[1]
|
Jian L, Yan J, Liu J. 2022. De novo domestication in the multi-omics era. Plant and Cell Physiology 63:1592−606 doi: 10.1093/pcp/pcac077
CrossRef Google Scholar
|
[2]
|
Wang X, Han L, Li J, Shang X, Liu Q, et al. 2023. Next-generation bulked segregant analysis for Breeding 4.0. Cell Reports 42:113039 doi: 10.1016/j.celrep.2023.113039
CrossRef Google Scholar
|
[3]
|
Jamil IN, Remali J, Azizan KA, Nor Muhammad NA, Arita M, et al. 2020. Systematic multi-omics integration (MOI) approach in plant systems biology. Frontiers in Plant Science 11:944 doi: 10.3389/fpls.2020.00944
CrossRef Google Scholar
|
[4]
|
Alseekh S, Karakas E, Zhu F, Wijesingha Ahchige M, Fernie AR. 2023. Plant biochemical genetics in the multiomics era. Journal of Experimental Botany 74:4293−307 doi: 10.1093/jxb/erad177
CrossRef Google Scholar
|
[5]
|
Sandhu K, Patil SS, Pumphrey M, Carter A. 2021. Multitrait machine- and deep-learning models for genomic selection using spectral information in a wheat breeding program. The Plant Genome 14:e20119 doi: 10.1002/tpg2.20119
CrossRef Google Scholar
|
[6]
|
Gill T, Gill SK, Saini DK, Chopra Y, de Koff JP, et al. 2022. A comprehensive review of high throughput phenotyping and machine learning for plant stress phenotyping. Phenomics 2:156−83 doi: 10.1007/s43657-022-00048-z
CrossRef Google Scholar
|
[7]
|
Kaul S, Koo HL, Jenkins J, Rizzo M, Rooney T, et al. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796−815 doi: 10.1038/35048692
CrossRef Google Scholar
|
[8]
|
Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, et al. 2007. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463−67 doi: 10.1038/nature06148
CrossRef Google Scholar
|
[9]
|
Zhang Q, Chen W, Sun L, Zhao F, Huang B, et al. 2012. The genome of Prunus mume. Nature Communications 3:1318 doi: 10.1038/ncomms2290
CrossRef Google Scholar
|
[10]
|
Sun Y, Shang L, Zhu Q, Fan L, Guo L. 2022. Twenty years of plant genome sequencing: achievements and challenges. Trends in Plant Science 27:391−401 doi: 10.1016/j.tplants.2021.10.006
CrossRef Google Scholar
|
[11]
|
Wang X, Xu Y, Zhang S, Cao L, Huang Y, et al. 2017. Genomic analyses of primitive, wild and cultivated citrus provide insights into asexual reproduction. Nature Genetics 49:765−72 doi: 10.1038/ng.3839
CrossRef Google Scholar
|
[12]
|
Tan Q, Li S, Zhang Y, Chen M, Wen B, et al. 2021. Chromosome-level genome assemblies of five Prunus species and genome-wide association studies for key agronomic traits in peach. Horticulture Research 8:213 doi: 10.1038/s41438-021-00648-2
CrossRef Google Scholar
|
[13]
|
Fan Z, Tieman DM, Knapp SJ, Zerbe P, Famula R, et al. 2022. A multi-omics framework reveals strawberry flavor genes and their regulatory elements. New Phytologist 236:1089−107 doi: 10.1111/nph.18416
CrossRef Google Scholar
|
[14]
|
Park M, Vera D, Kambrianda D, Gajjar P, Cadle-Davidson L, et al. 2022. Chromosome-level genome sequence assembly and genome-wide association study of Muscadinia rotundifolia reveal the genetics of 12 berry-related traits. Horticulture Research 9:uhab011 doi: 10.1093/hr/uhab011
CrossRef Google Scholar
|
[15]
|
Yang J, Wang J, Li Z, Li X, He Z, et al. 2021. Genomic signatures of vegetable and oilseed allopolyploid Brassica juncea and genetic loci controlling the accumulation of glucosinolates. Plant Biotechnology Journal 19:2619−28 doi: 10.1111/pbi.13687
CrossRef Google Scholar
|
[16]
|
