[1]
|
Jiang Y, Huang B. 2001. Osmotic adjustment and root growth associated with drought preconditioning-enhanced heat tolerance in Kentucky bluegrass. Crop Science 41:1168−73 doi: 10.2135/cropsci2001.4141168x
CrossRef Google Scholar
|
[2]
|
Hilker M, Schmülling T. 2019. Stress priming, memory, and signalling in plants. Plant, Cell & Environment 42:753−61 doi: 10.1111/pce.13526
CrossRef Google Scholar
|
[3]
|
Forner A, Valladares F, Aranda I. 2018. Mediterranean trees coping with severe drought: avoidance might not be safe. Environmental and Experimental Botany 155:529−40 doi: 10.1016/j.envexpbot.2018.08.006
CrossRef Google Scholar
|
[4]
|
Tomasella M, Nardini A, Hesse BD, Machlet A, Matyssek R, et al. 2019. Close to the edge: effects of repeated severe drought on stem hydraulics and non-structural carbohydrates in European beech saplings. Tree Physiology 39:717−28 doi: 10.1093/treephys/tpy142
CrossRef Google Scholar
|
[5]
|
Abid M, Shao Y, Liu S, Wang F, Gao J, et al. 2017. Pre-drought priming sustains grain development under post-anthesis drought stress by regulating the growth hormones in winter wheat (Triticum aestivum L.). Planta 246:509−24 doi: 10.1007/s00425-017-2698-4
CrossRef Google Scholar
|
[6]
|
Xu Z, Zhou G, Shimizu H. 2009. Are plant growth and photosynthesis limited by pre-drought following rewatering in grass? Journal of Experimental Botany 60:3737−49 doi: 10.1093/jxb/erp216
CrossRef Google Scholar
|
[7]
|
Zhao W, Sun Y, Liu X. 2016. Effects of drought-rewatering-drought on photosynthesis and growth of maize. Chinese Journal of Plant Ecology 40:594−603 doi: 10.17521/cjpe.2015.0345
CrossRef Google Scholar
|
[8]
|
Nosalewicz A, Siecińska J, Kondracka K, Nosalewicz M. 2018. The functioning of Festuca arundinacea and Lolium perenne under drought is improved to a different extend by the previous exposure to water deficit. Environmental and Experimental Botany 156:271−78 doi: 10.1016/j.envexpbot.2018.09.016
CrossRef Google Scholar
|
[9]
|
Xu Z, Zhou G, Shimizu H. 2010. Plant responses to drought and rewatering. Plant Signaling & Behavior 5:649−54 doi: 10.4161/psb.5.6.11398
CrossRef Google Scholar
|
[10]
|
Busso CA, Mueller RJ, Richards JH. 1989. Effects of drought and defoliation on bud viability in two caespitose grasses. Annals of Botany 63:477−85 doi: 10.1093/oxfordjournals.aob.a087768
CrossRef Google Scholar
|
[11]
|
Busso CA, Richards JH. 1995. Drought and clipping effects on tiller demography and growth of two tussock grasses in Utah. Journal of Arid Environments 29:239−51 doi: 10.1016/S0140-1963(05)80093-X
CrossRef Google Scholar
|
[12]
|
Harrison MA, Kaufman PB. 1980. Hormonal regulation of lateral bud (tiller) release in oats (Avena sativa L.). Plant Physiology 66:1123−27 doi: 10.1104/pp.66.6.1123
CrossRef Google Scholar
|
[13]
|
Li X, Qian Q, Fu Z, Wang Y, Xiong G, et al. 2003. Control of tillering in rice. Nature 422:618−21 doi: 10.1038/nature01518
CrossRef Google Scholar
|
[14]
|
Tantikanjana T, Yong JWH, Letham DS, Griffith M, Hussain M, et al. 2001. Control of axillary bud initiation and shoot architecture in Arabidopsis through the SUPERSHOOT gene. Genes & Development 15:1577−88 doi: 10.1101/gad.887301
CrossRef Google Scholar
|
[15]
|
Tabuchi H, Zhang Y, Hattori S, Omae M, Shimizu-Sato S, et al. 2011. LAX PANICLE2 of rice encodes a novel nuclear protein and regulates the formation of axillary meristems. The Plant Cell 23:3276−87 doi: 10.1105/tpc.111.088765
CrossRef Google Scholar
|
[16]
|
