and regulation. Australian Journal of Plant Physiology 27:221−29 doi: 10.1071/pp99141
CrossRef Google Scholar
|
[30]
|
Terrier N, Glissant D, Grimplet J, Barrieu F, Abbal P, et al. 2005. Isogene specific oligo arrays reveal multifaceted changes in gene expression during grape berry (Vitis vinifera L.) development. Planta 222:832−47 doi: 10.1007/s00425-005-0017-y
CrossRef Google Scholar
|
[31]
|
Shi J, Li FF, Ma H, Li ZY, Xu JZ. 2015. Effects of different dwarfing interstocks on key enzyme activities and the expression of genes related to malic acid metabolism in Red Fuji apples. Genetics and Molecular Research 14:17673−83 doi: 10.4238/2015.December.21.40
CrossRef Google Scholar
|
[32]
|
Martínez-Esteso MJ, Sellés-Marchart S, Lijavetzky D, Pedreño MA, Bru-Martínez R. 2011. A DIGE-based quantitative proteomic analysis of grape berry flesh development and ripening reveals key events in sugar and organic acid metabolism. Journal of Experimental Botany 62:2521−69 doi: 10.1093/jxb/erq434
CrossRef Google Scholar
|
[33]
|
Wang QJ, Sun H, Dong QL, Sun TY, Jin ZX, et al. 2016. The enhancement of tolerance to salt and cold stresses by modifying the redox state and salicylic acid content via the cytosolic malate dehydrogenase gene in transgenic apple plants. Plant Biotechnology Journal 14:1986−97 doi: 10.1111/pbi.12556
CrossRef Google Scholar
|
[34]
|
Yu JQ, Gu KD, Sun CH, Zhang QY, Wang JH, et al. 2021. The apple bHLH transcription factor MdbHLH3 functions in determining the fruit carbohydrates and malate. Plant Biotechnology Journal 19:285−99 doi: 10.1111/pbi.13461
CrossRef Google Scholar
|
[35]
|
Zhang L, Ma B, Wang C, Chen X, Ruan YL, et al. 2022. MdWRKY126 modulates malate accumulation in apple fruit by regulating cytosolic malate dehydrogenase (MdMDH5). Plant Physiology 188:2059−72 doi: 10.1093/plphys/kiac023
CrossRef Google Scholar
|
[36]
|
Mignard P, Beguería S, Reig G, Font i Forcada C, Moreno MA. 2021. Genetic origin and climate determine fruit quality and antioxidant traits on apple (Malus × domestica Borkh). Scientia Horticulturae 285:110142 doi: 10.1016/j.scienta.2021.110142
CrossRef Google Scholar
|
[37]
|
Chen F, Liu X, Chen L. 2009. Developmental changes in pulp organic acid concentration and activities of acid-metabolising enzymes during the fruit development of two loquat (Eriobotrya japonica Lindl.) cultivars differing in fruit acidity. Food Chemistry 114:657−64 doi: 10.1016/j.foodchem.2008.10.003
CrossRef Google Scholar
|
[38]
|
Plotto A, Bai J, Baldwin E. 2020. Effect of CA/MA on sensory quality. In Controlled and Modified Atmospheres for Fresh and Fresh-Cut Produce, eds Gil MI, Beaudry R. Amsterdam: Elsevier. pp. 109−30. https://doi.org/10.1016/B978-0-12-804599-2.00007-7
|
[39]
|
Walker RP, Chen ZH. 2002. Phosphoenolpyruvate carboxykinase: structure, function and regulation. Advances in Botanical Research 38:93−189 doi: 10.1016/s0065-2296(02)38029-7
CrossRef Google Scholar
|
[40]
|
Famiani F, Battistelli A, Moscatello S, Cruz-Castillo JG, Walker RP. 2015. The organic acids that are accumulated in the flesh of fruits: occurrence, metabolism and factors affecting their contents–a review. Revista Chapingo Serie Horticultura 21:97−128 doi: 10.5154/r.rchsh.2015.01.004
CrossRef Google Scholar
|
[41]
|
Famiani F, Cultrera NGM, Battistelli A, Casulli V, Proietti P, et al. 2005. Phosphoenolpyruvate carboxykinase and its potential role in the catabolism of organic acids in the flesh of soft fruit during ripening. Journal of Experimental Botany 56:2959−69 doi: 10.1093/jxb/eri293
