[1]
|
Mei XD, Cao YF, Che YY, Li J, Shang ZP, et al. 2019. Danshen: a phytochemical and pharmacological overview. Chinese Journal of Natural Medicines 17:59−80 doi: 10.1016/S1875-5364(19)30010-X
CrossRef Google Scholar
|
[2]
|
Jiang Z, Gao W, Huang L. 2019. Tanshinones, Critical Pharmacological Components in Salvia miltiorrhiza. Frontiers in Pharmacology 10:202 doi: 10.3389/fphar.2019.00202
CrossRef Google Scholar
|
[3]
|
Zheng H, Fu X, Shao J, Tang Y, Yu M, et al. 2023. Transcriptional regulatory network of high-value active ingredients in medicinal plants. Trends in Plant Science 28(4):429−46 doi: 10.1016/j.tplants.2022.12.007
CrossRef Google Scholar
|
[4]
|
Zheng H, Jing L, Jiang X, Pu C, Zhao S, et al. 2021. The ERF-VII transcription factor SmERF73 coordinately regulates tanshinone biosynthesis in response to stress elicitors in Salvia miltiorrhiza. New Phytologist 231:1940−55 doi: 10.1111/nph.17463
CrossRef Google Scholar
|
[5]
|
Howe GA, Major IT, Koo AJ. 2018. Modularity in jasmonate signaling for multistress resilience. Annual Review of Plant Biology 69:387−415 doi: 10.1146/annurev-arplant-042817-040047
CrossRef Google Scholar
|
[6]
|
Zhou Y, Sun W, Chen J, Tan H, Xiao Y, et al. 2016. SmMYC2a and SmMYC2b played similar but irreplaceable roles in regulating the biosynthesis of tanshinones and phenolic acids in Salvia miltiorrhiza. Scientific Reports 6:22852 doi: 10.1038/srep22852
CrossRef Google Scholar
|
[7]
|
Du T, Niu J, Su J, Li S, Guo X, et al. 2018. SmbHLH37 functions antagonistically with SmMYC2 in regulating jasmonate-mediated biosynthesis of phenolic acids in Salvia miltiorrhiza. Frontiers in Plant Science 9:1720 doi: 10.3389/fpls.2018.01720
CrossRef Google Scholar
|
[8]
|
Ma P, Pei T, Lv B, Wang M, Dong J, et al. 2022. Functional pleiotropism, diversity, and redundancy of Salvia miltiorrhiza Bunge JAZ family proteins in jasmonate-induced tanshinone and phenolic acid biosynthesis. Horticulture Research 9:uhac166 doi: 10.1093/hr/uhac166
CrossRef Google Scholar
|
[9]
|
Fu X, Peng B, Hassani D, Xie L, Liu H, et al. 2021. AaWRKY9 contributes to light- and jasmonate-mediated to regulate the biosynthesis of artemisinin in Artemisia annua. New Phytologist 231:1858−74 doi: 10.1111/nph.17453
CrossRef Google Scholar
|
[10]
|
Yi R, Yan J, Xie D. 2020. Light promotes jasmonate biosynthesis to regulate photomorphogenesis in Arabidopsis. Science China Life Sciences 63:943−52 doi: 10.1007/s11427-019-1584-4
CrossRef Google Scholar
|
[11]
|
Alallaq S, Ranjan A, Brunoni F, Novák O, Lakehal A, et al. 2020. Light controls de novo adventitious root regeneration by modulating jasmonate and cytokinin homeostasis in Norway spruce hypocotyls. bioRxiv Preprint doi: 10.1101/2020.03.11.985838
CrossRef Google Scholar
|
[12]
|
Wang Y, Fan X, Lin F, He G, Terzaghi W, et al. 2014. Arabidopsis noncoding RNA mediates control of photomorphogenesis by red light. Proceedings of the National Academy of Sciences of the United States of America 111:10359−64 doi: 10.1073/pnas.1409457111
CrossRef Google Scholar
|
[13]
|
Feng S, Wang R, Gu W, Yu B, Wang Y, et al. 2019. Effects of red light and blue light on root morphology and accumulation of bioactive compounds in Salvia miltiorrhiza. Chinese Traditional and Herbal Drugs 50:5313−18 doi: 10.7501/j.issn.0253-2670.2019.21.026
CrossRef Google Scholar
|
[14]
|
Liang Z, Li Q, Xu W. 2012. Effects of different light quality on growth, active ingredients and enzyme activities of Salvia miltiorrhiza. China Journal of Chinese Materia Medica 37:2055−60 doi: 10.4268/cjcmm20121405
CrossRef Google Scholar
|
[15]
|
Svyatyna K, Jikumaru Y, Brendel R, Reichelt M, MithÖFer A, et al. 2013. Light induces jasmonate‐isoleucine conjugation via OsJAR1‐dependent and ‐independent pathways in rice. Plant, Cell & Environment 37:827−39 doi: 10.1111/pce.12201
CrossRef Google Scholar
|
[16]
|
