[1]
|
Costa CA, Guiné RPF, Costa DVTA, Correia HE, Nave A. 2019. Pest control in organic farming. In Organic Farming Global Perspectives and Methods, eds Chandran S, Unni MR, Thomas S. Woodhead Publishing. pp. 41−90. doi: 10.1016/B978-0-12-813272-2.00003-3
|
[2]
|
Riyaz M, Mathew P, Zuber SM, Rather GA. 2022. Botanical pesticides for an eco-friendly and sustainable agriculture: new challenges and prospects. In Sustainable Agriculture, ed. Bandh SA. Cham: Springer International Publishing. pp. 69–96. doi: 10.1007/978-3-030-83066-3_5
|
[3]
|
Damalas CA, Koutroubas SD. 2020. Botanical pesticides for eco-friendly pest management: drawbacks and limitations. In Pesticides in Crop Production: Physiological and Biochemical Action, eds Srivastava PK, Singh VP, Singh A, Tripathi DK, Singh S, et al. John Wiley & Sons Ltd. pp. 181−93. doi: 10.1002/9781119432241.ch10
|
[4]
|
Kgoroebutswe TK, Ramatlho P, Reeder S, Makate N, Paganotti GM. 2020. Distribution of Anopheles mosquito species, their vectorial role and profiling of knock-down resistance mutations in Botswana. Parasitology Research 119:1201−8 doi: 10.1007/s00436-020-06614-6
CrossRef Google Scholar
|
[5]
|
Duchon S, Bonnet J, Marcombe S, Zaim M, Corbel V. 2009. Pyrethrum: a mixture of natural pyrethrins has potential for malaria vector control. Journal of Medical Entomology 46:516−22 doi: 10.1603/033.046.0316
CrossRef Google Scholar
|
[6]
|
Massaro M, Pieraccini S, Guernelli S, Dindo ML, Francati S, et al. 2022. Photostability assessment of natural pyrethrins using halloysite nanotube carrier system. Applied Clay Science 230:106719 doi: 10.1016/j.clay.2022.106719
CrossRef Google Scholar
|
[7]
|
Pfau W, Bieler C, Jaschke S, Neurath G. 2008. New evidence for the lack of carcinogenic and sensitizing potential by pyrethrins. Toxicology Letters 180:S173 doi: 10.1016/j.toxlet.2008.06.285
CrossRef Google Scholar
|
[8]
|
Singh S, Mukherjee A, Jaiswal DK, de Araujo Pereira AP, Prasad R, et al. 2022. Advances and future prospects of pyrethroids: toxicity and microbial degradation. Science of The Total Environment 829:154561 doi: 10.1016/j.scitotenv.2022.154561
CrossRef Google Scholar
|
[9]
|
Matsuda K. 2022. Chemical and biological studies of natural and synthetic products for the highly selective control of pest insect species. Bioscience, Biotechnology, and Biochemistry 86:1−11 doi: 10.1093/bbb/zbab187
CrossRef Google Scholar
|
[10]
|
Lybrand DB, Xu H, Last RL, Pichersky E. 2020. How plants synthesize pyrethrins: safe and biodegradable insecticides. Trends in Plant Science 25:1240−51 doi: 10.1016/j.tplants.2020.06.012
CrossRef Google Scholar
|
[11]
|
Greenhill MC. 2007. Pyrethrum production: tasmanian success story. Chronica Horticulturae 47:5−8
Google Scholar
|
[12]
|
Pavela R. 2016. History, presence and perspective of using plant extracts as commercial botanical insecticides and farm products for protection against insects–a review. Plant Protection Science 52:229−41 doi: 10.17221/31/2016-PPS
CrossRef Google Scholar
|
[13]
|
Zeng T, Li J, Wang C, He J. 2020. The complete chloroplast genome of Tanacetum coccineum. Mitochondrial DNA Part B 5:2233−34 doi: 10.1080/23802359.2020.1768915
CrossRef Google Scholar
|
[14]
|
Contant RB. 1976. Pyrethrum: Chrysanthemum spp. (Compositae). In Evolution of Crop Plants, ed. Simmonds NW. New York, USA: Longman Inc. pp. 33−36.
