[1]
|
Fang Y, Xiong L. 2015. General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences 72:673−89 doi: 10.1007/s00018-014-1767-0
CrossRef Google Scholar
|
[2]
|
Joshi R, Wani SH, Singh B, Bohra A, Dar ZA, et al. 2016. Transcription factors and plants response to drought stress: current understanding and future directions. Frontiers in Plant Science 7:1029 doi: 10.3389/fpls.2016.01029
CrossRef Google Scholar
|
[3]
|
Jiang SY, Sevugan M, Ramachandran S. 2018. Valine-glutamine (VQ) motif coding genes are ancient and non-plant-specifc with comprehensive expression regulation by various biotic and abiotic stresses. BMC Genomics 19:342 doi: 10.1186/s12864-018-4733-7
CrossRef Google Scholar
|
[4]
|
Morikawa K, Shiina T, Murakami S, Toyoshima Y. 2002. Novel nucleus-encoded proteins interacting with a plastid sigma factor, Sig1, in Arabidopsis thaliana. FEBS Letters 514:300−04 doi: 10.1016/S0014-5793(02)02388-8
CrossRef Google Scholar
|
[5]
|
Kim DY, Kwon SI, Choi C, Lee H, Ahn I, et al. 2013. Expression analysis of rice VQ genes in response to biotic and abiotic stresses. Gene 529:208−14 doi: 10.1016/j.gene.2013.08.023
CrossRef Google Scholar
|
[6]
|
Song W, Zhao H, Zhang X, Lei L, Lai J. 2015. Genome-wide identification of VQ motif-containing proteins and their expression profiles under abiotic stresses in maize. Frontiers in Plant Science 6:1177 doi: 10.3389/fpls.2015.01177
CrossRef Google Scholar
|
[7]
|
Wang M, Vannozzi A, Wang G, Zhong Y, Corso M, et al. 2015. A comprehensive survey of the grapevine VQ gene family and its transcriptional correlation with WRKY proteins. Frontiers in Plant Science 6:417 doi: 10.3389/fpls.2015.00417
CrossRef Google Scholar
|
[8]
|
Zhang G, Wang F, Li J, Ding Q, Zhang Y, et al. 2015. Genomewide identifcation and analysis of the VQ motif-containing protein family in Chinese cabbage (Brassica rapa L. ssp. Pekinensis). International Journal of Molecular Sciences 16:28683−704 doi: 10.3390/ijms161226127
CrossRef Google Scholar
|
[9]
|
Cheng Y, Zhou Y, Yang Y, Chi YJ, Zhou J, et al. 2012. Structural and functional analysis of VQ motif-containing proteins in Arabidopsis as interacting proteins of WRKY transcription factors. Plant Physiology 159:810−25 doi: 10.1104/pp.112.196816
CrossRef Google Scholar
|
[10]
|
Li Y, Jing Y, Li J, Xu G, Lin R. 2014. Arabidopsis VQ MOTIFCONTAINING PROTEIN29 represses seedling deetiolation by interacting with PHYTOCHROME-INTERACTING FACTOR1. Plant Physiology 164:2068−80 doi: 10.1104/pp.113.234492
CrossRef Google Scholar
|
[11]
|
Ali MRM, Uemura T, Ramadan A, Adachi K, Nemoto K, et al. 2019. The ring-type E3 ubiquitin ligase JUL1 targets the VQ-motif protein JAV1 to coordinate jasmonate signaling. Plant Physiology 179:1273−84 doi: 10.1104/pp.18.00715
CrossRef Google Scholar
|
[12]
|
Yuan G, Qian Y, Ren Y, Guan Y, Wu X, et al. 2021. The role of plant-specifc VQ motif-containing proteins: an ever-thickening plot. Plant Physiology and Biochemistry 159:12−16 doi: 10.1016/j.plaphy.2020.12.005
CrossRef Google Scholar
|
[13]
|
Zhu H, Zhou Y, Zhai H, He S, Zhao N, et al. 2020. A novel sweetpotato WRKY transcription factor, IbWRKY2, positively regulates drought and salt tolerance in transgenic Arabidopsis. Biomolecules 10:506 doi: 10.3390/biom10040506
CrossRef Google Scholar
|
[14]
|
Zhang L, Zheng Y, Xiong X, Li H, Zhang X, et al. 2023. The wheat VQ motif-containing protein TaVQ4-D positively regulates drought tolerance in transgenic plants. Journal of Experimental Botany 74:5591−605 doi: 10.1093/jxb/erad280
CrossRef Google Scholar
|
[15]
|
Wang A, Garcia D, Zhang H, Feng K, Chaudhury A, et al. 2010. The VQ motif protein IKU1 regulates endosperm growth and seed size in Arabidopsis. The Plant Journal 63:670−79 doi: 10.1111/j.1365-313X.2010.04271.x
CrossRef Google Scholar
|
[16]
|
Hu Y, Chen L, Wang H, Zhang L, Wang F, et al. 2013. Arabidopsis transcription factor WRKY8 functions antagonistically with its interacting partner VQ9 to modulate salinity stress tolerance. The Plant Journal 74:730−45 doi: 10.1111/tpj.12159
CrossRef Google Scholar
|
[17]
|