Sato Y, Hong SK, Tagiri A, Kitano H, Yamamoto N, et al. 1996. A rice homeobox gene, OSH1, is expressed before organ differentiation in a specific region during early embryogenesis. Proceedings of the National Academy of Sciences of the United States of America 93:8117−22 doi: 10.1073/pnas.93.15.8117
CrossRef Google Scholar
|
[17]
|
Tanaka W, Tsuda K, Hirano HY. 2019. Class I KNOX gene OSH1 is indispensable for axillary meristem development in rice. Cytologia 84:343−46 doi: 10.1508/cytologia.84.343
CrossRef Google Scholar
|
[18]
|
Hubbard L, McSteen P, Doebley J, Hake S. 2002. Expression patterns and mutant phenotype of teosinte branched1 correlate with growth suppression in maize and teosinte. Genetics 162:1927−35 doi: 10.1093/genetics/162.4.1927
CrossRef Google Scholar
|
[19]
|
Takeda T, Suwa Y, Suzuki M, Kitano H, Ueguchi-Tanaka M, et al. 2003. The OsTB1 gene negatively regulates lateral branching in rice. The Plant Journal 33:513−20 doi: 10.1046/j.1365-313X.2003.01648.x
CrossRef Google Scholar
|
[20]
|
Rae GM, David K, Wood M. 2013. The dormancy marker DRM1/ARP associated with dormancy but a broader role in planta. Developmental Biology Journal 2013:632524 doi: 10.1155/2013/632524
CrossRef Google Scholar
|
[21]
|
Shimizu S, Mori H. 1998. Changes in protein interactions of cell cycle-related genes during the dormancy-to-growth transition in pea axillary buds. Plant and Cell Physiology 39:1073−79 doi: 10.1093/oxfordjournals.pcp.a029304
CrossRef Google Scholar
|
[22]
|
Souza BM, Molfetta-Machado JB, Freschi L, Figueira A, Purgatto E, et al. 2010. Axillary bud development in pineapple nodal segments correlates with changes on cell cycle gene expression, hormone level, and sucrose and glutamate contents. In Vitro Cellular & Developmental Biology - Plant 46:281−88 doi: 10.1007/s11627-009-9276-9
CrossRef Google Scholar
|
[23]
|
Wang Y, Ren T, Lu J, Ming R, Li P, et al. 2016. Heterogeneity in rice tillers yield associated with tillers formation and nitrogen fertilizer. Agronomy Journal 108:1717−25 doi: 10.2134/agronj2015.0587
CrossRef Google Scholar
|
[24]
|
Bahmani I, Varlet-Grancher C, Hazard L, Matthew C, Betin M, et al. 2000. Post-flowering tillering in contrasting light environments of two New Zealand perennial ryegrass cultivars with different perennation strategies. Grass and Forage Science 55:367−71 doi: 10.1046/j.1365-2494.2000.00228.x
CrossRef Google Scholar
|
[25]
|
Zhuang L, Wang J, Huang B. 2017. Drought inhibition of tillering in Festuca arundinacea associated with axillary bud development and strigolactone signaling. Environmental and Experimental Botany 142:15−23 doi: 10.1016/j.envexpbot.2017.07.017
CrossRef Google Scholar
|
[26]
|
Beveridge CA, Kyozuka J. 2010. New genes in the strigolactone-related shoot branching pathway. Current Opinion in Plant Biology 13:34−39 doi: 10.1016/j.pbi.2009.10.003
CrossRef Google Scholar
|
[27]
|
Dun EA, Brewer PB, Beveridge CA. 2009. Strigolactones: discovery of the elusive shoot branching hormone. Trends in Plant Science 14:364−72 doi: 10.1016/j.tplants.2009.04.003
CrossRef Google Scholar
|
[28]
|
Leyser O. 2009. The control of shoot branching: an example of plant information processing. Plant, Cell & Environment 32:694−703 doi: 10.1111/j.1365-3040.2009.01930.x
CrossRef Google Scholar
|
[29]
|
Zha M, Zhao Y, Wang Y, Chen B, Tan Z. 2022. Strigolactones and cytokinin interaction in buds in the control of rice tillering. Frontiers in Plant Science 13:837136 doi: 10.3389/fpls.2022.837136
CrossRef Google Scholar