|
[15]
|
Grdiša M, Liber Z, Radosavljević I, Carović-Stanko K, Kolak I, et al. 2014. Genetic diversity and structure of dalmatian pyrethrum (Tanacetum cinerariifolium Trevir. /Sch. /Bip., Asteraceae) within the Balkan refugium. PLoS One 9:e105265 doi: 10.1371/journal.pone.0105265
CrossRef Google Scholar
|
[16]
|
Grdiša M, Carović-Stanko K, Kolak I, Šatović Z. 2009. Morphological and biochemical diversity of dalmatian pyrethrum (Tanacetum cinerariifolium (Trevir.) Sch. Bip.). Agriculturae Conspectus Scientificus 74:73−80
Google Scholar
|
[17]
|
Zhou L, Zeng T, Li J, Shi A, Luo J, et al. 2022. The preliminary investigation on the interplanting patterns and agronomic effects of Tanacetum cinerariifolium and horticultural plants. Journal of Guizhou Normal University ( Natural Sciences) 40:18−32
Google Scholar
|
[18]
|
Kumar V, Tyagi D. 2013. Chemical composition and biological activities of essential oils of genus Tanacetum-a review. Journal of Pharmacognosy and Phytochemistry 2:159−63
Google Scholar
|
[19]
|
Li J, Jongsma MA, Wang C. 2014. Comparative analysis of pyrethrin content improvement by mass selection, family selection and polycross in pyrethrum [Tanacetum cinerariifolium (Trevir.) Sch. Bip.] populations. Industrial Crops and Products 53:268−73 doi: 10.1016/j.indcrop.2013.12.023
CrossRef Google Scholar
|
[20]
|
Grdiša M, Babić S, Periša M, Carović-Stanko K, Kolak I, et al. 2013. Chemical diversity of the natural populations of dalmatian pyrethrum (Tanacetum cinerariifolium (Trevir.) Sch. Bip.) in Croatia. Chemistry & Biodiversity 10:460−72 doi: 10.1002/cbdv.201200015
CrossRef Google Scholar
|
[21]
|
Grdiša M, Jeran N, Varga F, Klepo T, Ninčević T, et al. 2022. Accumulation patterns of six pyrethrin compounds across the flower developmental stages-comparative analysis in six natural dalmatian pyrethrum populations. Agronomy 12:252 doi: 10.3390/agronomy12020252
CrossRef Google Scholar
|
[22]
|
Pethybridge SJ, Gent DH, Esker PD, Turechek WW, Hay FS, et al. 2009. Site-specific risk factors for ray blight in Tasmanian pyrethrum fields. Plant Disease 93:229−37 doi: 10.1094/PDIS-93-3-0229
CrossRef Google Scholar
|
[23]
|
Morris SE, Davies NW, Brown PH, Groom T. 2006. Effect of drying conditions on pyrethrins content. Industrial Crops and Products 23:9−14 doi: 10.1016/j.indcrop.2005.01.007
CrossRef Google Scholar
|
[24]
|
Baldwin IT, Karb MJ, Callahan P. 1993. Foliar and floral pyrethrins of Chrysanthemum cinerariaefolium are not induced by leaf damage. Journal of Chemical Ecology 19:2081−87 doi: 10.1007/BF00983810
CrossRef Google Scholar
|
[25]
|
Suraweera DD, Groom T, Taylor PWJ, Jayasinghe CS, Nicolas ME. 2017. Dynamics of flower, achene and trichome development governs the accumulation of pyrethrins in pyrethrum (Tanacetum cinerariifolium) under irrigated and dryland conditions. Industrial Crops and Products 109:123−33 doi: 10.1016/j.indcrop.2017.07.042
CrossRef Google Scholar
|
[26]
|
Mossa ATH, Mohafrash SMM, Chandrasekaran N. 2018. Safety of natural insecticides: toxic effects on experimental animals. BioMed Research International 2018:4308054 doi: 10.1155/2018/4308054
CrossRef Google Scholar
|
[27]
|
