[1]
|
Noman A, Aqeel M, Deng J, Khalid N, Sanaullah T, et al. 2017. Biotechnological advancements for improving floral attributes in ornamental plants. Frontiers in Plant Science 8:530 doi: 10.3389/fpls.2017.00530
CrossRef Google Scholar
|
[2]
|
Mehbub H, Akter A, Akter MA, Mandal MSH, Hoque MA, et al. 2022. Tissue culture in ornamentals: cultivation factors, propagation techniques, and its application. Plants 11:3208 doi: 10.3390/plants11233208
CrossRef Google Scholar
|
[3]
|
Naing AH, Adedeji OS, Kim CK. 2021. Protoplast technology in ornamental plants: current progress and potential applications on genetic improvement. Scientia Horticulturae 283:110043 doi: 10.1016/j.scienta.2021.110043
CrossRef Google Scholar
|
[4]
|
Kumar M, Sirohi U, Malik S, Kumar S, Ahirwar GK, et al. 2022. Methods and factors influencing in vitro propagation efficiency of ornamental tuberose (Polianthes species): a systematic review of recent developments and future prospects. Horticulturae 8:998 doi: 10.3390/horticulturae8110998
CrossRef Google Scholar
|
[5]
|
Naing AH, Jeon SM, Han JS, Lim SH, Lim KB, et al. 2014. Factors influencing in vitro shoot regeneration from leaf segments of Chrysanthemum. Comptes Rendus Biologies 337:383−90 doi: 10.1016/j.crvi.2014.03.005
CrossRef Google Scholar
|
[6]
|
Kishi-Kaboshi M, Aida R, Sasaki K. 2018. Genome engineering in ornamental plants: current status and future prospects. Plant Physiology and Biochemistry 131:47−52 doi: 10.1016/j.plaphy.2018.03.015
CrossRef Google Scholar
|
[7]
|
Sugimoto K, Temman H, Kadokura S, Matsunaga S. 2019. To regenerate or not to regenerate: factors that drive plant regeneration. Current Opinion in Plant Biology 47:138−50 doi: 10.1016/j.pbi.2018.12.002
CrossRef Google Scholar
|
[8]
|
Zhang Y, Mo Y, Ren H, Wu X, Han L, et al. 2024. Improving Sedum plumbizincicola genetic transformation with the SpGRF4-SpGIF1 gene and the self-excision CRE/LoxP system. Planta 259:119 doi: 10.1007/s00425-024-04393-3
CrossRef Google Scholar
|
[9]
|
Mathew MM, Ganguly A, Prasad K. 2024. Multiple feedbacks on self-organized morphogenesis during plant regeneration. New Phytologist 241:553−59 doi: 10.1111/nph.19412
CrossRef Google Scholar
|
[10]
|
Papikian A, Liu W, Gallego-Bartolomé J, Jacobsen SE. 2019. Site-specific manipulation of Arabidopsis loci using CRISPR-Cas9 SunTag systems. Nature Communications 10:729 doi: 10.1038/s41467-019-08736-7
CrossRef Google Scholar
|
[11]
|
Tang M, Xue W, Li X, Wang L, Wang M, et al. 2022. Mitotically heritable epigenetic modifications of CmMYB6 control anthocyanin biosynthesis in chrysanthemum. New Phytologist 236:1075−88 doi: 10.1111/nph.18389
CrossRef Google Scholar
|
[12]
|
Liu X, Bie X, Lin X, Li M, Wang H, et al. 2023. Uncovering the transcriptional regulatory network involved in boosting wheat regeneration and transformation. Nature Plants 9:908−25 doi: 10.1038/s41477-023-01406-z
CrossRef Google Scholar
|
[13]
|
Cao X, Xie H, Song M, Lu J, Ma P, et al. 2023. Cut-dip-budding delivery system enables genetic modifications in plants without tissue culture. The Innovation 4:100345 doi: 10.1016/j.xinn.2022.100345
CrossRef Google Scholar
|
[14]
|
Gulzar B, Mujib A, Malik MQ, Sayeed R, Mamgain J, et al. 2020. Genes, proteins and other networks regulating somatic embryogenesis in plants. Journal of Genetic Engineering and Biotechnology 18:31 doi: 10.1186/s43141-020-00047-5
CrossRef Google Scholar
|
[15]
|
Yang Q, Cong T, Yao Y, Cheng T, Yuan C, et al. 2023. KNOX genes were involved in regulating axillary bud formation of Chrysanthemum × morifolium. International Journal of Molecular Sciences 24:7081 doi: 10.3390/ijms24087081
CrossRef Google Scholar
|
[16]
|
Zhang X, Wu Q, Lin S, Zhang Z, Wang Z, et al. 2021. Regeneration and Agrobacterium-mediated genetic transformation in Dianthus chinensis. Scientia Horticulturae 287:110279 doi: 10.1016/j.scienta.2021.110279
CrossRef Google Scholar
|
[17]
|
Li J, Xu Z, Zeng T, Zhou L, Li J, et al. 2022. Overexpression of TcCHS increases pyrethrin content when using a genotype-independent transformation system in pyrethrum (Tanacetum cinerariifolium). Plants 11:1575 doi: 10.3390/plants11121575