|
[30]
|
Liu X, Hu Q, Yan J, Sun K, Liang Y, et al. 2020. ζ-carotene isomerase suppresses tillering in rice through the coordinated biosynthesis of strigolactone and abscisic acid. Molecular Plant 13:1784−801 doi: 10.1016/j.molp.2020.10.001
CrossRef Google Scholar
|
[31]
|
González-Grandío E, Poza-Carrión C, Sorzano COS, Cubas P. 2013. BRANCHED1 promotes axillary bud dormancy in response to shade in Arabidopsis. The Plant Cell 25:834−50 doi: 10.1105/tpc.112.108480
CrossRef Google Scholar
|
[32]
|
Avramova Z. 2019. Defence-related priming and responses to recurring drought: two manifestations of plant transcriptional memory mediated by the ABA and JA signalling pathways. Plant, Cell & Environment 42:983−97 doi: 10.1111/pce.13458
CrossRef Google Scholar
|
[33]
|
Brito C, Dinis LT, Ferreira H, Moutinho-Pereira J, Correia CM. 2020. Foliar pre-treatment with abscisic acid enhances olive tree drought adaptability. Plants 9:341 doi: 10.3390/plants9030341
CrossRef Google Scholar
|
[34]
|
Zhang X, Wang X, Zhuang L, Gao Y, Huang B. 2019. Abscisic acid mediation of drought priming-enhanced heat tolerance in tall fescue (Festuca arundinacea) and Arabidopsis. Physiologia Plantarum 167:488−501 doi: 10.1111/ppl.12975
CrossRef Google Scholar
|
[35]
|
Liu R, Finlayson SA. 2019. Sorghum tiller bud growth is repressed by contact with the overlying leaf. Plant, Cell & Environment 42:2120−32 doi: 10.1111/pce.13548
CrossRef Google Scholar
|
[36]
|
Hoagland DR and Arnon DI. 1950. The water-culture method for growing plants without soil. Circular. California Agricultural Experiment Station 347:1−32
Google Scholar
|
[37]
|
Huang L, Yan H, Jiang X, Yin G, Zhang X, et al. 2014. Identification of candidate reference genes in perennial ryegrass for quantitative RT-PCR under various abiotic stress conditions. PLoS ONE 9:e93724 doi: 10.1371/journal.pone.0093724
CrossRef Google Scholar
|
[38]
|
Pan X, Welti R, Wang X. 2010. Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography–mass spectrometry. Nature Protocols 5:986−92 doi: 10.1038/nprot.2010.37
CrossRef Google Scholar
|
[39]
|
Zhuang L, Ge Y, Wang J, Yu J, Yang Z, et al. 2019. Gibberellic acid inhibition of tillering in tall fescue involving crosstalks with cytokinins and transcriptional regulation of genes controlling axillary bud outgrowth. Plant Science 287:110168 doi: 10.1016/j.plantsci.2019.110168
CrossRef Google Scholar
|
[40]
|
Komatsu K, Maekawa M, Ujiie S, Satake Y, Furutani I, et al. 2003. LAX and SPA: major regulators of shoot branching in rice. Proceedings of the National Academy of Sciences of the United States of America 100:11765−70 doi: 10.1073/pnas.1932414100
CrossRef Google Scholar
|
[41]
|
Zhang Z, Sun X, Ma X, Xu B, Zhao Y, et al. 2021. GNP6, a novel allele of MOC1, regulates panicle and tiller development in rice. The Crop Journal 9:57−67 doi: 10.1016/j.cj.2020.04.011
CrossRef Google Scholar
|
[42]
|
Lee J, Han CT, Hur Y. 2013. Molecular characterization of the Brassica rapa auxin-repressed, superfamily genes, BrARP1 and BrDRM1. Molecular Biology Reports 40:197−209 doi: 10.1007/s11033-012-2050-9
CrossRef Google Scholar
|
[43]
|
Kebrom TH, Chandler PM, Swain SM, King RW, Richards RA, et al. 2012. Inhibition of tiller bud outgrowth in the tin mutant of wheat is associated with precocious internode development. Plant Physiology 160:308−18 doi: 10.1104/pp.112.197954
CrossRef Google Scholar
|
[44]
|