CrossRef Google Scholar
|
[42]
|
Famiani F, Farinelli D, Frioni T, Palliotti A, Battistelli A, et al. 2016. Malate as substrate for catabolism and gluconeogenesis during ripening in the pericarp of different grape cultivars. Biologia Plantarum 60:155−62 doi: 10.1007/s10535-015-0574-2
CrossRef Google Scholar
|
[43]
|
Famiani F, Farinelli D, Moscatello S, Battistelli A, Leegood RC, et al. 2016. The contribution of stored malate and citrate to the substrate requirements of metabolism of ripening peach (Prunus persica L. Batsch) flesh is negligible. Implications for the occurrence of phosphoenolpyruvate carboxykinase and gluconeogenesis. Plant Physiology and Biochemistry 101:33−42 doi: 10.1016/j.plaphy.2016.01.007
CrossRef Google Scholar
|
[44]
|
MacRae AR, Moorhouse R. 1970. The oxidation of malate by mitochondria isolated from cauliflower buds. European Journal of Biochemistry 16:96−102 doi: 10.1111/j.1432-1033.1970.tb01058.x
CrossRef Google Scholar
|
[45]
|
Ollat N, Gaudillère JP. 2000. Carbon balance in developing grapevine berries. Acta Horticulturae 526:345−50 doi: 10.17660/actahortic.2000.526.37
CrossRef Google Scholar
|
[46]
|
Yang LT, Xie CY, Jiang HX, Chen LS. 2011. Expression of six malate-related genes in pulp during the fruit development of two loquat (Eriobotrya japonica) cultivars differing in fruit acidity. African Journal of Biotechnology 10:2414−22
Google Scholar
|
[47]
|
Iannetta PPM, Escobar NM, Ross HA, Souleyre EJF, Hancock RD, et al. 2004. Identification, cloning and expression analysis of strawberry (Fragaria × ananassa) mitochondrial citrate synthase and mitochondrial malate dehydrogenase. Physiologia Plantarum 121:15−26 doi: 10.1111/j.0031-9317.2004.00302.x
CrossRef Google Scholar
|
[48]
|
Pracharoenwattana I, Smith SM. 2008. When is a peroxisome not a peroxisome? Trends in Plant Science 13:522−25 doi: 10.1016/j.tplants.2008.07.003
CrossRef Google Scholar
|
[49]
|
Liu S, Yang Y, Murayama H, Taira S, Fukushima T. 2004. Effects of CO2 on respiratory metabolism in ripening banana fruit. Postharvest Biology and Technology 33:27−34 doi: 10.1016/j.postharvbio.2004.01.006
CrossRef Google Scholar
|
[50]
|
Pua EC, Chandramouli S, Han P, Liu P. 2003. Malate synthase gene expression during fruit ripening of Cavendish banana (Musa acuminata cv. Williams). Journal of Experimental Botany 54:309−16 doi: 10.1093/jxb/erg030
CrossRef Google Scholar
|
[51]
|
Fontes N, Gerós H, Delrot S. 2011. Grape berry vacuole: a complex and heterogeneous membrane system specialized in the accumulation of solutes. American Journal of Enology and Viticulture 62:270−78 doi: 10.5344/ajev.2011.10125
CrossRef Google Scholar
|
[52]
|
Shiratake K, Martinoia E. 2007. Transporters in fruit vacuoles. Plant Biotechnology 24:127−33 doi: 10.5511/plantbiotechnology.24.127
CrossRef Google Scholar
|
[53]
|
Martinoia E, Maeshima M, Neuhaus HE. 2007. Vacuolar transporters and their essential role in plant metabolism. Journal of Experimental Botany 58:83−102 doi: 10.1093/jxb/erl183
CrossRef Google Scholar
|
[54]
|
Ligaba A, Dreyer I, Margaryan A, Schneider DJ, Kochian L, et al. 2013. Functional, structural and phylogenetic analysis of domains underlying the Al sensitivity of the aluminum-activated malate/anion transporter, TaALMT1. The Plant Journal 76:766−80 doi: 10.1111/tpj.12332
CrossRef Google Scholar
|
[55]
|