Niu Z, Zhu F, Fan Y, Li C, Zhang B, et al. 2021. The chromosome-level reference genome assembly for Dendrobium officinale and its utility of functional genomics research and molecular breeding study. Acta Pharmaceutica Sinica B 11:2080−92 doi: 10.1016/j.apsb.2021.01.019
CrossRef Google Scholar
|
[17]
|
Zhang Q, Zhang H, Sun L, Fan G, Ye M, et al. 2018. The genetic architecture of floral traits in the woody plant Prunus mume. Nature Communications 9:1702 doi: 10.1038/s41467-018-04093-z
CrossRef Google Scholar
|
[18]
|
Wei Q, Wang J, Wang W, Hu T, Hu H, et al. 2020. A high-quality chromosome-level genome assembly reveals genetics for important traits in eggplant. Horticulture Research 7:153 doi: 10.1038/s41438-020-00391-0
CrossRef Google Scholar
|
[19]
|
Wang J, Li J, Li Z, Liu B, Zhang L, et al. 2022. Genomic insights into longan evolution from a chromosome-level genome assembly and population genomics of longan accessions. Horticulture Research 9:uhac021 doi: 10.1093/hr/uhac021
CrossRef Google Scholar
|
[20]
|
Zhou Y, Zheng T, Cai M, Feng L, Chi X, et al. 2023. Genome assembly and resequencing analyses provide new insights into the evolution, domestication and ornamental traits of crape myrtle. Horticulture Research 10:uhad146 doi: 10.1093/hr/uhad146
CrossRef Google Scholar
|
[21]
|
Li H, Durbin R. 2024. Genome assembly in the telomere-to-telomere era. Nature Reviews Genetics doi: 10.1038/s41576-024-00718-w
CrossRef Google Scholar
|
[22]
|
Fu A, Zheng Y, Guo J, Grierson D, Zhao X, et al. 2023. Telomere-to-telomere genome assembly of bitter melon (Momordica charantia L. var. abbreviata Ser.) reveals fruit development, composition and ripening genetic characteristics . Horticulture Research 10:uhac228 doi: 10.1093/hr/uhac228
CrossRef Google Scholar
|
[23]
|
Deng Y, Liu S, Zhang Y, Tan J, Li X, et al. 2022. A telomere-to-telomere gap-free reference genome of watermelon and its mutation library provide important resources for gene discovery and breeding. Molecular Plant 15:1268−84 doi: 10.1016/j.molp.2022.06.010
CrossRef Google Scholar
|
[24]
|
Shi X, Cao S, Wang X, Huang S, Wang Y, et al. 2023. The complete reference genome for grapevine (Vitis vinifera L.) genetics and breedingHorticulture Research 10:uhad061 doi: 10.1093/hr/uhad061
CrossRef Google Scholar
|
[25]
|
Han X, Zhang Y, Zhang Q, Ma N, Liu X, et al. 2023. Two haplotype-resolved, gap-free genome assemblies for Actinidia latifolia and Actinidia chinensis shed light on the regulatory mechanisms of vitamin C and sucrose metabolism in kiwifruit. Molecular Plant 16:452−70 doi: 10.1016/j.molp.2022.12.022
CrossRef Google Scholar
|
[26]
|
Belser C, Baurens FC, Noel B, Martin G, Cruaud C, et al. 2021. Telomere-to-telomere gapless chromosomes of banana using nanopore sequencing. Communications Biology 4:1047 doi: 10.1038/s42003-021-02559-3
CrossRef Google Scholar
|
[27]
|
Li G, Tang L, He Y, Xu Y, Bendahmane A, et al. 2023. The haplotype-resolved T2T reference genome highlights structural variation underlying agronomic traits of melon. Horticulture Research 10:uhad182 doi: 10.1093/hr/uhad182
CrossRef Google Scholar
|
[28]
|
Lan L, Leng L, Liu W, Ren Y, Reeve W, et al. 2024. The haplotype-resolved telomere-to-telomere carnation (Dianthus caryophyllus) genome reveals the correlation between genome architecture and gene expression. Horticulture Research 11:uhad244 doi: 10.1093/hr/uhad244
CrossRef Google Scholar
|
[29]
|
Xu Z, Wang G, Wang Q, Li X, Zhang G, et al. 2023. A near-complete genome assembly of Catharanthus roseus and insights into its vinblastine biosynthesis and high susceptibility to the Huanglongbing pathogen. Plant Communications 4:100661 doi: 10.1016/j.xplc.2023.100661