Roessink I, Arts GHP, Belgers JDM, Bransen F, Maund SJ, et al. 2005. Effects of lambda-cyhalothrin in two ditch microcosm systems of different trophic status. Environmental Toxicology and Chemistry 24:1684−96 doi: 10.1897/04-130R.1
CrossRef Google Scholar
|
[28]
|
Kawamoto M, Moriyama M, Ashida Y, Matsuo N, Tanabe Y. 2020. Total syntheses of all six chiral natural pyrethrins: accurate determination of the physical properties, their insecticidal activities, and evaluation of synthetic methods. The Journal of Organic Chemistry 85:2984−99 doi: 10.1021/acs.joc.9b02767
CrossRef Google Scholar
|
[29]
|
Schleier JJ III, Peterson RKD. 2011. Pyrethrins and pyrethroid insecticides. In Green Trends in Insect Control, ed. Lopez O, Fernandez-Bolanos J. Volume 3. Cambridge, UK: The Royal Society of Chemistry. pp. 94−131. https://doi.org/10.1039/BK9781849731492-00094
|
[30]
|
Chen M, Du Y, Zhu G, Takamatsu G, Ihara M, et al. 2018. Action of six pyrethrins purified from the botanical insecticide pyrethrum on cockroach sodium channels expressed in Xenopus oocytes. Pesticide Biochemistry and Physiology 151:82−89 doi: 10.1016/j.pestbp.2018.05.002
CrossRef Google Scholar
|
[31]
|
Xu Z, Lu M, Yang M, Xu W, Gao J, et al. 2017. Pyrethrum-extract induced autophagy in insect cells: a new target? Pesticide Biochemistry and Physiology 137:21−26 doi: 10.1016/j.pestbp.2016.09.003
CrossRef Google Scholar
|
[32]
|
Shukla S, Tiwari SK. 2012. The influence of pyrethrum extract on the developmental stages of the rice-moth, Corcyra cephalonica Stainton (Lepidoptera: Pyralidae). Egyptian Journal of Biology 14:57−62
Google Scholar
|
[33]
|
Andreev R, Kutinkova H, Baltas K. 2008. Non-chemical control of some important pests of sweet cherry. Journal of Plant Protection Research 48:503−08
Google Scholar
|
[34]
|
Igielska-Kalwat J, Połoczańska-Godek S, Kilian-Pięta E. 2022. The use of Dalmatian pyrethrum daisy and an excipient in the treatment of seborrheic dermatitis. Acta Biochimica Polonica 69:123−29 doi: 10.18388/abp.2020_5770
CrossRef Google Scholar
|
[35]
|
Yang Y, Zhang Y, Gao J, Xu W, Xu Z, et al. 2020. Pyrethrum extract induces oxidative DNA damage and AMPK/mTOR-mediated autophagy in SH-SY5Y cells. Science of The Total Environment 740:139925 doi: 10.1016/j.scitotenv.2020.139925
CrossRef Google Scholar
|
[36]
|
Xu H, Lybrand D, Bennewitz S, Tissier A, Last RL, et al. 2018. Production of trans-chrysanthemic acid, the monoterpene acid moiety of natural pyrethrin insecticides, in tomato fruit. Metabolic Engineering 47:271−78 doi: 10.1016/j.ymben.2018.04.004
CrossRef Google Scholar
|
[37]
|
Matsuda K, Kikuta Y, Haba A, Nakayama K, Katsuda Y, et al. 2005. Biosynthesis of pyrethrin I in seedlings of Chrysanthemum cinerariaefolium. Phytochemistry 66:1529−35 doi: 10.1016/j.phytochem.2005.05.005
CrossRef Google Scholar
|
[38]
|
Wasternack C, Hause B. 2019. The missing link in jasmonic acid biosynthesis. Nature Plants 5:776−77 doi: 10.1038/s41477-019-0492-y
CrossRef Google Scholar
|
[39]
|
Ramirez AM, Yang T, Bouwmeester HJ, Jongsma MA. 2013. A trichome-specific linoleate lipoxygenase expressed during pyrethrin biosynthesis in pyrethrum. Lipids 48:1005−15 doi: 10.1007/s11745-013-3815-1