Ortigosa A, Fonseca S, Franco‐Zorrilla JM, Fernández‐Calvo P, Zander M, et al. 2020. The JA‐pathway MYC transcription factors regulate photomorphogenic responses by targeting HY5 gene expression. The Plant Journal 102:138−52 doi: 10.1111/tpj.14618
CrossRef Google Scholar
|
[17]
|
Gangappa SN, Botto JF. 2016. The Multifaceted Roles of HY5 in Plant Growth and Development. Molecular Plant 9:1353−65 doi: 10.1016/j.molp.2016.07.002
CrossRef Google Scholar
|
[18]
|
Shin J, Park E, Choi G. 2007. PIF3 regulates anthocyanin biosynthesis in an HY5-dependent manner with both factors directly binding anthocyanin biosynthetic gene promoters in Arabidopsis. The Plant Journal 49:981−94 doi: 10.1111/j.1365-313X.2006.03021.x
CrossRef Google Scholar
|
[19]
|
Hao X, Zhong Y, Nützmann HW, Fu X, Yan T, et al. 2019. Light-Induced artemisinin biosynthesis is regulated by the bZIP transcription factor AaHY5 in Artemisia annual. Plant and Cell Physiology 60:1747−60 doi: 10.1093/pcp/pcz084
CrossRef Google Scholar
|
[20]
|
Zhou F, Sun T, Zhao L, Pan X, Lu S. 2015. The bZIP transcription factor HY5 interacts with the promoter of the monoterpene synthase gene QH6 in modulating its rhythmic expression. Frontiers in plant science 6:304 doi: 10.3389/fpls.2015.00304
CrossRef Google Scholar
|
[21]
|
Gangappa SN, Botto JF. 2014. The BBX family of plant transcription factors. Trends in Plant Science 19:460−70 doi: 10.1016/j.tplants.2014.01.010
CrossRef Google Scholar
|
[22]
|
Bursch K, Toledo-Ortiz G, Pireyre M, Lohr M, Braatz C, et al. 2020. Identification of BBX proteins as rate-limiting cofactors of HY5. Nature Plants 6:921−28 doi: 10.1038/s41477-020-0725-0
CrossRef Google Scholar
|
[23]
|
Bai S, Tao R, Yin L, Ni J, Yang Q, et al. 2019. Two B-box proteins, PpBBX18 and PpBBX21, antagonistically regulate anthocyanin biosynthesis via competitive association with Pyrus pyrifolia ELONGATED HYPOCOTYL 5 in the peel of pear fruit. The Plant Journal 100:1208−23 doi: 10.1111/tpj.14510
CrossRef Google Scholar
|
[24]
|
Bai B, Lu N, Li Y, Guo S, Yin H, et al. 2019. OsBBX14 promotes photomorphogenesis in rice by activating OsHY5L1 expression under blue light conditions. Plant Science 284:192−202 doi: 10.1016/j.plantsci.2019.04.017
CrossRef Google Scholar
|
[25]
|
Zhao X, Heng Y, Wang X, Deng X, Xu D. 2020. A positive feedback loop of BBX11-BBX21-HY5 promotes photomorphogenic development in Arabidopsis. Plant Communications 1:100045 doi: 10.1016/j.xplc.2020.100045
CrossRef Google Scholar
|
[26]
|
Xu D, Gao S, Ma Y, Wang X, Feng L, et al. 2017. The G-Protein β subunit AGB1 promotes hypocotyl elongation through inhibiting transcription activation function of BBX21 in Arabidopsis. Molecular Plant 10:1206−23 doi: 10.1016/j.molp.2017.08.004
CrossRef Google Scholar
|
[27]
|
Xu D, Li J, Gangappa SN, Hettiarachchi C, Lin F, et al. 2014. Convergence of light and ABA signaling on the ABI5 promoter. Plos Genetics 10:e1004197 doi: 10.1371/journal.pgen.1004197
CrossRef Google Scholar
|
[28]
|
Chen H, Zhang J, Neff MM, Hong S, Zhang H, et al. 2008. Integration of light and abscisic acid signaling during seed germination and early seedling development. Proceedings of the National Academy of Sciences of the United States of America 105:4495−500 doi: 10.1073/pnas.0710778105
CrossRef Google Scholar
|
[29]
|
Wang F, Zhang L, Chen X, Wu X, Xiang X, et al. 2018. SlHY5 integrates temperature, light and hormone signaling to balance plant growth and cold tolerance. Plant Physiology 179:749−60 doi: 10.1104/pp.18.01140
CrossRef Google Scholar
|
[30]
|
Weller JL, Hecht V, Vander Schoor JK, Davidson SE, Ross JJ. 2009. Light regulation of gibberellin biosynthesis in Pea is mediated through the COP1/HY5 pathway. The Plant Cell 21:800−13 doi: 10.1105/tpc.108.063628
CrossRef Google Scholar
|
[31]
|
Fan XY, Sun Y, Cao DM, Bai MY, Luo XM, et al. 2012. BZS1, a B-box protein, promotes photomorphogenesis downstream of both brassinosteroid and light signaling pathways. Molecular Plant 5:591−600 doi: 10.1093/mp/sss041
CrossRef Google Scholar