Ma B, Liao L, Zheng H, Chen J, Wu B, et al. 2015. Genes encoding aluminum-activated malate transporter II and their association with fruit acidity in apple. The Plant Genome 8:eplantgenome2015.03.0016 doi: 10.3835/plantgenome2015.03.0016
CrossRef Google Scholar
|
[56]
|
Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, et al. 2004. A wheat gene encoding an aluminum-activated malate transporter. The Plant Journal 37:645−53 doi: 10.1111/j.1365-313x.2003.01991.x
CrossRef Google Scholar
|
[57]
|
Kovermann P, Meyer S, Hörtensteiner S, Picco C, Scholz-Starke J, et al. 2007. The Arabidopsis vacuolar malate channel is a member of the ALMT family. The Plant Journal 52:1169−80 doi: 10.1111/j.1365-313X.2007.03367.x
CrossRef Google Scholar
|
[58]
|
Liu J, Magalhaes JV, Shaff J, Kochian LV. 2009. Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. The Plant Journal 57:389−99 doi: 10.1111/j.1365-313X.2008.03696.x
CrossRef Google Scholar
|
[59]
|
Ligaba A, Maron L, Shaff J, Kochian L, Piñeros M. 2012. Maize ZmALMT2 is a root anion transporter that mediates constitutive root malate efflux. Plant, Cell & Environment 35:1185−200 doi: 10.1111/j.1365-3040.2011.02479.x
CrossRef Google Scholar
|
[60]
|
Peng W, Wu W, Peng J, Li J, Lin Y, et al. 2018. Characterization of the soybean GmALMT family genes and the function of GmALMT5 in response to phosphate starvation. Journal of Integrative Plant Biology 60:216−31 doi: 10.1111/jipb.12604
CrossRef Google Scholar
|
[61]
|
Ligaba A, Katsuhara M, Ryan PR, Shibasaka M, Matsumoto H. 2006. The BnALMT1 and BnALMT2 genes from rape encode aluminum-activated malate transporters that enhance the aluminum resistance of plant cells. Plant Physiology 142:1294−303 doi: 10.1104/pp.106.085233
CrossRef Google Scholar
|
[62]
|
Ye J, Wang X, Hu T, Zhang F, Wang B, et al. 2017. An InDel in the promoter of Al-ACTIVATED MALATE TRANSPORTER9 selected during tomato domestication determines fruit malate contents and aluminum tolerance. The Plant Cell 29:2249−68 doi: 10.1105/tpc.17.00211
CrossRef Google Scholar
|
[63]
|
Bai Y, Dougherty L, Li M, Fazio G, Cheng L, et al. 2012. A natural mutation-led truncation in one of the two aluminum-activated malate transporter-like genes at the Ma locus is associated with low fruit acidity in apple. Molecular Genetics and Genomics 287:663−78 doi: 10.1007/s00438-012-0707-7
CrossRef Google Scholar
|
[64]
|
Xu L, Qiao X, Zhang M, Zhang S. 2018. Genome-wide analysis of aluminum-activated malate transporter family genes in six rosaceae species, and expression analysis and functional characterization on malate accumulation in Chinese white pear. Plant Science 274:451−65 doi: 10.1016/j.plantsci.2018.06.022
CrossRef Google Scholar
|
[65]
|
Barbier-Brygoo H, De Angeli A, Filleur S, Frachisse JM, Gambale F, et al. 2011. Anion channels/transporters in plants: from molecular bases to regulatory networks. Annual Review of Plant Biology 62:25−51 doi: 10.1146/annurev-arplant-042110-103741
CrossRef Google Scholar
|
[66]
|
Eisenach C, Baetz U, Huck NV, Zhang J, De Angeli A, et al. 2017. ABA-induced stomatal closure involves ALMT4, a phosphorylation-dependent vacuolar anion channel of Arabidopsis. The Plant Cell 29:2552−69 doi: 10.1105/tpc.17.00452
CrossRef Google Scholar
|
[67]
|
Luu K, Rajagopalan N, Ching JCH, Loewen MC, Loewen ME. 2019. The malate-activated ALMT12 anion channel in the grass Brachypodium distachyon is co-activated by Ca2+/calmodulin. Journal of Biological Chemistry 294:6142−56 doi: 10.1074/jbc.RA118.005301