CrossRef Google Scholar
|
[18]
|
Habibi P, de Sa MF, da Silva ALL, Makhzoum A, da Luz Costa J, et al. 2016. Efficient genetic transformation and regeneration system from hairy root of Origanum vulgare. Physiology and Molecular Biology of Plants 22:271−77 doi: 10.1007/s12298-016-0354-2
CrossRef Google Scholar
|
[19]
|
Iaffaldano B, Zhang Y, Cornish K. 2016. CRISPR/Cas9 genome editing of rubber producing dandelion Taraxacum koksaghyz using Agrobacterium rhizogenes without selection. Industrial Crops and Products 89:356−62 doi: 10.1016/j.indcrop.2016.05.029
CrossRef Google Scholar
|
[20]
|
Podwyszyńska M, Marasek-Ciolakowska A. 2020. Micropropagation of tulip via somatic embryogenesis. Agronomy 10:1857 doi: 10.3390/agronomy10121857
CrossRef Google Scholar
|
[21]
|
Natarajan N, Sundararajan S, Ramalingam S, Chellakan PS. 2020. Efficient and rapid in-vitro plantlet regeneration via somatic embryogenesis in ornamental bananas (Musa spp.). Biologia 75:317−26 doi: 10.2478/s11756-019-00358-0
CrossRef Google Scholar
|
[22]
|
Yan R, Wang C, Wang J, Nie R, Sun H. 2020. High-efficiency somatic embryogenesis techniques for different hybrids of cut lilies. Plant Cell, Tissue and Organ Culture 143:145−57 doi: 10.1007/s11240-020-01904-4
CrossRef Google Scholar
|
[23]
|
Pałka P, Cioć M, Hura K, Szewczyk-Taranek B, Pawłowska B. 2022. Adventitious organogenesis and phytochemical composition of Madonna lily (Lilium candidum L.) in vitro modeled by different light quality. Plant Cell, Tissue and Organ Culture 152:99−114 doi: 10.1007/s11240-022-02391-5
CrossRef Google Scholar
|
[24]
|
Mao J, Cao L, Kong L, Jongsma MA, Wang C. 2013. An Agrobacterium-mediated transformation system of pyrethrum (Tanacetum cinerariifolium) based on leaf explants. Scientia Horticulturae 150:130−34 doi: 10.1016/j.scienta.2012.10.019
CrossRef Google Scholar
|
[25]
|
Bao Z, Zhang Y, Shao C, Zhang J, Liu G, et al. 2017. A rapid and efficient in vitro shoot regeneration protocol using cotyledons of London plane tree (Platanus acerifolia Willd.). Plant Growth Regulation 83:245−52 doi: 10.1007/s10725-017-0303-2
CrossRef Google Scholar
|
[26]
|
García-Hernández E, Loera-Quezada MM, Morán-Velázquez DC, López MG, Chable-Vega MA, et al. 2022. Indirect organogenesis for high frequency shoot regeneration of two cultivars of Sansevieria trifasciata Prain differing in fiber production. Scientific Reports 12:8507 doi: 10.1038/s41598-022-12640-4
CrossRef Google Scholar
|
[27]
|
Naing AH, Ai TN, Jeon SM, Lim SH, Kim CK. 2016. An efficient protocol for Agrobacterium-mediated genetic transformation of recalcitrant chrysanthemum cultivar Shinma. Acta Physiologiae Plantarum 38:38 doi: 10.1007/s11738-015-2059-5
CrossRef Google Scholar
|
[28]
|
Priyadharshini S, Manokari M, Shekhawat MS. 2020. In vitro conservation strategies for the critically endangered Malabar river lily (Crinum malabaricum Lekhak & Yadav) using somatic embryogenesis and synthetic seed production. South African Journal of Botany 135:172−80 doi: 10.1016/j.sajb.2020.08.030
CrossRef Google Scholar
|
[29]
|
Marija P, Angelina S, Slađana J, Milana T. 2011. Somatic embryogenesis and bulblet regeneration in snakehead fritillary (Fritillaria meleagris L.). African Journal of Biotechnology 10:16181−88 doi: 10.5897/AJB09.807
CrossRef Google Scholar
|
[30]
|
Yang L, Yuan H, Du C, Liang L, Chen M, et al. 2022. Development of a highly efficient shoot organogenesis system for an ornamental Aeschynanthus pulcher (Blume) G. Don using leaves as explants. Plants 11:2456 doi: 10.3390/plants11192456
CrossRef Google Scholar
|
[31]
|
Li X, Guo Q, Han C, Li J, Dong L, et al. 2022. Developing a highly efficient regeneration system for leaves of tissue-cultured tetraploid Robinia pseudoacacia L. In Vitro Cellular & Developmental Biology - Plant 58:114−21 doi: 10.1007/s11627-021-10192-2
CrossRef Google Scholar
|
[32]
|
Yang X, Yang X, Guo T, Gao K, Zhao T, et al. 2018. High-efficiency somatic embryogenesis from seedlings of Koelreuteria paniculata Laxm. Forests 9:769 doi: 10.3390/f9120769
CrossRef Google Scholar
|
[33]
|
Du L, Bao M. 2005. Plant regeneration from protoplasts isolated from embryogenic suspension cultured cells of Cinnamomum camphora L. Plant Cell Reports 24:462−67 doi: 10.1007/s00299-005-0969-1