CrossRef Google Scholar
|
[30]
|
Xu M, Gao Q, Jiang M, Wang W, Hu J, et al. 2023. A novel genome sequence of Jasminum sambac helps uncover the molecular mechanism underlying the accumulation of jasmonates. Journal of Experimental Botany 74:1275−90 doi: 10.1093/jxb/erac464
CrossRef Google Scholar
|
[31]
|
Tang M, Huang J, Ma X, Du J, Bi Y, et al. 2023. A near-complete genome assembly of Thalia dealbata Fraser (Marantaceae). Frontiers in Plant Science 14:1183361 doi: 10.3389/fpls.2023.1183361
CrossRef Google Scholar
|
[32]
|
Nie S, Zhao S, Shi T, Zhao W, Zhang R, et al. 2023. Gapless genome assembly of azalea and multi-omics investigation into divergence between two species with distinct flower color. Horticulture Research 10:uhac241 doi: 10.1093/hr/uhac241
CrossRef Google Scholar
|
[33]
|
Li F, Xu S, Xiao Z, Wang J, Mei Y, et al. 2023. Gap-free genome assembly and comparative analysis reveal the evolution and anthocyanin accumulation mechanism of Rhodomyrtus tomentosa. Horticulture Research 10:uhad005 doi: 10.1093/hr/uhad005
CrossRef Google Scholar
|
[34]
|
He S, Weng D, Zhang Y, Kong Q, Wang K, et al. 2023. A telomere-to-telomere reference genome provides genetic insight into the pentacyclic triterpenoid biosynthesis in Chaenomeles speciosa. Horticulture Research 10:uhad183 doi: 10.1093/hr/uhad183
CrossRef Google Scholar
|
[35]
|
Song A, Su J, Wang H, Zhang Z, Zhang X, et al. 2023. Analyses of a chromosome-scale genome assembly reveal the origin and evolution of cultivated chrysanthemum. Nature Communications 14:2021 doi: 10.1038/s41467-023-37730-3
CrossRef Google Scholar
|
[36]
|
An Y, Chen L, Tao L, Liu S, Wei C. 2021. QTL mapping for leaf area of tea plants (Camellia sinensis) based on a high-quality genetic map constructed by whole genome resequencing. Frontiers in Plant Science 12:705285 doi: 10.3389/fpls.2021.705285
CrossRef Google Scholar
|
[37]
|
Wu Y, Wang Y, Fan X, Zhang Y, Jiang J, et al. 2023. QTL mapping for berry shape based on a high-density genetic map constructed by whole-genome resequencing in grape. Horticultural Plant Journal 9:729−42 doi: 10.1016/j.hpj.2022.11.005
CrossRef Google Scholar
|
[38]
|
Qin M, Li L, Singh J, Sun M, Bai B, et al. 2022. Construction of a high-density bin-map and identification of fruit quality-related quantitative trait loci and functional genes in pear. Horticulture Research 9:uhac141 doi: 10.1093/hr/uhac141
CrossRef Google Scholar
|
[39]
|
Yang S, Fresnedo-Ramírez J, Sun Q, Manns DC, Sacks GL, et al. 2016. Next generation mapping of enological traits in an F2 interspecific grapevine hybrid family. PLoS ONE 11:e0149560 doi: 10.1371/journal.pone.0149560
CrossRef Google Scholar
|
[40]
|
Wang H, Yan A, Sun L, Zhang G, Wang X, et al. 2020. Novel stable QTLs identification for berry quality traits based on high-density genetic linkage map construction in table grape. BMC Plant Biology 20:411 doi: 10.1186/s12870-020-02630-x
CrossRef Google Scholar
|
[41]
|
Wang Z, He D, Gao W, Li M, Wu X, Lv J. 2022. Integrated transcriptomic and metabolomic analyses of 'Guifei' mango fruit flavor in an endospermic genotype and a mutated genotype without endosperm. Scientia Horticulturae 303:111189 doi: 10.1016/j.scienta.2022.111189
CrossRef Google Scholar
|
[42]
|
Zhang B, Chen W, Li X, Ren W, Chen L, et al. 2021. Map-based cloning and promoter variation analysis of the lobed leaf gene BoLMI1a in ornamental kale (Brassica oleracea L. var. acephala). BMC Plant Biology 21:456 doi: 10.1186/s12870-021-03223-y