CrossRef Google Scholar
|
[68]
|
Hoekenga OA, Maron LG, Piñeros MA, Cançado GMA, Shaff J, et al. 2006. AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 103:9738−43 doi: 10.1073/pnas.0602868103
CrossRef Google Scholar
|
[69]
|
Gruber BD, Delhaize E, Richardson AE, Roessner U, James RA, et al. 2011. Characterisation of HvALMT1 function in transgenic barley plants. Functional Plant Biology 38:163−75 doi: 10.1071/FP10140
CrossRef Google Scholar
|
[70]
|
Ding ZJ, Yan JY, Xu XY, Li GX, Zheng SJ. 2013. WRKY46 functions as a transcriptional repressor of ALMT1, regulating aluminum-induced malate secretion in Arabidopsis. The Plant Journal 76:825−35 doi: 10.1111/tpj.12337
CrossRef Google Scholar
|
[71]
|
Piñeros MA, Cançado GMA, Maron LG, Lyi SM, Menossi M, et al. 2008. Not all ALMT1-type transporters mediate aluminum-activated organic acid responses: the case of ZmALMT1 – an anion-selective transporter. The Plant Journal 53:352−67 doi: 10.1111/j.1365-313X.2007.03344.x
CrossRef Google Scholar
|
[72]
|
Zhou Y, Neuhäuser B, Neumann G, Ludewig U. 2020. LaALMT1 mediates malate release from phosphorus-deficient white lupin root tips and metal root to shoot translocation. Plant, Cell & Environment 43:1691−706 doi: 10.1111/pce.13762
CrossRef Google Scholar
|
[73]
|
Sasaki T, Tsuchiya Y, Ariyoshi M, Nakano R, Ushijima K, et al. 2016. Two members of the aluminum-activated malate transporter family, SlALMT4 and SlALMT5, are expressed during fruit development, and the overexpression of SlALMT5 alters organic acid contents in seeds in tomato (Solanum lycopersicum). Plant and Cell Physiology 57:2367−79 doi: 10.1093/pcp/pcw157
CrossRef Google Scholar
|
[74]
|
Sasaki T, Ariyoshi M, Yamamoto Y, Mori IC. 2022. Functional roles of ALMT-type anion channels in malate-induced stomatal closure in tomato and Arabidopsis. Plant, Cell & Environment 45:2337−50 doi: 10.1111/pce.14373
CrossRef Google Scholar
|
[75]
|
Meyer S, Scholz-Starke J, De Angeli A, Kovermann P, Burla B, et al. 2011. Malate transport by the vacuolar AtALMT6 channel in guard cells is subject to multiple regulation. The Plant Journal 67:247−57 doi: 10.1111/j.1365-313X.2011.04587.x
CrossRef Google Scholar
|
[76]
|
Hafke JB, Hafke Y, Smith JAC, Lüttge U, Thiel G. 2003. Vacuolar malate uptake is mediated by an anion-selective inward rectifier. The Plant Journal 35:116−28 doi: 10.1046/j.1365-313x.2003.01781.x
CrossRef Google Scholar
|
[77]
|
Li C, Dougherty L, Coluccio AE, Meng D, El-Sharkawy I, et al. 2020. Apple ALMT9 requires a conserved C-terminal domain for malate transport underlying fruit acidity. Plant Physiology 182:992−1006 doi: 10.1104/pp.19.01300
CrossRef Google Scholar
|
[78]
|
Xu K, Wang A, Brown S. 2012. Genetic characterization of the Ma locus with pH and titratable acidity in apple. Molecular Breeding 30:899−912 doi: 10.1007/s11032-011-9674-7
CrossRef Google Scholar
|
[79]
|
De Angeli A, Baetz U, Francisco R, Zhang J, Chaves MM, et al. 2013. The vacuolar channel VvALMT9 mediates malate and tartrate accumulation in berries of Vitis vinifera. Planta 238:283−91 doi: 10.1007/s00425-013-1888-y
CrossRef Google Scholar
|
[80]
|
Fu BL, Wang WQ, Li X, Qi TH, Shen QF, et al. 2023. A dramatic decline in fruit citrate induced by mutagenesis of a NAC transcription factor, AcNAC1. Plant Biotechnology Journal 21:1695−706 doi: 10.1111/pbi.14070
CrossRef Google Scholar
|
[81]
|