CrossRef Google Scholar
|
[40]
|
Jimenez Aleman GH, Thirumalaikumar VP, Jander G, Fernie AR, Skirycz A. 2022. OPDA, more than just a jasmonate precursor. Phytochemistry 204:113432 doi: 10.1016/j.phytochem.2022.113432
CrossRef Google Scholar
|
[41]
|
Li W, Zhou F, Pichersky E. 2018. Jasmone hydroxylase, a key enzyme in the synthesis of the alcohol moiety of pyrethrin insecticides. Plant Physiology 177:1498−509 doi: 10.1104/pp.18.00748
CrossRef Google Scholar
|
[42]
|
Li W, Lybrand DB, Zhou F, Last RL, Pichersky E. 2019. Pyrethrin biosynthesis: the cytochrome P450 oxidoreductase CYP82Q3 converts jasmolone to pyrethrolone. Plant Physiology 181:934−44 doi: 10.1104/pp.19.00499
CrossRef Google Scholar
|
[43]
|
Hu H, Li J, Delatte T, Vervoort J, Gao L, et al. 2018. Modification of chrysanthemum odour and taste with chrysanthemol synthase induces strong dual resistance against cotton aphids. Plant Biotechnology Journal 16:1434−45 doi: 10.1111/pbi.12885
CrossRef Google Scholar
|
[44]
|
Li W, Lybrand DB, Xu H, Zhou F, Last RL, et al. 2020. A trichome-specific, plastid-localized Tanacetum cinerariifolium Nudix protein hydrolyzes the natural pyrethrin pesticide biosynthetic intermediate trans-chrysanthemyl diphosphate. Frontiers in Plant Science 11:482 doi: 10.3389/fpls.2020.00482
CrossRef Google Scholar
|
[45]
|
Kikuta Y, Ueda H, Takahashi M, Mitsumori T, Yamada G, et al. 2012. Identification and characterization of a GDSL lipase-like protein that catalyzes the ester-forming reaction for pyrethrin biosynthesis in Tanacetum cinerariifolium–a new target for plant protection. The Plant Journal 71:183−93 doi: 10.1111/j.1365-313X.2012.04980.x
CrossRef Google Scholar
|
[46]
|
Xu H, Moghe GD, Wiegert Rininger K, Schilmiller AL, Barry CS, et al. 2018. Coexpression analysis identifies two oxidoreductases involved in the biosynthesis of the monoterpene acid moiety of natural pyrethrin insecticides in Tanacetum cinerariifolium. Plant Physiology 176:524−37 doi: 10.1104/pp.17.01330
CrossRef Google Scholar
|
[47]
|
Xu H, Li W, Schilmiller AL, van Eekelen H, de Vos RCH, et al. 2019. Pyrethric acid of natural pyrethrin insecticide: complete pathway elucidation and reconstitution in Nicotiana benthamiana. New Phytologist 223:751−65 doi: 10.1111/nph.15821
CrossRef Google Scholar
|
[48]
|
Wang Y, Wen J, Liu L, Chen J, Wang C, et al. 2022. Engineering of tomato type VI glandular trichomes for trans-chrysanthemic acid biosynthesis, the acid moiety of natural pyrethrin insecticides. Metabolic Engineering 72:188−99 doi: 10.1016/j.ymben.2022.03.007
CrossRef Google Scholar
|
[49]
|
Matsui R, Takiguchi K, Kuwata N, Oki K, Takahashi K, et al. 2020. Jasmonic acid is not a biosynthetic intermediate to produce the pyrethrolone moiety in pyrethrin II. Scientific Reports 10:6366 doi: 10.1038/s41598-020-63026-3
CrossRef Google Scholar
|
[50]
|
Ramirez AM, Stoopen G, Menzel TR, Gols R, Bouwmeester HJ, et al. 2012. Bidirectional secretions from glandular trichomes of pyrethrum enable immunization of seedlings. The Plant Cell 24:4252−65 doi: 10.1105/tpc.112.105031
CrossRef Google Scholar
|
[51]
|