Lei R, Li X, Ma Z, Lv Y, Hu Y, et al. 2017. Arabidopsis WRKY2 and WRKY34 transcription factors interact with VQ20 protein to modulate pollen development and function. The Plant Journal 91:962−76 doi: 10.1111/tpj.13619
CrossRef Google Scholar
|
[18]
|
Petersen K, Qiu JL, Lütje J, Fiil BK, Hansen S, et al. 2010. Arabidopsis MKS1 is involved in basal immunity and requires an intact N-terminal domain for proper function. PLoS ONE 5:e14364 doi: 10.1371/journal.pone.0014364
CrossRef Google Scholar
|
[19]
|
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−08 doi: 10.1006/meth.2001.1262
CrossRef Google Scholar
|
[20]
|
Graham N, Amna M, Christine HF. 2014. The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiology 164:1636−48 doi: 10.1104/pp.113.233478
CrossRef Google Scholar
|
[21]
|
AghaKouchak A, Feldman D, Hoerling M, Huxman T, Lund J. 2015. Water and climate: recognize anthropogenic drought. Nature 524:409−11 doi: 10.1038/524409a
CrossRef Google Scholar
|
[22]
|
Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K. 2014. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Frontiers in Plant Science 5:170 doi: 10.3389/fpls.2014.00170
CrossRef Google Scholar
|
[23]
|
Manna M, Thakur T, Chirom O, Mandlik R, Deshmukh R, et al. 2021. Transcription factors as key molecular target to strengthen the drought stress tolerance in plants. Physiologia Plantarum 172:847−68 doi: 10.1111/ppl.13268
CrossRef Google Scholar
|
[24]
|
Li J, Luan Y, Liu Z. 2015. Overexpression of SpWRKY1 promotes resistance to Phytophthora nicotianae and tolerance to salt and drought stress in transgenic tobacco. Physiologia Plantarum 155:248−66 doi: 10.1111/ppl.12315
CrossRef Google Scholar
|
[25]
|
Jia H, Wang C, Wang F, Liu S, Li G, et al. 2015. GhWRKY68 reduces resistance to salt and drought in transgenic Nicotiana benthamiana. PLoS ONE 10:e0120646 doi: 10.1371/journal.pone.0120646
CrossRef Google Scholar
|
[26]
|
Jing Y, Lin R. 2015. The VQ motif-containing protein family of plantspecific transcriptional regulators. Plant Physiology 169:371−78 doi: 10.1104/pp.15.00788
CrossRef Google Scholar
|
[27]
|
Chen J, Wang H, Li Y, Pan J, Hu Y, et al. 2018. Arabidopsis VQ10 interacts with WRKY8 to modulate basal defense against Botrytis cinerea. Journal of Integrative Plant Biology 60:956−69 doi: 10.1111/jipb.12664
CrossRef Google Scholar
|
[28]
|
He Q, He M, Zhang X, Zhang X, Zhang W, et al. 2023. RsVQ4-RsWRKY26 module positively regulates thermotolerance by activating RsHSP70–20 transcription in radish (Raphanus sativus L.). Environmental and Experimental Botany 214:105467 doi: 10.1016/j.envexpbot.2023.105467
CrossRef Google Scholar
|
[29]
|
Pecher P, Eschen-Lippold L, Herklotz S, Kuhle K, Naumann K, et al. 2014. The Arabidopsis thaliana mitogen-activated protein kinases MPK3 and MPK6 target a subclass of 'VQ-motif'-containing proteins to regulate immune responses. New Phytologist 203:592−606 doi: 10.1111/nph.12817
CrossRef Google Scholar
|
[30]
|
Tian J, Zhang J, Francis F. 2023. Large-scale identifcation and characterization analysis of VQ family genes in plants, especially gymnosperms. International Journal of Molecular Sciences 24:14968 doi: 10.3390/ijms241914968
CrossRef Google Scholar
|
[31]
|
León J, Gayubas B, Castillo MC. 2020. Valine-glutamine proteins in plant responses to oxygen and nitric oxide. Frontiers in Plant Science 11:632678 doi: 10.3389/fpls.2020.632678
CrossRef Google Scholar
|
[32]
|
Cheng X, Yao H, Cheng Z, Tian B, Gao C, et al. 2022. The wheat gene TaVQ14 confers salt and drought tolerance in transgenic Arabidopsis thaliana plants. Frontiers in Plant Science 13:870586 doi: 10.3389/fpls.2022.870586
CrossRef Google Scholar
|
[33]
|
Zhao D, Luan Y, Shi W, Zhang X, Meng J, et al. 2021. A Paeonia ostii caffeoyl-CoA O-methyltransferase confers drought stress tolerance by promoting lignin synthesis and ROS scavenging. Plant Science 303:110765 doi: 10.1016/j.plantsci.2020.110765
CrossRef Google Scholar
|
[34]
|
Luan Y, Chen Z, Meng J, Tao J, Zhao D. 2023. PoWRKY17 promotes drought tolerance in Paeonia ostii by modulating lignin accumulation. Industrial Crops and Products 204:117228 doi: 10.1016/j.indcrop.2023.117228
CrossRef Google Scholar
|