Liu S, Liu X, Gou B, Wang D, Liu C, et al. 2022. The interaction between CitMYB52 and CitbHLH2 negatively regulates citrate accumulation by activating CitALMT in Citrus fruit. Frontiers in Plant Science 13:848869 doi: 10.3389/fpls.2022.848869
CrossRef Google Scholar
|
[82]
|
Yamaki S. 1984. Isolation of vacuoles from immature apple fruit flesh and compartmentation of sugars, organic acids, phenolic compounds and amino acids. Plant and Cell Physiology 25:151−66 doi: 10.1093/oxfordjournals.pcp.a076688
CrossRef Google Scholar
|
[83]
|
Hurth MA, Suh SJ, Kretzschmar T, Geis T, Bregante M, et al. 2005. Impaired pH homeostasis in Arabidopsis lacking the vacuolar dicarboxylate transporter and analysis of carboxylic acid transport across the tonoplast. Plant Physiology 137:901−10 doi: 10.1104/pp.104.058453
CrossRef Google Scholar
|
[84]
|
Emmerlich V, Linka N, Reinhold T, Hurth MA, Traub M, et al. 2003. The plant homolog to the human sodium/dicarboxylic cotransporter is the vacuolar malate carrier. Proceedings of the National Academy of Sciences of the United States of America 100:11122−26 doi: 10.1073/pnas.1832002100
CrossRef Google Scholar
|
[85]
|
Frei B, Eisenach C, Martinoia E, Hussein S, Chen XZ, et al. 2018. Purification and functional characterization of the vacuolar malate transporter tDT from Arabidopsis. Journal of Biological Chemistry 293:4180−90 doi: 10.1074/jbc.RA117.000851
CrossRef Google Scholar
|
[86]
|
Medeiros DB, Barros KA, Barros JAS, Omena-Garcia RP, Arrivault S, et al. 2017. Impaired malate and fumarate accumulation due to the mutation of the tonoplast dicarboxylate transporter has little effects on stomatal behavior. Plant Physiology 175:1068−81 doi: 10.1104/pp.17.00971
CrossRef Google Scholar
|
[87]
|
Shimada T, Nakano R, Shulaev V, Sadka A, Blumwald E. 2006. Vacuolar citrate/H+ symporter of citrus juice cells. Planta 224:472−80 doi: 10.1007/s00425-006-0223-2
CrossRef Google Scholar
|
[88]
|
Lin Q, Li S, Dong W, Feng C, Yin X, et al. 2015. Involvement of CitCHX and CitDIC in developmental-related and postharvest-hot-air driven citrate degradation in citrus fruits. PLoS One 10:e0119410 doi: 10.1371/journal.pone.0119410
CrossRef Google Scholar
|
[89]
|
Liu R, Li B, Qin G, Zhang Z, Tian S. 2017. Identification and functional characterization of a tonoplast dicarboxylate transporter in tomato (Solanum lycopersicum). Frontiers in Plant Science 8:186 doi: 10.3389/fpls.2017.00186
CrossRef Google Scholar
|
[90]
|
Liao L, Zhang W, Zhang B, Fang T, Wang XF, et al. 2021. Unraveling a genetic roadmap for improved taste in the domesticated apple. Molecular Plant 14:1454−71 doi: 10.1016/j.molp.2021.05.018
CrossRef Google Scholar
|
[91]
|
Yao YX, Dong QL, You CX, Zhai H, Hao YJ. 2011. Expression analysis and functional characterization of apple MdVHP1 gene reveals its involvement in Na+, malate and soluble sugar accumulation. Plant Physiology and Biochemistry 49:1201−8 doi: 10.1016/j.plaphy.2011.05.012
CrossRef Google Scholar
|
[92]
|
Hu DG, Sun CH, Ma QJ, You CX, Cheng L, et al. 2016. MdMYB1 regulates anthocyanin and malate accumulation by directly facilitating their transport into vacuoles in apples. Plant Physiology 170:1315−30 doi: 10.1104/pp.15.01333
CrossRef Google Scholar
|
[93]
|
Terrier N, Sauvage FX, Ageorges A, Romieu C. 2001. Changes in acidity and in proton transport at the tonoplast of grape berries during development. Planta 213:20−28 doi: 10.1007/s004250000472
CrossRef Google Scholar
|
[94]
|