CrossRef Google Scholar
|
[34]
|
Long Y, Yang Y, Pan G, Shen Y. 2022. New insights into tissue culture plant-regeneration mechanisms. Frontiers in Plant Science 13:926752 doi: 10.3389/fpls.2022.926752
CrossRef Google Scholar
|
[35]
|
Siemens F, Torres M, Morgner M, Sacristán MD. 1993. Plant regeneration from mesophyil-protoplasts of four different ecotypes and two marker lines from Arabidopsis thaliana using a unique protocol. Plant Cell Reports 12:569−72 doi: 10.1007/BF00233062
CrossRef Google Scholar
|
[36]
|
Jia S, Yan Z, Wang Y, Wei Y, Xie Z, et al. 2017. Genetic diversity and relatedness among ornamental purslane (Portulaca L.) accessions unraveled by SRAP markers. 3 Biotech 7:241 doi: 10.1007/s13205-017-0881-8
CrossRef Google Scholar
|
[37]
|
Meyer L, Serek M, Winkelmann T. 2009. Protoplast isolation and plant regeneration of different genotypes of Petunia and Calibrachoa. Plant Cell, Tissue and Organ Culture 99:27−34 doi: 10.1007/s11240-009-9572-4
CrossRef Google Scholar
|
[38]
|
Catalano C, Carra A, Carimi F, Motisi A, Sajeva M, et al. 2023. Somatic embryogenesis and flow cytometric assessment of nuclear genetic stability for Sansevieria spp.: an approach for in vitro regeneration of ornamental plants. Horticulturae 9:138 doi: 10.3390/horticulturae9020138
CrossRef Google Scholar
|
[39]
|
Du Y, Cheng F, Zhong Y. 2020. Induction of direct somatic embryogenesis and shoot organogenesis and histological study in tree peony (Paeonia sect. Moutan). Plant Cell, Tissue and Organ Culture 141:557−70 doi: 10.1007/s11240-020-01815-4
CrossRef Google Scholar
|
[40]
|
Sujatha M, Vijay S, Vasavi S, Sivaraj N, Rao SC. 2012. Combination of thidiazuron and 2-isopentenyladenine promotes highly efficient adventitious shoot regeneration from cotyledons of mature sunflower (Helianthus annuus L.) seeds. Plant Cell, Tissue and Organ Culture 111:359−72 doi: 10.1007/s11240-012-0202-1
CrossRef Google Scholar
|
[41]
|
Çöçü S, Uranbey S, İpek A, Khawar KM, Sarihan EO, et al. 2004. Adventitious shoot regeneration and micropropagation in Calendula officinalis L. Biologia Plantarum 48:449−51 doi: 10.1023/B:BIOP.0000041102.79647.b6
CrossRef Google Scholar
|
[42]
|
Patel P, Sarswat SK, Modi A. 2022. Strategies to overcome explant recalcitrance under in vitro conditions. In Advances in Plant Tissue Culture, eds Rai AC, Kumar A, Modi A, Singh M. Academic Press. pp. 283−94. https://doi.org/10.1016/B978-0-323-90795-8.00003-5
|
[43]
|
Mikovski AI, da Silva NT, Silva LAS, Machado M, de Souza Barbosa LC, et al. 2021. From endosperm to triploid plants: a stepwise characterization of the de novo shoot organogenesis and morpho-agronomic aspects of an ornamental passion fruit (Passiflora foetida L.). Plant Cell, Tissue and Organ Culture 147:239−53 doi: 10.1007/s11240-021-02120-4
CrossRef Google Scholar
|
[44]
|
Miler N, Tymoszuk A, Rewers M, Kulus D. 2023. In vitro regeneration of chrysanthemum from ovaries and ovules treated with thermal and chemical stimuli: morphogenic and cytogenetic effects. Agriculture 13:2069 doi: 10.3390/agriculture13112069
CrossRef Google Scholar
|
[45]
|
Khanchana K, Kannan M, Hemaprabha K, Ganga M. 2019. Standardization of protocol for sterilization and in vitro regeneration in tuberose (Polianthes tuberosa L.). International Journal of Chemical Studies 7:236−41
Google Scholar
|
[46]
|
Askari N, Visser RGF. 2022. The role of scale explants in the growth of regenerating lily bulblets in vitro. Plant Cell, Tissue and Organ Culture 149:589−98 doi: 10.1007/s11240-022-02328-y
CrossRef Google Scholar
|
[47]
|
Safdari Y, Kazemitabar SK. 2010. Direct shoot regeneration, callus induction and plant regeneration from callus tissue in Mose Rose (Portulaca grandiflora L.). Plant Omics Journal 3:47−51
Google Scholar
|
[48]
|
Naing AH, Il Park K, Chung MY, Lim KB, Kim CK. 2016. Optimization of factors affecting efficient shoot regeneration in chrysanthemum cv. Shinma. Brazilian Journal of Botany 39:975−84 doi: 10.1007/s40415-015-0143-0
CrossRef Google Scholar
|
[49]
|