CrossRef Google Scholar
|
[43]
|
Cheng B, Wan H, Han Y, Yu C, Luo L, et al. 2021. Identification and QTL analysis of flavonoids and carotenoids in tetraploid roses based on an ultra-high-density genetic map. Frontiers in Plant Science 12:682305 doi: 10.3389/fpls.2021.682305
CrossRef Google Scholar
|
[44]
|
Song B, Ning W, Wei D, Jiang M, Zhu K, et al. 2023. Plant genome resequencing and population genomics: current status and future prospects. Molecular Plant 16:1252−68 doi: 10.1016/j.molp.2023.07.009
CrossRef Google Scholar
|
[45]
|
Dong Y, Duan S, Xia Q, Liang Z, Dong X, et al. 2023. Dual domestications and origin of traits in grapevine evolution. Science 379:892−901 doi: 10.1126/science.add8655
CrossRef Google Scholar
|
[46]
|
Leroy T, Albert E, Thouroude T, Baudino S, Caissard JC, et al. 2024. Dark side of the honeymoon: reconstructing the Asian x European rose breeding history through the lens of genomics. bioRxiv doi: 10.1101/2023.06.22.546162
CrossRef Google Scholar
|
[47]
|
Zhang Z, Liu Y, Yang T, Wu S, Sun H, et al. 2023. Haplotype-resolve genome assembly and resequencing provide insights into the origin and domestication of modern rose. bioRxiv doi: 10.1101/2023.06.02.543351
CrossRef Google Scholar
|
[48]
|
Wei K, Wang X, Hao X, Qian Y, Li X, et al. 2022. Development of a genome-wide 200K SNP array and its application for high-density genetic mapping and origin analysis of Camellia sinensis. Plant Biotechnology Journal 20:414−16 doi: 10.1111/pbi.13761
CrossRef Google Scholar
|
[49]
|
Wang R, Xing S, Bourke PM, Qi X, Lin M, et al. 2023. Development of a 135K SNP genotyping array for Actinidia arguta and its applications for genetic mapping and QTL analysis in kiwifruit. Plant Biotechnology Journal 21:369−80 doi: 10.1111/pbi.13958
CrossRef Google Scholar
|
[50]
|
Koning-Boucoiran CFS, Esselink GD, Vukosavljev M, van't Westende WPC, Gitonga VW, et al. 2015. Using RNA-Seq to assemble a rose transcriptome with more than 13, 000 full-length expressed genes and to develop the WagRhSNP 68k Axiom SNP array for rose (Rosa L.). Frontiers in Plant Science 6:249 doi: 10.3389/fpls.2015.00249
CrossRef Google Scholar
|
[51]
|
Hamilton JP, Hansey CN, Whitty BR, Stoffel K, Massa AN, et al. 2011. Single nucleotide polymorphism discovery in elite north american potato germplasm. BMC Genomics 12:302 doi: 10.1186/1471-2164-12-302
CrossRef Google Scholar
|
[52]
|
You Q, Yang X, Peng Z, Islam MS, Sood S, et al. 2019. Development of an Axiom Sugarcane100K SNP array for genetic map construction and QTL identification. Theoretical and Applied Genetics 132:2829−45 doi: 10.1007/s00122-019-03391-4
CrossRef Google Scholar
|
[53]
|
Li N, He Q, Wang J, Wang B, Zhao J, et al. 2023. Super-pangenome analyses highlight genomic diversity and structural variation across wild and cultivated tomato species. Nature Genetics 55:852−60 doi: 10.1038/s41588-023-01340-y
CrossRef Google Scholar
|
[54]
|
Shi J, Tian Z, Lai J, Huang X. 2023. Plant pan-genomics and its applications. Molecular Plant 16:168−86 doi: 10.1016/j.molp.2022.12.009
CrossRef Google Scholar
|
[55]
|
Liu F, Zhao J, Sun H, Xiong C, Sun X, et al. 2023. Genomes of cultivated and wild Capsicum species provide insights into pepper domestication and population differentiation. Nature Communications 14:5487 doi: 10.1038/s41467-023-41251-4
CrossRef Google Scholar
|
[56]
|
Gao L, Gonda I, Sun H, Ma Q, Bao K, et al. 2019. The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nature Genetics 51:1044−51 doi: 10.1038/s41588-019-0410-2