Regalado A, Pierri CL, Bitetto M, Laera VL, Pimentel C, et al. 2013. Characterization of mitochondrial dicarboxylate/tricarboxylate transporters from grape berries. Planta 237:693−703 doi: 10.1007/s00425-012-1786-8
CrossRef Google Scholar
|
[95]
|
Mohammed SA, Nishio S, Takahashi H, Shiratake K, Ikeda H, et al. 2012. Role of vacuolar H+-inorganic pyrophosphatase in tomato fruit development. Journal of Experimental Botany 63:5613−21 doi: 10.1093/jxb/ers213
CrossRef Google Scholar
|
[96]
|
Hussain SB, Shi CY, Guo LX, Du W, Bai YX, et al. 2020. Type I H+-pyrophosphatase regulates the vacuolar storage of sucrose in citrus fruit. Journal of Experimental Botany 71:5935−47 doi: 10.1093/jxb/eraa298
CrossRef Google Scholar
|
[97]
|
Jiang YT, Tang RJ, Zhang YJ, Xue HW, Ferjani A, et al. 2020. Two tonoplast proton pumps function in Arabidopsis embryo development. New Phytologist 225:1606−17 doi: 10.1111/nph.16231
CrossRef Google Scholar
|
[98]
|
Gao MY, Liang J, li H, Zhong R, Di-an N. 2021. Loss-of-function of vacuolar-type H+ pyrophosphatase gene lead to reduce in stomatal aperture and density. IOP Conference Series: Earth and Environmental Science 657:012024 doi: 10.1088/1755-1315/657/1/012024
CrossRef Google Scholar
|
[99]
|
Maeshima M. 2000. Vacuolar H+-pyrophosphatase. Biochimica et Biophysica Acta (BBA) - Biomembranes 1465:37−51 doi: 10.1016/s0005-2736(00)00130-9
CrossRef Google Scholar
|
[100]
|
Lu XP, Liu YZ, Zhou GF, Wei QJ, Hu HJ, et al. 2011. Identification of organic acid-related genes and their expression profiles in two pear (Pyrus pyrifolia) cultivars with difference in predominant acid type at fruit ripening stage. Scientia Horticulturae 129:680−87 doi: 10.1016/j.scienta.2011.05.014
CrossRef Google Scholar
|
[101]
|
Etienne C, Moing A, Dirlewanger E, Raymond P, Monet R, et al. 2002. Isolation and characterization of six peach cDNAs encoding key proteins in organic acid metabolism and solute accumulation: involvement in regulating peach fruit acidity. Physiologia Plantarum 114:259−70 doi: 10.1034/j.1399-3054.2002.1140212.x
CrossRef Google Scholar
|
[102]
|
Aprile A, Federici C, Close TJ, De Bellis L, Cattivelli L, et al. 2011. Expression of the H+-ATPase AHA10 proton pump is associated with citric acid accumulation in lemon juice sac cells. Functional & Integrative Genomics 11:551−63 doi: 10.1007/s10142-011-0226-3
CrossRef Google Scholar
|
[103]
|
Li SJ, Yin XR, Xie XL, Allan AC, Ge H, et al. 2016. The Citrus transcription factor, CitERF13, regulates citric acid accumulation via a protein-protein interaction with the vacuolar proton pump, CitVHA-c4. Scientific Reports 6:20151 doi: 10.1038/srep20151
CrossRef Google Scholar
|
[104]
|
Jia D, Wu P, Shen F, Li W, Zheng X, et al. 2021. Genetic variation in the promoter of an R2R3−MYB transcription factor determines fruit malate content in apple (Malus domestica Borkh.). Plant Physiology 186:549−68 doi: 10.1093/plphys/kiab098
CrossRef Google Scholar
|
[105]
|
Faraco M, Spelt C, Bliek M, Verweij W, Hoshino A, et al. 2014. Hyperacidification of vacuoles by the combined action of two different P-ATPases in the tonoplast determines flower color. Cell Reports 6:32−43 doi: 10.1016/j.celrep.2013.12.009
CrossRef Google Scholar
|
[106]
|
Li Y, Provenzano S, Bliek M, Spelt C, Appelhagen I, et al. 2016. Evolution of tonoplast P-ATPase transporters involved in vacuolar acidification. New Phytologist 211:1092−107 doi: 10.1111/nph.14008
CrossRef Google Scholar
|
[107]
|