Hernández-Coronado M, Dias Araujo PC, Ip PL, Nunes CO, Rahni R, et al. 2022. Plant glutamate receptors mediate a bet-hedging strategy between regeneration and defense. Developmental Cell 57:451−465.e6 doi: 10.1016/j.devcel.2022.01.013
CrossRef Google Scholar
|
[50]
|
Kim C, Dai W. 2020. Plant regeneration of red raspberry (Rubus idaeus) cultivars 'Joan J' and 'Polana'. In Vitro Cellular & Developmental Biology - Plant 56:390−97 doi: 10.1007/s11627-019-10051-1
CrossRef Google Scholar
|
[51]
|
Rafiq S, Rather ZA, Bhat RA, Nazki IT, Al-Harbi MS, et al. 2021. Standardization of in vitro micropropagation procedure of Oriental Lilium Hybrid Cv. 'Ravenna'. Saudi Journal of Biological Sciences 28:7581−87 doi: 10.1016/j.sjbs.2021.09.064
CrossRef Google Scholar
|
[52]
|
Aswathi NV, Thomas TD. 2023. Direct and indirect shoot regeneration from leaf explants of Centratherum punctatum Cass., a wild ornamental plant. Scientia Horticulturae 320:112201 doi: 10.1016/j.scienta.2023.112201
CrossRef Google Scholar
|
[53]
|
Deepa AV, Thomas TD. 2022. High-frequency direct shoot induction from leaf explants of Pogostemon quadrifolius (Benth.) F. Muell.: an ethnomedicinal herb. In Vitro Cellular & Developmental Biology - Plant 58:321−29 doi: 10.1007/s11627-022-10265-w
CrossRef Google Scholar
|
[54]
|
Sharma S, Reddy MS, Kumar A. 2020. Direct shoot organogenesis from leaf explants of Populus deltoides and changes in selected enzymatic activities. Physiology and Molecular Biology of Plants 26:399−407 doi: 10.1007/s12298-019-00755-4
CrossRef Google Scholar
|
[55]
|
Teixeira da Silva JA, Zeng S, Cardoso JC, Dobránszki J, Kerbauy GB. 2014. In vitro flowering of Dendrobium. Plant Cell, Tissue and Organ Culture 119:447−56 doi: 10.1007/s11240-014-0561-x
CrossRef Google Scholar
|
[56]
|
Beyl CA. 2018. Getting started with tissue culture—media preparation, sterile technique, and laboratory equipment. In Plant tissue culture concepts and laboratory exercises, 2nd edition, ed. Trigiano RN. New York: Routledge. pp. 21−38. https://doi.org/10.1201/b17340-35
|
[57]
|
Ren X, Liu X, Jeong BR. 2020. Callus induction and browning suppression in tree peony Paeonia ostii 'Fengdan'. Horticulture, Environment, and Biotechnology 61:591−600 doi: 10.1007/s13580-020-00246-6
CrossRef Google Scholar
|
[58]
|
de Oliveira C, Degenhardt-Goldbach J, de França Bettencourt GM, Amano E, Franciscon L, et al. 2017. Micropropagation of Eucalyptus grandis × E. urophylla AEC 224 clone. Journal of Forestry Research 28:29−39 doi: 10.1007/s11676-016-0282-6
CrossRef Google Scholar
|
[59]
|
Daniel MA, David RHA, Caesar SA, Ramakrishnan M, Duraipandiyan V, et al. 2018. Effect of L-glutamine and casein hydrolysate in the development of somatic embryos from cotyledonary leaf explants in okra (Abelmoschus esculentus L. monech). South African Journal of Botany 114:223−31 doi: 10.1016/j.sajb.2017.11.014
CrossRef Google Scholar
|
[60]
|
Kim H, Lim J. 2019. Leaf-induced callus formation in two cultivars: hot pepper 'CM334' and bell pepper 'Dempsey'. Plant Signaling & Behavior 14:1604016 doi: 10.1080/15592324.2019.1604016
CrossRef Google Scholar
|
[61]
|
Ng YS, Lim CR, Chan DJC. 2016. Development of treated palm oil mill effluent (POME) culture medium for plant tissue culture of Hemianthus callitrichoides. Journal of Environmental Chemical Engineering 4:4890−96 doi: 10.1016/j.jece.2016.05.004
CrossRef Google Scholar
|
[62]
|
Tung HT, Bao HG, Cuong DM, Ngan HTM, Hien VT, et al. 2021. Silver nanoparticles as the sterilant in large-scale micropropagation of chrysanthemum. In Vitro Cellular & Developmental Biology - Plant 57:897−906 doi: 10.1007/s11627-021-10163-7
CrossRef Google Scholar
|
[63]
|
Parzymies M. 2021. Nano-silver particles reduce contaminations in tissue culture but decrease regeneration rate and slows down growth and development of Aldrovanda vesiculosa explants. Applied Sciences 11:3653 doi: 10.3390/app11083653
CrossRef Google Scholar
|
[64]
|
Rahimi Khonakdari M, Rezadoost H, Heydari R, Mirjalili MH. 2020. Effect of photoperiod and plant growth regulators on in vitro mass bulblet proliferation of Narcissus tazzeta L. (Amaryllidaceae), a potential source of galantamine. Plant Cell, Tissue and Organ Culture 142:187−99 doi: 10.1007/s11240-020-01853-y