CrossRef Google Scholar
|
[57]
|
Zhou Y, Zhang Z, Bao Z, Li H, Lyu Y, et al. 2022. Graph pangenome captures missing heritability and empowers tomato breeding. Nature 606:527−34 doi: 10.1038/s41586-022-04808-9
CrossRef Google Scholar
|
[58]
|
Huang Y, He J, Xu Y, Zheng W, Wang S, et al. 2023. Pangenome analysis provides insight into the evolution of the orange subfamily and a key gene for citric acid accumulation in citrus fruits. Nature Genetics 55:1964−75 doi: 10.1038/s41588-023-01516-6
CrossRef Google Scholar
|
[59]
|
Liu H, Wang X, Liu S, Huang Y, Guo Y, et al. 2022. Citrus Pan-Genome to Breeding Database (CPBD): a comprehensive genome database for citrus breeding. Molecular Plant 15:1503−05 doi: 10.1016/j.molp.2022.08.006
CrossRef Google Scholar
|
[60]
|
Song J, Guan Z, Hu J, Guo C, Yang Z, et al. 2020. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nature Plants 6:34−45 doi: 10.1038/s41477-019-0577-7
CrossRef Google Scholar
|
[61]
|
Sun X, Jiao C, Schwaninger H, Chao CT, Ma Y, et al. 2020. Phased diploid genome assemblies and pan-genomes provide insights into the genetic history of apple domestication. Nature Genetics 52:1423−32 doi: 10.1038/s41588-020-00723-9
CrossRef Google Scholar
|
[62]
|
Hübner S, Bercovich N, Todesco M, Mandel JR, Odenheimer J, et al. 2019. Sunflower pan-genome analysis shows that hybridization altered gene content and disease resistance. Nature Plants 5:54−62 doi: 10.1038/s41477-018-0329-0
CrossRef Google Scholar
|
[63]
|
Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, et al. 2016. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nature Genetics 48:481−87 doi: 10.1038/ng.3538
CrossRef Google Scholar
|
[64]
|
Lanctot A. 2022. The time is ripe for eQTLs: transcriptomic identification of a tomato fruit ripening regulator. Plant Physiology 190:182−84 doi: 10.1093/plphys/kiac287
CrossRef Google Scholar
|
[65]
|
Peng L, Li Y, Tan W, Wu S, Hao Q, et al. 2023. Combined genome-wide association studies and expression quantitative trait locus analysis uncovers a genetic regulatory network of floral organ number in a tree peony (Paeonia suffruticosa Andrews) breeding population. Horticulture Research 10:uhad110 doi: 10.1093/hr/uhad110
CrossRef Google Scholar
|
[66]
|
Zhang L, Yu Y, Shi T, Kou M, Sun J, et al. 2020. Genome-wide analysis of expression quantitative trait loci (eQTLs) reveals the regulatory architecture of gene expression variation in the storage roots of sweet potato. Horticulture Research 7:90 doi: 10.1038/s41438-020-0314-4
CrossRef Google Scholar
|
[67]
|
Tang S, Zhao H, Lu S, Yu L, Zhang G, et al. 2021. Genome- and transcriptome-wide association studies provide insights into the genetic basis of natural variation of seed oil content in Brassica napus. Molecular Plant 14:470−87 doi: 10.1016/j.molp.2020.12.003
CrossRef Google Scholar
|
[68]
|
Tan Z, Peng Y, Xiong Y, Xiong F, Zhang Y, et al. 2022. Comprehensive transcriptional variability analysis reveals gene networks regulating seed oil content of Brassica napus. Genome Biology 23:233 doi: 10.1186/s13059-022-02801-z
CrossRef Google Scholar
|
[69]
|
Zhang Y, Zhang H, Zhao H, Xia Y, Zheng X, et al. 2022. Multi-omics analysis dissects the genetic architecture of seed coat content in Brassica napus. Genome Biology 23:86 doi: 10.1186/s13059-022-02647-5
CrossRef Google Scholar
|
[70]
|