Sladonja B, Krapac M, Ban D, Užila Z, Dudas S, et al. 2014. Effect of soil type on pyrethrum seed germination. Journal of Plant Protection Research 54:421−25
Google Scholar
|
[52]
|
Brown PH, Menary RC. 1994. Flowering in pyrethrum (Tanacetum cinerariaefolium L.). I. environmental requirements. Journal of Horticultural Science 69:877−84 doi: 10.1080/14620316.1994.11516524
CrossRef Google Scholar
|
[53]
|
Suraweera DD, Groom T, Nicolas ME. 2020. Exposure to heat stress during flowering period reduces flower yield and pyrethrins in Pyrethrum (Tanacetum cinerariifolium). Journal of Agronomy and Crop Science 206:565−78 doi: 10.1111/jac.12405
CrossRef Google Scholar
|
[54]
|
Hitmi A, Sallanon H, Barthomeuf C. 2001. Effects of plant growth regulators on the growth and pyrethrin production by cell cultures of Chrysanthemum cinerariaefolium. Australian Journal of Botany 49:81−88 doi: 10.1071/BT00008
CrossRef Google Scholar
|
[55]
|
Singh S, Singh M, Singh AK, Singh AK, Verma RK. 2011. Effects of calliterpenone and GA3 on the growth, yield, and pyrethrin contents of pyrethrum [Tanacetum cinerariifolium (Trevir.) Sch. Bip.] planted on different dates. The Journal of Horticultural Science & Biotechnology 86:19−24 doi: 10.1080/14620316.2011.11512719
CrossRef Google Scholar
|
[56]
|
Dabiri M, Majdi M, Bahramnejad B. 2020. Partial sequence isolation of DXS and AOS genes and gene expression analysis of terpenoids and pyrethrin biosynthetic pathway of Chrysanthemum cinerariaefolium under abiotic elicitation. Acta Physiologiae Plantarum 42:30 doi: 10.1007/s11738-020-3019-2
CrossRef Google Scholar
|
[57]
|
Wasternack C, Strnad M. 2019. Jasmonates are signals in the biosynthesis of secondary metabolites — pathways, transcription factors and applied aspects — a brief review. New Biotechnology 48:1−11 doi: 10.1016/j.nbt.2017.09.007
CrossRef Google Scholar
|
[58]
|
Ghorbel M, Brini F, Sharma A, Landi M. 2021. Role of jasmonic acid in plants: the molecular point of view. Plant Cell Reports 40:1471−94 doi: 10.1007/s00299-021-02687-4
CrossRef Google Scholar
|
[59]
|
Kikuta Y, Ueda H, Nakayama K, Katsuda Y, Ozawa R, et al. 2011. Specific regulation of pyrethrin biosynthesis in Chrysanthemum cinerariaefolium by a blend of volatiles emitted from artificially damaged conspecific plants. Plant and Cell Physiology 52:588−96 doi: 10.1093/pcp/pcr017
CrossRef Google Scholar
|
[60]
|
Ueda H, Matsuda K. 2011. VOC-mediated within-plant communications and nonvolatile systemic signals upregulate pyrethrin biosynthesis in wounded seedlings of Chrysanthemum cinerariaefolium. Journal of Plant Interactions 6:89−91 doi: 10.1080/17429145.2011.555566
CrossRef Google Scholar
|
[61]
|
Zeng T, Li J, Xu Z, Zhou L, Li J, et al. 2022. TcMYC2 regulates pyrethrin biosynthesis in Tanacetum cinerariifolium. Horticulture Research 9:uhac178 doi: 10.1093/hr/uhac178
CrossRef Google Scholar
|
[62]
|
Li J, Zeng T, Xu Z, Zhou L, Shi A, et al. 2023. TcWRKY75 participates in pyrethrin biosynthesis by positively regulating the expression of TcCHS, TcAOC, and TcGLIP in Tanacetum cinerariifolium. Industrial Crops and Products 202:117062 doi: 10.1016/j.indcrop.2023.117062
CrossRef Google Scholar
|
[63]
|
