[1]
|
Li W, Yang S, Lu Z, He Z, Ye Y, et al. 2018. Cytological physiological and transcriptomic analyses of golden leaf coloration in Ginkgo biloba L. Horticulture Research 5:12 doi: 10.1038/s41438-018-0015-4
CrossRef Google Scholar
|
[2]
|
Chen Z, Lu X, Xuan Y, Tang F, Wang J, et al. 2019. Transcriptome analysis based on a combination of sequencing platforms provides insights into leaf pigmentation in Acer rubrum. BMC Plant Biology 19:240 doi: 10.1186/s12870-019-1850-7
CrossRef Google Scholar
|
[3]
|
Wang H, Wang X, Song W, Bao Y, Jin Y, et al. 2019. PdMYB118 isolated from a red leaf mutant of Populus deltoids is a new transcription factor regulating anthocyanin biosynthesis in poplar. Plant Cell Reports 38:927−36 doi: 10.1007/s00299-019-02413-1
CrossRef Google Scholar
|
[4]
|
Feng L, Shen P, Chi X, Zhou Y, Liu J, et al. 2023. The anthocyanin formation of purple leaf is associated with the activation of LfiHY5 and LfiMYB75 in crape myrtle. Horticultural Plant Journal In Press doi: 10.1016/j.hpj.2023.02.016
CrossRef Google Scholar
|
[5]
|
Zhang S, Zuo L, Zhang J, Chen P, Wang J, et al. 2017. Transcriptome analysis of Ulmus pumila 'Jinye' responses to different shading involved in chlorophyll metabolism. Tree Genetics & Genomes 13:64 doi: 10.1007/s11295-017-1139-7
CrossRef Google Scholar
|
[6]
|
Zuo L, Zhang S, Liu Y, Huang Y, Yang M, et al. 2019. The reason for growth inhibition of Ulmus pumila 'Jinye': lower resistance and abnormal development of chloroplasts slow down the accumulation of energy. International Journal of Molecular Sciences 20:4227 doi: 10.3390/ijms20174227
CrossRef Google Scholar
|
[7]
|
Li S, Wang S, Wang P, Gao L, Yang R, et al. 2020. Label-free comparative proteomic and physiological analysis provides insight into leaf color variation of the golden-yellow leaf mutant of Lagerstroemia indica. Journal of Proteomics 228:103942 doi: 10.1016/j.jprot.2020.103942
CrossRef Google Scholar
|
[8]
|
Wang P, Richter AS, Kleeberg JRW, Geimer S, Grimm B. 2020. Post-translational coordination of chlorophyll biosynthesis and breakdown by BCMs maintains chlorophyll homeostasis during leaf development. Nature Communications 11:1254 doi: 10.1038/s41467-020-14992-9
CrossRef Google Scholar
|
[9]
|
Mochizuki N, Tanaka R, Grimm B, Masuda T, Moulin M, et al. 2010. The cell biology of tetrapyrroles: a life and death struggle. Trends in Plant Science 15:488−98 doi: 10.1016/j.tplants.2010.05.012
CrossRef Google Scholar
|
[10]
|
Woo HR, Kim HJ, Lim PO, Nam HG. 2019. Leaf senescence: systems and dynamics aspects. Annual Review of Plant Biology 70:347−76 doi: 10.1146/annurev-arplant-050718-095859
CrossRef Google Scholar
|
[11]
|
Luo T, Luo S, Araújo WL, Schlicke H, Rothbart M, et al. 2013. Virus-induced gene silencing of pea CHLI and CHLD affects tetrapyrrole biosynthesis, chloroplast development and the primary metabolic network. Plant Physiology and Biochemistry 65:17−26 doi: 10.1016/j.plaphy.2013.01.006
CrossRef Google Scholar
|
[12]
|
Zhang H, Li J, Yoo JH, Yoo SC, Cho SH, et al. 2006. Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Molecular Biology 62:325−37 doi: 10.1007/s11103-006-9024-z
CrossRef Google Scholar
|
[13]
|
Park SY, Yu JW, Park JS, Li J, Yoo SC, et al. 2007. The senescence-induced staygreen protein regulates chlorophyll degradation. The Plant Cell 19:1649−64 doi: 10.1105/tpc.106.044891
CrossRef Google Scholar
|
[14]
|
Schelbert S, Aubry S, Burla B, Agne B, Kessler F, et al. 2009. Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis. The Plant Cell 21:767−85 doi: 10.1105/tpc.108.064089