Tatematsu K, Ward S, Leyser O, Kamiya Y, Nambara E. 2005. Identification of cis-elements that regulate gene expression during initiation of axillary bud outgrowth in Arabidopsis. Plant Physiology 138:757−66 doi: 10.1104/pp.104.057984
CrossRef Google Scholar
|
[45]
|
Wood M, Rae GM, Wu R, Walton EF, Xue B, et al. 2013. Actinidia DRM1- an intrinsically disordered protein whose mRNA expression is inversely correlated with spring budbreak in kiwifruit. PLoS ONE 8:e57354 doi: 10.1371/journal.pone.0057354
CrossRef Google Scholar
|
[46]
|
Zheng Y, Ma X, Chi D, Gao A, Li L, et al. 2013. Comparative proteomic analysis of spike-development inhibited and normal tillers of wheat 3558. Journal of Integrative Agriculture 12:398−405 doi: 10.1016/S2095-3119(13)60239-7
CrossRef Google Scholar
|
[47]
|
Seto Y, Yamaguchi S. 2014. Strigolactone biosynthesis and perception. Current Opinion in Plant Biology 21:1−6 doi: 10.1016/j.pbi.2014.06.001
CrossRef Google Scholar
|
[48]
|
Guo S, Xu Y, Liu H, Mao Z, Zhang C, et al. 2013. The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14. Nature Communications 4:1566 doi: 10.1038/ncomms2542
CrossRef Google Scholar
|
[49]
|
Gaudin ACM, McClymont SA, Soliman SSM, Raizada MN. 2014. The effect of altered dosage of a mutant allele of Teosinte branched 1 (tb1-ref) on the root system of modern maize. BMC Genetics 15:23 doi: 10.1186/1471-2156-15-23
CrossRef Google Scholar
|
[50]
|
Wang X, Li Q, Xie J, Huang M, Cai J, et al. 2021. Abscisic acid and jasmonic acid are involved in drought priming-induced tolerance to drought in wheat. The Crop Journal 9:120−32 doi: 10.1016/j.cj.2020.06.002
CrossRef Google Scholar
|
[51]
|
Wang X, Zhang J, Song J, Huang M, Cai J, et al. 2020. Abscisic acid and hydrogen peroxide are involved in drought priming-induced drought tolerance in wheat (Triticum aestivum L.). Plant Biology 22:1113−22 doi: 10.1111/plb.13143
CrossRef Google Scholar
|
[52]
|
Luo L, Takahashi M, Kameoka H, Qin R, Shiga T, et al. 2019. Developmental analysis of the early steps in strigolactone-mediated axillary bud dormancy in rice. The Plant Journal 97:1006−21 doi: 10.1111/tpj.14266
CrossRef Google Scholar
|
[53]
|
Irene S, Otto M, Delker C, Kirmse N, Schmidt D, et al. 2012. ALLENE OXIDE CYCLASE (AOC) gene family members of Arabidopsis thaliana: tissue- and organ-specific promoter activities and in vivo heteromerization. Journal of Experimental Botany 63:6125−38 doi: 10.1093/jxb/ers261
CrossRef Google Scholar
|
[54]
|
Wasternack C, Hause B. 2013. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Annals of Botany 111:1021−58 doi: 10.1093/aob/mct067
CrossRef Google Scholar
|
[55]
|
Fernández-Calvo P, Chini A, Fernández-Barbero G, Chico JM, Gimenez-Ibanez S, et al. 2011. The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. The Plant Cell 23:701−15 doi: 10.1105/tpc.110.080788
CrossRef Google Scholar
|
[56]
|
Gupta N, Prasad VBR, Chattopadhyay S. 2014. LeMYC2 acts as a negative regulator of blue light mediated photomorphogenic growth, and promotes the growth of adult tomato plants. BMC Plant Biology 14:38 doi: 10.1186/1471-2229-14-38
CrossRef Google Scholar
|
[57]
|
Shimizu-Sato S, Tanaka M, Mori H. 2009. Auxin–cytokinin interactions in the control of shoot branching. Plant Molecular Biology 69:429−35 doi: 10.1007/s11103-008-9416-3
CrossRef Google Scholar
|
[58]
|
Li Y, He Y, Liu Z, Qin T, Wang L, et al. 2022. OsSPL14 acts upstream of OsPIN1b and PILS6b to modulate axillary bud outgrowth by fine-tuning auxin transport in rice. The Plant Journal 111:1167−82 doi: 10.1111/tpj.15884
CrossRef Google Scholar
|