CrossRef Google Scholar
|
[65]
|
Miler N, Kulus D, Woźny A, Rymarz D, Hajzer M, et al. 2018. Application of wide-spectrum light-emitting diodes in micropropagation of popular ornamental plant species: a study on plant quality and cost reduction. In Vitro Cellular & Developmental Biology - Plant 55:99−108 doi: 10.1007/s11627-018-9939-5
CrossRef Google Scholar
|
[66]
|
Ramírez-Mosqueda MA, Iglesias-Andreu LG, Luna-Sánchez IJ. 2017. Light quality affects growth and development of in vitro plantlet of Vanilla planifolia Jacks. South African Journal of Botany 109:288−93 doi: 10.1016/j.sajb.2017.01.205
CrossRef Google Scholar
|
[67]
|
Chashmi KA, Omran VOG, Ebrahimi R, Moradi H, Abdosi V. 2022. Light quality affects protocorm-like body (PLB) formation, growth and development of in vitro plantlets of Phalaenopsis pulcherrima. Biology Bulletin 49:476−84 doi: 10.1134/S1062359022050107
CrossRef Google Scholar
|
[68]
|
Fernández-Valdez JL, Iglesias-Andreu LG, Flores-López LY. 2023. Effect of helium-neon laser irradiations on the in vitro culture of Vanilla planifolia jacks. Vegetos 37:974−82 doi: 10.1007/s42535-023-00627-z
CrossRef Google Scholar
|
[69]
|
Lambolez A, Kawamura A, Takahashi T, Rymen B, Iwase A, et al. 2022. Warm temperature promotes shoot regeneration in Arabidopsis thaliana. Plant and Cell Physiology 63:618−34 doi: 10.1093/pcp/pcac017
CrossRef Google Scholar
|
[70]
|
Kim J, Lee CG, Na H. 2020. Optimal culture environment for anther-derived callus, embryo, and regeneration of strawberry 'Jukhyang'. Horticulture, Environment, and Biotechnology 61:1031−38 doi: 10.1007/s13580-020-00321-y
CrossRef Google Scholar
|
[71]
|
Shin J, Bae S, Seo PJ. 2020. De novo shoot organogenesis during plant regeneration. Journal of Experimental Botany 71:63−72 doi: 10.1093/jxb/erz395
CrossRef Google Scholar
|
[72]
|
Ebrahimie E, Naghavi MR, Hosseinzadeh A, Behamta MR, Mohammadi-Dehcheshmeh M, et al. 2007. Induction and comparison of different in vitro morphogenesis pathways using embryo of cumin (Cuminum cyminum L.) as a model material. Plant Cell, Tissue and Organ Culture 90:293−311 doi: 10.1007/s11240-007-9269-5
CrossRef Google Scholar
|
[73]
|
Lakshmanan P, Geijskes RJ, Wang L, Elliott A, Grof CPL, et al. 2006. Developmental and hormonal regulation of direct shoot organogenesis and somatic embryogenesis in sugarcane (Saccharum spp. interspecific hybrids) leaf culture. Plant Cell Reports 25:1007−15 doi: 10.1007/s00299-006-0154-1
CrossRef Google Scholar
|
[74]
|
Zuo J, Niu QW, Frugis G, Chua NH. 2002. The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. The Plant Journal 30:349−59 doi: 10.1046/j.1365-313X.2002.01289.x
CrossRef Google Scholar
|
[75]
|
Mujib A, Ali M, Isah T, Dipti. 2014. Somatic embryo mediated mass production of Catharanthus roseus in culture vessel (bioreactor) - a comparative study. Saudi Journal of Biological Sciences 21:442−49 doi: 10.1016/j.sjbs.2014.05.007
CrossRef Google Scholar
|
[76]
|
Maślanka M, Bach A, Janowiak F. 2016. Endogenous ABA content in relation to maturation of somatic embryos in Tulipa (L.) 'Apeldoorn' cultures. Acta Physiologiae Plantarum 38:270 doi: 10.1007/s11738-016-2283-7
CrossRef Google Scholar
|
[77]
|
Park SY, Shin KS, Paek KY. 2006. Increased ethylene and decreased phenolic compounds stimulate somatic embryo regeneration in leaf thin section cultures of Doritaenopsis Hybrid. Journal of Plant Biology 49:358−63 doi: 10.1007/BF03178812
CrossRef Google Scholar
|
[78]
|
Malabadi RB, Nataraja K. 2007. Brassinosteroids influences in vitro regeneration using shoottip sections of Cymbidium elegans Lindl. Asian Journal of Plant Sciences 6:308−13 doi: 10.3923/ajps.2007.308.313
CrossRef Google Scholar
|
[79]
|
Chashmi KA, Omran VOG, Ebrahimi R, Moradi H, Abdosi V. 2023. In-vitro elicitation of Phalaenopsis Pulcherrima leaf explants using melatonin, salicylic acid and methyl jasmonate for plbs induction and anthocyanin production. Biology Bulletin 50:379−89 doi: 10.1134/S1062359022602634
CrossRef Google Scholar
|
[80]
|
Sun L, Song S, Yang Y, Sun H. 2022. Melatonin regulates lily bulblet development through the LoBPM3-LoRAV module. Ornamental Plant Research 2:12 doi: 10.48130/OPR-2022-0012