Xu Z, Zeng T, Li J, Zhou L, Li J, et al. 2023. TcbZIP60 positively regulates pyrethrins biosynthesis in Tanacetum cinerariifolium. Frontiers in Plant Science 14:1133912 doi: 10.3389/fpls.2023.1133912
CrossRef Google Scholar
|
[64]
|
Zeng T, Yu Q, Shang J, Xu Z, Zhou L, et al. 2023. TcbHLH14 a jasmonate associated MYC2-like transcription factor positively regulates pyrethrin biosynthesis in Tanacetum cinerariifolium. International Journal of Molecular Sciences 24:7379 doi: 10.3390/ijms24087379
CrossRef Google Scholar
|
[65]
|
Zhou L, Li J, Zeng T, Xu Z, Luo J, et al. 2022. TcMYB8, a R3-MYB transcription factor, positively regulates pyrethrin biosynthesis in Tanacetum cinerariifolium. International Journal of Molecular Sciences 23:12186 doi: 10.3390/ijms232012186
CrossRef Google Scholar
|
[66]
|
Di Sotto A, De Paolis F, Gullì M, Vitalone A, Di Giacomo S. 2023. Sesquiterpenes: a terpene subclass with multifaceted bioactivities. In Terpenes, eds Di Giacomo S, Di Sotto A, Briz O, Vitalone A. Bentham Science. Bentham Science Publisher. pp. 1−55. https://doi.org/10.2174/9789815123647123020004
|
[67]
|
Ramirez AM, Saillard N, Yang T, Franssen MCR, Bouwmeester HJ, et al. 2013. Biosynthesis of sesquiterpene lactones in pyrethrum (Tanacetum cinerariifolium). PLoS One 8:e65030 doi: 10.1371/journal.pone.0065030
CrossRef Google Scholar
|
[68]
|
Li J, Hu H, Mao J, Yu L, Stoopen G, et al. 2019. Defense of pyrethrum flowers: repelling herbivores and recruiting carnivores by producing aphid alarm pheromone. New Phytologist 223:1607−20 doi: 10.1111/nph.15869
CrossRef Google Scholar
|
[69]
|
Zeng T, Li J, Zhou L, Xu Z, Li J, et al. 2021. Transcriptional responses and GCMS analysis for the biosynthesis of pyrethrins and volatile terpenes in Tanacetum coccineum. International Journal of Molecular Sciences 22:13005 doi: 10.3390/ijms222313005
CrossRef Google Scholar
|
[70]
|
Matsui K. 2006. Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Current Opinion in Plant Biology 9:274−80 doi: 10.1016/j.pbi.2006.03.002
CrossRef Google Scholar
|
[71]
|
Matsuda K. 2012. Pyrethrin biosynthesis and its regulation in Chrysanthemum cinerariaefolium. In Pyrethroids, eds Matsuo N, Mori T.Vol 314. Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 73–81. https://doi.org/10.1007/128_2011_271
|
[72]
|
Wang Q, Xu P, Andreazza F, Liu Y, Nomura Y, et al. 2021. Identification of multiple odorant receptors essential for pyrethrum repellency in Drosophila melanogaster. PLoS Genetics 17:e1009677 doi: 10.1371/journal.pgen.1009677
CrossRef Google Scholar
|
[73]
|
Liu F, Wang Q, Xu P, Andreazza F, Valbon WR, et al. 2021. A dual-target molecular mechanism of pyrethrum repellency against mosquitoes. Nature Communications 12:2553 doi: 10.1038/s41467-021-22847-0
CrossRef Google Scholar
|
[74]
|
Li J, Hu H, Chen Y, Xie J, Li J, et al. 2021. Tissue specificity of (E)-β-farnesene and germacrene D accumulation in pyrethrum flowers. Phytochemistry 187:112768 doi: 10.1016/j.phytochem.2021.112768
CrossRef Google Scholar
|
[75]
|
Kamau JK, Kiiya W, Ajanga S, Wanyonyi N, Gathungu G, et al. 2019. Pyrethrum propagation, ed. KALR Organization. pp. 1−42. Kenya: Kenya Agricultural & Livestock Research Organization.