Szymański J, Bocobza S, Panda S, Sonawane P, Cárdenas PD, et al. 2020. Analysis of wild tomato introgression lines elucidates the genetic basis of transcriptome and metabolome variation underlying fruit traits and pathogen response. Nature Genetics 52:1111−21 doi: 10.1038/s41588-020-0690-6
CrossRef Google Scholar
|
[71]
|
Yuan P, Xu C, He N, Lu X, Zhang X, et al. 2023. Watermelon domestication was shaped by stepwise selection and regulation of the metabolome. Science China Life Sciences 66:579−94 doi: 10.1007/s11427-022-2198-5
CrossRef Google Scholar
|
[72]
|
Cao K, Wang B, Fang W, Zhu G, Chen C, et al. 2022. Combined nature and human selections reshaped peach fruit metabolome. Genome Biology 23:146 doi: 10.1186/s13059-022-02719-6
CrossRef Google Scholar
|
[73]
|
Lin Q, Chen J, Liu X, Wang B, Zhao Y, et al. 2023. A metabolic perspective of selection for fruit quality related to apple domestication and improvement. Genome Biology 24:95 doi: 10.1186/s13059-023-02945-6
CrossRef Google Scholar
|
[74]
|
Gitonga VW, Stolker R, Koning-Boucoiran CFS, Aelaei M, Visser RGF, et al. 2016. Inheritance and QTL analysis of the determinants of flower color in tetraploid cut roses. Molecular Breeding 36:143 doi: 10.1007/s11032-016-0565-9
CrossRef Google Scholar
|
[75]
|
Schulz DF, Schott RT, Voorrips RE, Smulders MJM, Linde M, et al. 2016. Genome-wide association analysis of the anthocyanin and carotenoid contents of rose petals. Frontiers in Plant Science 7:1798 doi: 10.3389/fpls.2016.01798
CrossRef Google Scholar
|
[76]
|
Kosová K, Vítámvás P, Klíma M, Prášil IT. 2019. Breeding drought-resistant crops: G×E interactions, proteomics and pQTLS. Journal of Experimental botany 70:2605−08 doi: 10.1093/jxb/erz116
CrossRef Google Scholar
|
[77]
|
Mergner J, Kuster B. 2022. Plant proteome dynamics. Annual Review of Plant Biology 73:67−92 doi: 10.1146/annurev-arplant-102620-031308
CrossRef Google Scholar
|
[78]
|
Jiang L, Li B, Liu S, Wang H, Li C, et al. 2019. Characterization of proteome variation during modern maize breeding. Molecular & Cellular Proteomics 18:263−76 doi: 10.1074/mcp.RA118.001021
CrossRef Google Scholar
|
[79]
|
Zhou Q, Fu Z, Liu H, Wang J, Guo Z, et al. 2021. Mining novel kernel size-related genes by pQTL mapping and multi-omics integrative analysis in developing maize kernels. Plant Biotechnology Journal 19:1489−91 doi: 10.1111/pbi.13634
CrossRef Google Scholar
|
[80]
|
Liu Z, Yang B, Huang R, Suo H, Zhang Z, et al. 2022. Transcriptome- and proteome-wide association of a recombinant inbred line population revealed twelve core QTLs for four fruit traits in pepper (Capsicum annuum L.). Horticulture Research 9:uhac015 doi: 10.1093/hr/uhac015
CrossRef Google Scholar
|
[81]
|
Liu X, Zhu K, Xiao J. 2023. Recent advances in understanding of the epigenetic regulation of plant regeneration. aBIOTECH 4:31−46 doi: 10.1007/s42994-022-00093-2
CrossRef Google Scholar
|
[82]
|
Gahlaut V, Zinta G, Jaiswal V, Kumar S. 2020. Quantitative epigenetics: a new avenue for crop improvement. Epigenomes 4:25 doi: 10.3390/epigenomes4040025
CrossRef Google Scholar
|
[83]
|
Johannes F, Porcher E, Teixeira FK, Saliba-Colombani V, Simon M, et al. 2009. Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genetics 5:e1000530 doi: 10.1371/journal.pgen.1000530
CrossRef Google Scholar
|
[84]
|
Cortijo S, Wardenaar R, Colomé-Tatché M, Gilly A, Etcheverry M, et al. 2014. Mapping the epigenetic basis of complex traits. Science 343:1145−48 doi: 10.1126/science.1248127
CrossRef Google Scholar
|
[85]
|
Long Y, Xia W, Li R, Wang J, Shao M, et al. 2011. Epigenetic QTL mapping in Brassica napus. Genetics 189:1093−102 doi: 10.1534/genetics.111.131615