CrossRef Google Scholar
|
[81]
|
Hasnain A, Naqvi SAH, Ayesha SI, Khalid F, Ellahi M, et al. 2022. Plants in vitro propagation with its applications in food, pharmaceuticals and cosmetic industries; current scenario and future approaches. Frontiers in Plant Science 13:1009395 doi: 10.3389/fpls.2022.1009395
CrossRef Google Scholar
|
[82]
|
Eeckhaut T, Van Houtven W, Bruznican S, Leus L, Van Huylenbroeck J. 2020. Somaclonal variation in Chrysanthemum × morifolium protoplast regenerants. Frontiers in Plant Science 11:607171 doi: 10.3389/fpls.2020.607171
CrossRef Google Scholar
|
[83]
|
Rodriguez-Enriquez J, Dickinson HG, Grant-Downton RT. 2011. MicroRNA misregulation: an overlooked factor generating somaclonal variation? Trends in Plant Science 16:242−48 doi: 10.1016/j.tplants.2011.03.002
CrossRef Google Scholar
|
[84]
|
Sarmast MK. 2016. Genetic transformation and somaclonal variation in conifers. Plant Biotechnology Reports 10:309−25 doi: 10.1007/s11816-016-0416-5
CrossRef Google Scholar
|
[85]
|
Thipwong J, Kongton K, Samala S. 2022. Micropropagation and somaclonal variation of Doritis pulcherrima (Lindl.). Plant Biotechnology Reports 16:401−08 doi: 10.1007/s11816-022-00766-w
CrossRef Google Scholar
|
[86]
|
Lv Z, Yu L, Zhan H, Li J, Wang C, et al. 2023. Shoot differentiation from Dendrocalamus brandisii callus and the related physiological roles of sugar and hormones during shoot differentiation. Tree Physiology 43:1159−86 doi: 10.1093/treephys/tpad039
CrossRef Google Scholar
|
[87]
|
Lee K, Park OS, Go JY, Yu J, Han JH, et al. 2021. Arabidopsis ATXR2 represses de novo shoot organogenesis in the transition from callus to shoot formation. Cell Reports 37:109980 doi: 10.1016/j.celrep.2021.109980
CrossRef Google Scholar
|
[88]
|
Tu L, Subburaj S, Lee K, Jeon Y, Yan F, et al. 2023. Optimized regeneration of Petunia protoplast and its association with tissue identity regulators. Horticulturae 9:216 doi: 10.3390/horticulturae9020216
CrossRef Google Scholar
|
[89]
|
Liu R, Xue Y, Ci H, Gao J, Wang S, et al. 2022. Establishment of highly efficient plant regeneration of Paeonia ostii 'Fengdan' through optimization of callus, adventitious shoot, and rooting induction. Horticultural Plant Journal 8:777−86 doi: 10.1016/j.hpj.2022.03.007
CrossRef Google Scholar
|
[90]
|
Pan X, Yang Z, Xu L. 2021. Dual roles of jasmonate in adventitious rooting. Journal of Experimental Botany 72:6808−10 doi: 10.1093/jxb/erab378
CrossRef Google Scholar
|
[91]
|
Huang A, Wang Y, Liu Y, Wang G, She X. 2020. Reactive oxygen species regulate auxin levels to mediate adventitious root induction in Arabidopsis hypocotyl cuttings. Journal of Integrative Plant Biology 62:912−26 doi: 10.1111/jipb.12870
CrossRef Google Scholar
|
[92]
|
Elmongy MS, Wang X, Zhou H, Xia Y. 2020. Humic acid and auxins induced metabolic changes and differential gene expression during adventitious root development in azalea microshoots. HortScience 55:926−35 doi: 10.21273/HORTSCI14885-20
CrossRef Google Scholar
|
[93]
|
Koetle MJ, Finnie JF, Balázs E, Van Staden J. 2015. A review on factors affecting the Agrobacterium-mediated genetic transformation in ornamental monocotyledonous geophytes. South African Journal of Botany 98:37−44 doi: 10.1016/j.sajb.2015.02.001
CrossRef Google Scholar
|
[94]
|
Kumar S, Tiwari R, Chandra A, Sharma A, Bhatnagar RK. 2013. In vitro direct plant regeneration and Agrobacterium-mediated transformation of lucerne (Medicago sativa L.). Grass and Forage Science 68:459−68 doi: 10.1111/gfs.12009
CrossRef Google Scholar
|
[95]
|
Debernardi JM, Tricoli DM, Ercoli MF, Hayta S, Ronald P, et al. 2020. A GRF-GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nature Biotechnology 38:1274−79 doi: 10.1038/s41587-020-0703-0
CrossRef Google Scholar
|
[96]
|
Pan C, Li G, Malzahn AA, Cheng Y, Leyson B, et al. 2022. Boosting plant genome editing with a versatile CRISPR-Combo system. Nature Plants 8:513−25 doi: 10.1038/s41477-022-01151-9
CrossRef Google Scholar
|
[97]
|
Lian Z, Nguyen CD, Liu L, Wang G, Chen J, et al. 2022. Application of developmental regulators to improve in planta or in vitro transformation in plants. Plant Biotechnology Journal 20:1622−35 doi: 10.1111/pbi.13837