Eisenach C, Baetz U, Martinoia E. 2014. Vacuolar proton pumping: more than the sum of its parts? Trends in Plant Science 19:344−46 doi: 10.1016/j.tplants.2014.03.008
CrossRef Google Scholar
|
[108]
|
Faraco M, Di Sansebastiano GP, Spelt K, Koes RE, Quattrocchio FM. 2011. One protoplast is not the other! Plant Physiology 156:474−78 doi: 10.1104/pp.111.173708
CrossRef Google Scholar
|
[109]
|
Strazzer P, Spelt CE, Li S, Bliek M, Federici CT, et al. 2019. Hyperacidification of Citrus fruits by a vacuolar proton-pumping P-ATPase complex. Nature Communications 10:744 doi: 10.1038/s41467-019-08516-3
CrossRef Google Scholar
|
[110]
|
Zheng L, Ma W, Deng J, Peng Y, Tian R, et al. 2022. A MdMa13 gene encoding tonoplast P3B-type ATPase regulates organic acid accumulation in apple. Scientia Horticulturae 296:110916 doi: 10.1016/j.scienta.2022.110916
CrossRef Google Scholar
|
[111]
|
Amato A, Cavallini E, Walker AR, Pezzotti M, Bliek M, et al. 2019. The MYB5-driven MBW complex recruits a WRKY factor to enhance the expression of targets involved in vacuolar hyper-acidification and trafficking in grapevine. The Plant Journal 99:1220−41 doi: 10.1111/tpj.14419
CrossRef Google Scholar
|
[112]
|
Song JX, Chen YC, Lu ZH, Zhao GP, Wang XL, et al. 2022. PbPH5, an H+ P-ATPase on the tonoplast, is related to malic acid accumulation in pear fruit. Journal of Integrative Agriculture 21:1645−57 doi: 10.1016/s2095-3119(21)63790-5
CrossRef Google Scholar
|
[113]
|
Pant BD, Oh S, Lee HK, Nandety RS, Mysore KS. 2020. Antagonistic regulation by CPN60A and CLPC1 of TRXL1 that regulates MDH activity leading to plant disease resistance and thermotolerance. Cell Reports 33:108512 doi: 10.1016/j.celrep.2020.108512
CrossRef Google Scholar
|
[114]
|
Zhang QY, Gu KD, Wang JH, Yu JQ, Wang XF, et al. 2020. BTB-BACK-TAZ domain protein MdBT2-mediated MdMYB73 ubiquitination negatively regulates malate accumulation and vacuolar acidification in apple. Horticulture Research 7:151 doi: 10.1038/s41438-020-00384-z
CrossRef Google Scholar
|
[115]
|
Wang JH, Gu KD, Zhang QY, Yu JQ, Wang CK, et al. 2023. Ethylene inhibits malate accumulation in apple by transcriptional repression of aluminum-activated malate transporter 9 via the WRKY31-ERF72 network. New Phytologist 239:1014−34 doi: 10.1111/nph.18795
CrossRef Google Scholar
|
[116]
|
Peng Y, Yuan Y, Chang W, Zheng L, Ma W, et al. 2023. Transcriptional repression of MdMa1 by MdMYB21 in Ma locus decreases malic acid content in apple fruit. The Plant Journal 115:1231−42 doi: 10.1111/tpj.16314
CrossRef Google Scholar
|
[117]
|
Zheng L, Liao L, Duan C, Ma W, Peng Y, et al. 2023. Allelic variation of MdMYB123 controls malic acid content by regulating MdMa1 and MdMa11 expression in apple. Plant Physiology 192:1877−91 doi: 10.1093/plphys/kiad111
CrossRef Google Scholar
|
[118]
|
Nakatsukasa K, Okumura F, Kamura T. 2015. Proteolytic regulation of metabolic enzymes by E3 ubiquitin ligase complexes: lessons from yeast. Critical Reviews in Biochemistry and Molecular Biology 50:489−502 doi: 10.3109/10409238.2015.1081869
CrossRef Google Scholar
|
[119]
|
Li YY, Mao K, Zhao C, Zhao XY, Zhang HL, et al. 2012. MdCOP1 ubiquitin E3 ligases interact with MdMYB1 to regulate light-induced anthocyanin biosynthesis and red fruit coloration in apple. Plant Physiology 160:1011−22 doi: 10.1104/pp.112.199703
CrossRef Google Scholar
|
[120]
|
Hu DG, Sun CH, Zhang QY, An JP, You CX, et al. 2016. Glucose sensor MdHXK1 phosphorylates and stabilizes MdbHLH3 to promote anthocyanin biosynthesis in apple. PLoS Genetics 12:e1006273 doi: 10.1371/journal.pgen.1006273