CrossRef Google Scholar
|
[15]
|
Levin G, Schuster G. 2023. LHC-like proteins: the guardians of photosynthesis. International Journal of Molecular Sciences 24:2503 doi: 10.3390/ijms24032503
CrossRef Google Scholar
|
[16]
|
Montané MH, Kloppstech K. 2000. The family of light-harvesting-related proteins (LHCs, ELIPs, HLIPs): was the harvesting of light their primary function? Gene 258:1−8 doi: 10.1016/S0378-1119(00)00413-3
CrossRef Google Scholar
|
[17]
|
Heddad M, Adamska I. 2000. Light stress-regulated two-helix proteins in Arabidopsis thaliana related to the chlorophyll a/b-binding gene family. Proceedings of the National Academy of Sciences of the United States of America 97:3741−46 doi: 10.1073/pnas.97.7.3741
CrossRef Google Scholar
|
[18]
|
Andersson U, Heddad M, Adamska I. 2003. Light stress-induced one-helix protein of the chlorophyll a/b-binding family associated with photosystem I. Plant Physiology 132:811−20 doi: 10.1104/pp.102.019281
CrossRef Google Scholar
|
[19]
|
Tzvetkova-Chevolleau T, Franck F, Alawady AE, Dall'Osto L, Carrière F, et al. 2007. The light stress-induced protein ELIP2 is a regulator of chlorophyll synthesis in Arabidopsis thaliana. The Plant Journal 50:795−809 doi: 10.1111/j.1365-313X.2007.03090.x
CrossRef Google Scholar
|
[20]
|
Ren L, Ma H, Chao D, Zhang H, Qiao K, et al. 2023. Sep2, a light-harvesting complex-like protein, is involved in light stress response by binding to free chlorophylls. Environmental and Experimental Botany 213:105429 doi: 10.1016/j.envexpbot.2023.105429
CrossRef Google Scholar
|
[21]
|
Tian Y, Rao S, Li Q, Xu M, Wang A, et al. 2021. The coloring mechanism of a novel golden variety in Populus deltoides based on the RGB color mode. Forestry Research 1:5 doi: 10.48130/FR-2021-0005
CrossRef Google Scholar
|
[22]
|
He F, Wang HL, Li HG, Su Y, Li S, et al. 2018. PeCHYR1, a ubiquitin E3 ligase from Populus euphratica, enhances drought tolerance via ABA-induced stomatal closure by ROS production in Populus. Plant Biotechnology Journal 16:1514−28 doi: 10.1111/pbi.12893
CrossRef Google Scholar
|
[23]
|
Hu X, Wang S, Zhang H, Zhang H, Feng S, et al. 2022. Plant cadmium resistance 6 from Salix linearistipularis (SlPCR6) affects cadmium and copper uptake in roots of transgenic Populus. Ecotoxicology and Environmental Safety 245:114116 doi: 10.1016/j.ecoenv.2022.114116
CrossRef Google Scholar
|
[24]
|
Yao W, Wang S, Zhou B, Jiang T. 2016. Transgenic poplar overexpressing the endogenous transcription factor ERF76 gene improves salinity tolerance. Tree Physiology 36:896−908 doi: 10.1093/treephys/tpw004
CrossRef Google Scholar
|
[25]
|
Cho JS, Nguyen VP, Jeon HW, Kim MH, Eom SH, et al. 2016. Overexpression of PtrMYB119, a R2R3-MYB transcription factor from Populus trichocarpa, promotes anthocyanin production in hybrid poplar. Tree Physiology 36:1162−76 doi: 10.1093/treephys/tpw046
CrossRef Google Scholar
|
[26]
|
Wang H, Wang X, Yu C, Wang C, Jin Y, et al. 2020. MYB transcription factor PdMYB118 directly interacts with bHLH transcription factor PdTT8 to regulate wound-induced anthocyanin biosynthesis in poplar. BMC Plant Biology 20:173 doi: 10.1186/s12870-020-02389-1
CrossRef Google Scholar
|
[27]
|
Li Y, Gu C, Gang H, Zheng Y, Liu G, et al. 2021. Generation of a golden leaf triploid poplar by repressing the expression of GLK genes. Forestry Research 1:3 doi: 10.48130/fr-2021-0003
CrossRef Google Scholar
|