CrossRef Google Scholar
|
[98]
|
Eshed Williams L. 2021. Genetics of shoot meristem and shoot regeneration. Annual Review of Genetics 55:661−81 doi: 10.1146/annurev-genet-071719-020439
CrossRef Google Scholar
|
[99]
|
Jha P, Ochatt SJ, Kumar V. 2020. WUSCHEL: a master regulator in plant growth signaling. Plant Cell Reports 39:431−44 doi: 10.1007/s00299-020-02511-5
CrossRef Google Scholar
|
[100]
|
Hendelman A, Zebell S, Rodriguez-Leal D, Dukler N, Robitaille G, et al. 2021. Conserved pleiotropy of an ancient plant homeobox gene uncovered by cis-regulatory dissection. Cell 184:1724−1739.e16 doi: 10.1016/j.cell.2021.02.001
CrossRef Google Scholar
|
[101]
|
Scofield S, Murison A, Jones A, Fozard J, Aida M, et al. 2018. Coordination of meristem and boundary functions by transcription factors in the SHOOT MERISTEMLESS regulatory network. Development 145:dev157081 doi: 10.1242/dev.157081
CrossRef Google Scholar
|
[102]
|
Li M, Wrobel-Marek J, Heidmann I, Horstman A, Chen B, et al. 2022. Auxin biosynthesis maintains embryo identity and growth during BABY BOOM-induced somatic embryogenesis. Plant Physiology 188:1095−110 doi: 10.1093/plphys/kiab558
CrossRef Google Scholar
|
[103]
|
Motte H, Vanneste S, Beeckman T. 2019. Molecular and environmental regulation of root development. Annual Review of Plant Biology 70:465−88 doi: 10.1146/annurev-arplant-050718-100423
CrossRef Google Scholar
|
[104]
|
Wang K, Shi L, Liang X, Zhao P, Wang W, et al. 2022. The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation. Nature Plants 8:110−17 doi: 10.1038/s41477-021-01085-8
CrossRef Google Scholar
|
[105]
|
Tvorogova VE, Fedorova YA, Potsenkovskaya EA, Kudriashov AA, Efremova EP, et al. 2019. The WUSCHEL-related homeobox transcription factor MtWOX9-1 stimulates somatic embryogenesis in Medicago truncatula. Plant Cell, Tissue and Organ Culture 138:517−27 doi: 10.1007/s11240-019-01648-w
CrossRef Google Scholar
|
[106]
|
Dong H, Zheng Q, Zhou Y, Zhou Y, Bao Z, et al. 2022. MdWOX4-2 modulated MdLBD41 functioning in adventitious shoot of apple (Malus domestica). Plant Physiology and Biochemistry 186:11−18 doi: 10.1016/j.plaphy.2022.06.026
CrossRef Google Scholar
|
[107]
|
Wang N, Ryan L, Sardesai N, Wu E, Lenderts B, et al. 2023. Leaf transformation for efficient random integration and targeted genome modification in maize and sorghum. Nature Plants 9:255−70 doi: 10.1038/s41477-022-01338-0
CrossRef Google Scholar
|
[108]
|
Hassani SB, Trontin JF, Raschke J, Zoglauer K, Rupps A. 2022. Constitutive overexpression of a conifer WOX2 homolog affects somatic embryo development in Pinus pinaster and promotes somatic embryogenesis and organogenesis in Arabidopsis seedlings. Frontiers in Plant Science 13:838421 doi: 10.3389/fpls.2022.838421
CrossRef Google Scholar
|
[109]
|
Jiang S, Lv F, Gao L, Gu J, Yang R, et al. 2023. Novel R2R3-MYB transcription factor LiMYB75 enhances leaf callus regeneration efficiency in Lagerstroemia indica. Forests 14:517 doi: 10.3390/f14030517
CrossRef Google Scholar
|
[110]
|
Song X, Guo P, Xia K, Wang M, Liu Y, et al. 2023. Spatial transcriptomics reveals light-induced chlorenchyma cells involved in promoting shoot regeneration in tomato callus. Proceedings of the National Academy of Sciences of the United States of America 120:e2310163120 doi: 10.1073/pnas.231016312
CrossRef Google Scholar
|
[111]
|
Yamamuro C, Zhu JK, Yang Z. 2016. Epigenetic modifications and plant hormone action. Molecular Plant 9:57−70 doi: 10.1016/j.molp.2015.10.008
CrossRef Google Scholar
|
[112]
|
Aflaki F, Gutzat R, Mozgová I. 2022. Chromatin during plant regeneration: opening towards root identity? Current Opinion in Plant Biology 69:102265 doi: 10.1016/j.pbi.2022.102265
CrossRef Google Scholar
|
[113]
|
Lee K, Seo PJ. 2018. Dynamic epigenetic changes during plant regeneration. Trends in Plant Science 23:235−47 doi: 10.1016/j.tplants.2017.11.009
CrossRef Google Scholar
|
[114]
|
Nguyen V, Gutzat R. 2022. Epigenetic regulation in the shoot apical meristem. Current Opinion in Plant Biology 69:102267 doi: 10.1016/j.pbi.2022.102267
CrossRef Google Scholar