|
[76]
|
Khan SA, Verma P, Banerjee S, Chaterjee A, Tandon S, et al. 2017. Pyrethrin accumulation in elicited hairy root cultures of Chrysanthemum cinerariaefolium. Plant Growth Regulation 81:365−76 doi: 10.1007/s10725-016-0213-8
CrossRef Google Scholar
|
[77]
|
Gongye X, Zhu H, Li Q, Li Y, Zhang X. 2017. Induction of hairy roots of Pyrethrum cinerariifolium Trey. and optimization of culture conditions. Plant Science Journal 35:427−34 doi: 10.11913/PSJ.2095-0837.2017.30427
CrossRef Google Scholar
|
[78]
|
Li J, Zeng T, Xu Z, Li J, Hu H, et al. 2022. Ribozyme-mediated CRISPR/Cas9 gene editing in pyrethrum (Tanacetum cinerariifolium) hairy roots using a RNA polymerase II-dependent promoter. Plant Methods 18:32 doi: 10.1186/s13007-022-00863-5
CrossRef Google Scholar
|
[79]
|
Nagegowda DA, Gupta P. 2020. Advances in biosynthesis, regulation, and metabolic engineering of plant specialized terpenoids. Plant Science 294:110457 doi: 10.1016/j.plantsci.2020.110457
CrossRef Google Scholar
|
[80]
|
Li J, Xu Z, Zeng T, Zhou L, Li J, et al. 2022. Overexpression of TcCHS increases pyrethrin content when using a genotype-independent transformation system in pyrethrum (Tanacetum cinerariifolium). Plants 11:1575 doi: 10.3390/plants11121575
CrossRef Google Scholar
|
[81]
|
Li Y, Wang H, Zhang Y, Martin C. 2018. Can the world's favorite fruit, tomato, provide an effective biosynthetic chassis for high-value metabolites? Plant Cell Reports 37:1443−50 doi: 10.1007/s00299-018-2283-8
CrossRef Google Scholar
|
[82]
|
Sugisaka Y, Aoyama S, Kumagai K, Ihara M, Matsuda K. 2022. TcGLIP GDSL lipase substrate specificity co-determines the pyrethrin composition in Tanacetum cinerariifolium. Journal of Agricultural and Food Chemistry 70:8645−52 doi: 10.1021/acs.jafc.2c02365
CrossRef Google Scholar
|
[83]
|
Yamashiro T, Shiraishi A, Nakayama K, Satake H. 2022. Key amino acids for transferase activity of GDSL lipases. International Journal of Molecular Sciences 23:15141 doi: 10.3390/ijms232315141
CrossRef Google Scholar
|
[84]
|
Nikolova I. 2016. Side effects of two plant insecticides on natural enemies of insects in alfalfa (Medicago sativa L.) seed production. Acta Entomologica Serbica 21:133−42
Google Scholar
|
[85]
|
Copping LG, Duke SO. 2007. Natural products that have been used commercially as crop protection agents. Pest Management Science 63:524−54 doi: 10.1002/ps.1378
CrossRef Google Scholar
|
[86]
|
Štefanić E, Kovačević V, Jakovljević L, Kosić U, Zima D, et al. 2021. Weed community in a conventionally-grown olive orchard vs. Weed community in consociation with pyrethrum (Tanacetum cinerariifolium (Trevir.) Sch. Bip.). Poljoprivreda 27:30−36 doi: 10.18047/poljo.27.1.4
CrossRef Google Scholar
|
[87]
|
Cheng X, Zhao P, Yu Y. 2005. Natural insecticidal pyrethrum. Chinese Journal of Pesticides 44:391−94 doi: 10.3969/j.issn.1006-0413.2005.09.003
CrossRef Google Scholar
|
[88]
|
Inoue S, Tsuzuki H, Matsuda K, Kitaoka N, Matsuura H. 2024. Investigation of the biosynthesis pathway that generates cis-jasmone. ChemBioChem 25:e202300593 doi: 10.1002/cbic.202300593
CrossRef Google Scholar
|
[89]
|
Guan Y, Chen S, Chen F, Chen F, Jiang Y. 2022. Exploring the relationship between trichome and terpene chemistry in Chrysanthemum. Plants 11:1410 doi: 10.3390/plants11111410