|
[32]
|
Ma Y, Cui G, Chen T, Ma X, Wang R, et al. 2021. Expansion within the CYP71D subfamily drives the heterocyclization of tanshinones synthesis in Salvia miltiorrhiza. Nature Communications 12:685 doi: 10.1038/s41467-021-20959-1
CrossRef Google Scholar
|
[33]
|
Li CY, Yang L, Liu Y, Xu ZG, Gao J, et al. 2022. The sage genome provides insight into the evolutionary dynamics of diterpene biosynthesis gene cluster in plants. Cell Reports 40:111236 doi: 10.1016/j.celrep.2022.111236
CrossRef Google Scholar
|
[34]
|
Cao W, Wang Y, Shi M, Hao X, Zhao W, et al. 2018. Transcription factor SmWRKY1 positively promotes the biosynthesis of tanshinones in Salvia miltiorrhiza. Frontiers in Plant Science 9:554 doi: 10.3389/fpls.2018.00554
CrossRef Google Scholar
|
[35]
|
Zhang C, Xing B, Yang D, Ren M, Guo H, et al. 2020. SmbHLH3 acts as a transcription repressor for both phenolic acids and tanshinone biosynthesis in Salvia miltiorrhiza hairy roots. Phytochemistry 169:112183 doi: 10.1016/j.phytochem.2019.112183
CrossRef Google Scholar
|
[36]
|
Zhou L, Huang Y, Wang Q, Guo D. 2021. AaHY5 ChIP-seq based on transient expression system reveals the role of AaWRKY14 in artemisinin biosynthetic gene regulation. Plant Physiology and Biochemistry 168:321−28 doi: 10.1016/j.plaphy.2021.10.010
CrossRef Google Scholar
|
[37]
|
Deng C, Shi M, Fu R, Zhang Y, Wang Q, et al. 2020. ABA-responsive transcription factor bZIP1 is involved in modulating biosynthesis of phenolic acids and tanshinones in Salvia miltiorrhiza. Journal of Experimental Botany 71:5948−62 doi: 10.1093/jxb/eraa295
CrossRef Google Scholar
|
[38]
|
Yang G, Zhang C, Dong H, Liu X, Guo H, et al. 2022. Activation and negative feedback regulation of SlHY5 transcription by the SlBBX20/21–SlHY5 transcription factor module in UV-B signaling. The Plant Cell 34:2038−55 doi: 10.1093/plcell/koac064
CrossRef Google Scholar
|
[39]
|
Li Y, Tong Y, Ye J, Zhang C, Li B, et al. 2023. Genome-Wide characterization of B-Box gene family in Salvia miltiorrhiza. International Journal of Molecular Sciences 24:2146 doi: 10.3390/ijms24032146
CrossRef Google Scholar
|
[40]
|
Wei C, Chien C, Ai L, Zhao J, Zhang Z, et al. 2016. The Arabidopsis B-box protein BZS1/BBX20 interacts with HY5 and mediates strigolactone regulation of photomorphogenesis. Journal of Genetics and Genomics 43:555−63 doi: 10.1016/j.jgg.2016.05.007
CrossRef Google Scholar
|
[41]
|
Xu D, Jiang Y, Li J, Lin F, Holm M, et al. 2016. BBX21, an Arabidopsis B-box protein, directly activates HY5 and is targeted by COP1 for 26S proteasome-mediated degradation. Proceedings of the National Academy of Sciences of the United States of America 113:7655−60 doi: 10.1073/pnas.1607687113
CrossRef Google Scholar
|
[42]
|
Liao Y, Smyth GK, Shi W. 2014. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923−30 doi: 10.1093/bioinformatics/btt656
CrossRef Google Scholar
|
[43]
|
Wang L, Feng Z, Wang X, Wang X, Zhang X. 2010. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136−38 doi: 10.1093/bioinformatics/btp612
CrossRef Google Scholar
|
[44]
|
Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P. 2010. Inferring regulatory networks from expression data using tree-based methods. Plos One 5:e12776 doi: 10.1371/journal.pone.0012776
CrossRef Google Scholar
|
[45]
|
Chen K, Liu J, Ji R, Chen T, Zhou X, et al. 2019. Biogenic synthesis and spatial distribution of endogenous phytohormones and ginsenosides provide insights on their intrinsic relevance in Panax ginseng. Frontiers in Plant Science 9:1951 doi: 10.3389/fpls.2018.01951
CrossRef Google Scholar
|
[46]
|
Frey F. 2017. SPSS (Software). In The International Encyclopedia of Communication Research Methods, eds. Matthes J, Davis CS, Potter RF. Los Angeles, USA: John Wiley & Sons. pp. 1−2. https://doi.org/10.1002/9781118901731.iecrm0237
|
[47]
|
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−08 doi: 10.1006/meth.2001.1262
CrossRef Google Scholar
|