CrossRef Google Scholar
|
[86]
|
Guo H, Cao P, Wang C, Lai J, Deng Y, et al. 2023. Population analysis reveals the roles of DNA methylation in tomato domestication and metabolic diversity. Science China Life Sciences 66:1888−902 doi: 10.1007/s11427-022-2299-5
CrossRef Google Scholar
|
[87]
|
Han Y, Lu M, Yue S, Li K, Dong M, et al. 2022. Comparative methylomics and chromatin accessibility analysis in Osmanthus fragrans uncovers regulation of genic transcription and mechanisms of key floral scent production. Horticulture Research 9:uhac096 doi: 10.1093/hr/uhac096
CrossRef Google Scholar
|
[88]
|
Tang M, Xue W, Li X, Wang L, Wang M, et al. 2022. Mitotically heritable epigenetic modifications of CmMYB6 control anthocyanin biosynthesis in chrysanthemum. New Phytologist 236:1075−88 doi: 10.1111/nph.18389
CrossRef Google Scholar
|
[89]
|
French A, Ubeda-Tomás S, Holman TJ, Bennett MJ, Pridmore T. 2009. High-throughput quantification of root growth using a novel image-analysis tool. Plant Physiology 150:1784−95 doi: 10.1104/pp.109.140558
CrossRef Google Scholar
|
[90]
|
Campbell ZC, Acosta-Gamboa LM, Nepal N, Lorence A. 2018. Engineering plants for tomorrow: how high-throughput phenotyping is contributing to the development of better crops. Phytochemistry Reviews 17:1329−43 doi: 10.1007/s11101-018-9585-x
CrossRef Google Scholar
|
[91]
|
Yang W, Feng H, Zhang X, Zhang J, Doonan JH, et al. 2020. Crop phenomics and high-throughput phenotyping: past decades, current challenges, and future perspectives. Molecular Plant 13:187−214 doi: 10.1016/j.molp.2020.01.008
CrossRef Google Scholar
|
[92]
|
van der Heijden G, Song Y, Horgan G, Polder G, Dieleman A, et al. 2012. SPICY: towards automated phenotyping of large pepper plants in the greenhouse. Functional Plant Biology 39:870−77 doi: 10.1071/FP12019
CrossRef Google Scholar
|
[93]
|
Knoch D, Abbadi A, Grandke F, Meyer RC, Samans B, et al. 2020. Strong temporal dynamics of QTL action on plant growth progression revealed through high-throughput phenotyping in canola. Plant Biotechnology Journal 18:68−82 doi: 10.1111/pbi.13171
CrossRef Google Scholar
|
[94]
|
Zhang G, Zhou J, Peng Y, Tan Z, Zhang Y, et al. 2023. High-throughput phenotyping-based quantitative trait loci mapping reveals the genetic architecture of the salt stress tolerance of Brassica napus. Plant, Cell & Environment 46:549−66 doi: 10.1111/pce.14485
CrossRef Google Scholar
|
[95]
|
Li-Marchetti C, Le Bras C, Chastellier A, Relion D, Morel P, et al. 2017. 3D phenotyping and QTL analysis of a complex character: rose bush architecture. Tree Genetics & Genomes 13:112 doi: 10.1007/s11295-017-1194-0
CrossRef Google Scholar
|
[96]
|
da Silva Souza J, Pedrosa LM, de Almeida Moreira BR, do Rêgo ER, Unêda-Trevisoli SH. 2022. The more fractal the architecture the more intensive the color of flower: a superpixel-wise analysis towards high-throughput phenotyping. Agronomy 12:1342 doi: 10.3390/agronomy12061342
CrossRef Google Scholar
|
[97]
|
Zhang C, Craine WA, McGee RJ, Vandemark GJ, Davis JB, et al. 2020. Image-based phenotyping of flowering intensity in cool-season crops. Sensors 20:1450 doi: 10.3390/s20051450
CrossRef Google Scholar
|
[98]
|
Cembrowska-Lech D, Krzemińska A, Miller T, Nowakowska A, Adamski C, et al. 2023. An integrated multi-omics and artificial intelligence framework for advance plant phenotyping in horticulture. Biology 12:1298 doi: 10.3390/biology12101298
CrossRef Google Scholar
|