CrossRef Google Scholar
|
[90]
|
Muravnik LE. 2021. The structural peculiarities of the leaf glandular trichomes: a review. In Plant Cell and Tissue Differentiation and Secondary Metabolites, eds Ramawat KG, Ekiert HM, Goyal S. Cham: Springer. pp. 63−97. https://doi.org/10.1007/978-3-030-30185-9_3
|
[91]
|
Ramawat KG. 2021. An introduction to the process of cell, tissue, and organ differentiation, and production of secondary metabolites. In Plant Cell and Tissue Differentiation and Secondary Metabolites, eds Ramawat KG, Ekiert HM, Goyal S. Cham: Springer International Publishing. pp. 1−22. https://doi.org/10.1007/978-3-030-30185-9_35
|
[92]
|
Li Y, Kong D, Fu Y, Sussman MR, Wu H. 2020. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiology and Biochemistry 148:80−89 doi: 10.1016/j.plaphy.2020.01.006
CrossRef Google Scholar
|
[93]
|
Judd R, Bagley MC, Li M, Zhu Y, Lei C, et al. 2019. Artemisinin biosynthesis in non-glandular trichome cells of Artemisia annua. Molecular Plant 12:704−14 doi: 10.1016/j.molp.2019.02.011
CrossRef Google Scholar
|
[94]
|
Gani U, Vishwakarma RA, Misra P. 2021. Membrane transporters: the key drivers of transport of secondary metabolites in plants. Plant Cell Reports 40:1−18 doi: 10.1007/s00299-020-02599-9
CrossRef Google Scholar
|
[95]
|
Zhao J, Li P, Xia T, Wan X. 2020. Exploring plant metabolic genomics: chemical diversity, metabolic complexity in the biosynthesis and transport of specialized metabolites with the tea plant as a model. Critical Reviews in Biotechnology 40:667−88 doi: 10.1080/07388551.2020.1752617
CrossRef Google Scholar
|
[96]
|
Jin K, Xia H, Liu Y, Li J, Du G, et al. 2022. Compartmentalization and transporter engineering strategies for terpenoid synthesis. Microbial Cell Factories 21:92 doi: 10.1186/s12934-022-01819-z
CrossRef Google Scholar
|
[97]
|
Demurtas OC, Nicolia A, Diretto G. 2023. Terpenoid transport in plants: how far from the final picture? Plants 12:634 doi: 10.3390/plants12030634
CrossRef Google Scholar
|
[98]
|
Yamashiro T, Shiraishi A, Satake H, Nakayama K. 2019. Draft genome of Tanacetum cinerariifolium, the natural source of mosquito coil. Scientific Reports 9:18249 doi: 10.1038/s41598-019-54815-6
CrossRef Google Scholar
|
[99]
|
Yamashiro T, Shiraishi A, Nakayama K, Satake H. 2022. Draft genome of Tanacetum coccineum: genomic comparison of closely related Tanacetum-family plants. International Journal of Molecular Sciences 23:7039 doi: 10.3390/ijms23137039
CrossRef Google Scholar
|
[100]
|
Shen Q, Zhang L, Liao Z, Wang S, Yan T, et al. 2018. The genome of Artemisia annua provides insight into the evolution of Asteraceae family and Artemisinin biosynthesis. Molecular Plant 11:776−88 doi: 10.1016/j.molp.2018.03.015
CrossRef Google Scholar
|
[101]
|
Song C, Liu Y, Song A, Dong G, Zhao H, et al. 2018. The Chrysanthemum nankingense genome provides insights into the evolution and diversification of Chrysanthemum flowers and medicinal traits. Molecular Plant 11:1482−91 doi: 10.1016/j.molp.2018.10.003
CrossRef Google Scholar
|
[102]
|
Song A, Su J, Wang H, Zhang Z, Zhang X, et al. 2023. Analyses of a chromosome-scale genome assembly reveal the origin and evolution of cultivated Chrysanthemum. Nature Communications 14:2021 doi: 10.1038/s41467-023-37730-3
CrossRef Google Scholar
|