CrossRef Google Scholar
|
[121]
|
Hu DG, Yu JQ, Han PL, Xie XB, Sun CH, et al. 2019. The regulatory module MdPUB29-MdbHLH3 connects ethylene biosynthesis with fruit quality in apple. New Phytologist 221:1966−82 doi: 10.1111/nph.15511
CrossRef Google Scholar
|
[122]
|
Zhang QY, Gu KD, Cheng L, Wang JH, Yu JQ, et al. 2020. BTB-TAZ domain protein MdBT2 modulates malate accumulation and vacuolar acidification in response to nitrate. Plant Physiology 183:750−64 doi: 10.1104/pp.20.00208
CrossRef Google Scholar
|
[123]
|
Chen Q, Xu X, Xu D, Zhang H, Zhang C, et al. 2019. WRKY18 and WRKY53 coordinate with HISTONE ACETYLTRANSFERASE1 to regulate rapid responses to sugar. Plant Physiology 180:2212−26 doi: 10.1104/pp.19.00511
CrossRef Google Scholar
|
[124]
|
Li X, Guo W, Li J, Yue P, Bu H, et al. 2020. Histone acetylation at the promoter for the transcription factor PuWRKY31 affects sucrose accumulation in pear fruit. Plant Physiology 182:2035−46 doi: 10.1104/pp.20.00002
CrossRef Google Scholar
|
[125]
|
Sicilia A, Scialò E, Puglisi I, Lo Piero AR. 2020. Anthocyanin biosynthesis and DNA methylation dynamics in sweet orange fruit [Citrus sinensis L. (osbeck)] under cold stress. Journal of Agricultural and Food Chemistry 68:7024−31 doi: 10.1021/acs.jafc.0c02360
CrossRef Google Scholar
|
[126]
|
Yu H, Zhang C, Lu C, Wang Y, Ge C, et al. 2024. The lemon genome and DNA methylome unveil epigenetic regulation of citric acid biosynthesis during fruit development. Horticulture Research 11:uhae005 doi: 10.1093/hr/uhae005
CrossRef Google Scholar
|
[127]
|
Giné Bordonaba J, Terry LA. 2010. Manipulating the taste-related composition of strawberry fruits (Fragaria × ananassa) from different cultivars using deficit irrigation. Food Chemistry 122:1020−26 doi: 10.1016/j.foodchem.2010.03.060
CrossRef Google Scholar
|
[128]
|
Wu BH, Quilot B, Génard M, Kervella J, Li SH. 2005. Changes in sugar and organic acid concentrations during fruit maturation in peaches, P. davidiana and hybrids as analyzed by principal component analysis. Scientia Horticulturae 103:429−39 doi: 10.1016/j.scienta.2004.08.003
CrossRef Google Scholar
|
[129]
|
Centeno DC, Osorio S, Nunes-Nesi A, Bertolo ALF, Carneiro RT, et al. 2011. Malate plays a crucial role in starch metabolism, ripening, and soluble solid content of tomato fruit and affects postharvest softening. The Plant Cell 23:162−84 doi: 10.1105/tpc.109.072231
CrossRef Google Scholar
|
[130]
|
Osorio S, Vallarino JG, Szecowka M, Ufaz S, Tzin V, et al. 2013. Alteration of the interconversion of pyruvate and malate in the plastid or cytosol of ripening tomato fruit invokes diverse consequences on sugar but similar effects on cellular organic acid, metabolism, and transitory starch accumulation. Plant Physiology 161:628−43 doi: 10.1104/pp.112.211094
CrossRef Google Scholar
|
[131]
|
Wei L, Mao W, Jia M, Xing S, Ali U, et al. 2018. FaMYB44.2, a transcriptional repressor, negatively regulates sucrose accumulation in strawberry receptacles through interplay with FaMYB10. Journal of Experimental Botany 69:4805−20 doi: 10.1093/jxb/ery249
CrossRef Google Scholar
|
[132]
|
Bastías A, López-Climent M, Valcárcel M, Rosello S, Gómez-Cadenas A, et al. 2011. Modulation of organic acids and sugar content in tomato fruits by an abscisic acid-regulated transcription factor. Physiologia Plantarum 141:215−26 doi: 10.1111/j.1399-3054.2010.01435.x
CrossRef Google Scholar
|