|
[115]
|
Liu H, Zhang H, Dong Y, Hao Y, Zhang X. 2018. DNA METHYLTRANSFERASE1-mediated shoot regeneration is regulated by cytokinin-induced cell cycle in Arabidopsis. New Phytologist 217:219−32 doi: 10.1111/nph.14814
CrossRef Google Scholar
|
[116]
|
He C, Chen X, Huang H, Xu L. 2012. Reprogramming of H3K27me3 is critical for acquisition of pluripotency from cultured Arabidopsis tissues. PLoS Genetics 8:e1002911 doi: 10.1371/journal.pgen.1002911
CrossRef Google Scholar
|
[117]
|
Ikeuchi M, Rymen B, Sugimoto K. 2020. How do plants transduce wound signals to induce tissue repair and organ regeneration? Current Opinion in Plant Biology 57:72−77 doi: 10.1016/j.pbi.2020.06.007
CrossRef Google Scholar
|
[118]
|
Rymen B, Kawamura A, Lambolez A, Inagaki S, Takebayashi A, et al. 2019. Histone acetylation orchestrates wound-induced transcriptional activation and cellular reprogramming in Arabidopsis. Communications Biology 2:404 doi: 10.1038/s42003-019-0646-5
CrossRef Google Scholar
|
[119]
|
Zhang G, Zhao F, Chen L, Pan Y, Sun L, et al. 2019. Jasmonate-mediated wound signalling promotes plant regeneration. Nature Plants 5:491−97 doi: 10.1038/s41477-019-0408-x
CrossRef Google Scholar
|
[120]
|
Liu J, Sheng L, Xu Y, Li J, Yang Z, et al. 2014. WOX11 and 12 are involved in the first-step cell fate transition during de novo root organogenesis in Arabidopsis. The Plant Cell 26:1081−93 doi: 10.1105/tpc.114.122887
CrossRef Google Scholar
|
[121]
|
Ishihara H, Sugimoto K, Tarr PT, Temman H, Kadokura S, et al. 2019. Primed histone demethylation regulates shoot regenerative competency. Nature Communications 10:1786 doi: 10.1038/s41467-019-09386-5
CrossRef Google Scholar
|
[122]
|
Shen WH, Xu L. 2009. Chromatin remodeling in stem cell maintenance in Arabidopsis thaliana. Molecular Plant 2:600−09 doi: 10.1093/mp/ssp022
CrossRef Google Scholar
|
[123]
|
Han SK, Wu MF, Cui S, Wagner D. 2015. Roles and activities of chromatin remodeling ATPases in plants. The Plant Journal 83:62−77 doi: 10.1111/tpj.12877
CrossRef Google Scholar
|
[124]
|
Pan C, Wu X, Markel K, Malzahn AA, Kundagrami N, et al. 2021. CRISPR–Act3.0 for highly efficient multiplexed gene activation in plants. Nature Plants 7:942−53 doi: 10.1038/s41477-021-00953-7
CrossRef Google Scholar
|
[125]
|
Fujiwara S, Kigoshi K, Mitsuda N, Suzuki K, Ohme-Takagi M. 2014. VP16 fusion efficiently reveals the function of transcriptional repressors in Arabidopsis. Plant Biotechnology 31:123−32 doi: 10.5511/plantbiotechnology.14.0121a
CrossRef Google Scholar
|
[126]
|
Luo G, Palmgren M. 2021. GRF-GIF chimeras boost plant regeneration. Trends Plant Science 26:201−04 doi: 10.1016/j.tplants.2020.12.001
CrossRef Google Scholar
|
[127]
|
Duan H, Maren NA, Ranney TG, Liu W. 2022. New opportunities for using WUS/BBM and GRF-GIF genes to enhance genetic transformation of ornamental plants. Ornamental Plant Research 2:4 doi: 10.48130/OPR-2022-0004
CrossRef Google Scholar
|
[128]
|
Ma C, Dai X, He G, Wu Y, Yang Y, et al. 2023. PeGRF6-PeGIF1 complex regulates cell proliferation in the leaf of Phalaenopsis equestris. Plant Physiology and Biochemistry 196:683−94 doi: 10.1016/j.plaphy.2023.02.026
CrossRef Google Scholar
|
[129]
|
Pan C, Qi Y. 2023. CRISPR-Combo-mediated orthogonal genome editing and transcriptional activation for plant breeding. Nature Protocols 18:1760−94 doi: 10.1038/s41596-023-00823-w
CrossRef Google Scholar
|
[130]
|
Gallego-Bartolomé J, Gardiner J, Liu W, Papikian A, Ghoshal B, et al. 2018. Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain. Proceedings of the National Academy of Sciences of the United States of America 115:E2125−E2134 doi: 10.1073/pnas.171694511
CrossRef Google Scholar
|
[131]
|
Klemm SL, Shipony Z, Greenleaf WJ. 2019. Chromatin accessibility and the regulatory epigenome. Nature Reviews Genetics 20:207−20 doi: 10.1038/s41576-018-0089-8
CrossRef Google Scholar
|
[132]
|
Wang F, Shang G, Wu L, Xu Z, Zhao X, et al. 2020. Chromatin accessibility dynamics and a hierarchical transcriptional regulatory network structure for plant somatic embryogenesis. Developmental Cell 54:742−757.e8 doi: 10.1016/j.devcel.2020.07.003
CrossRef Google Scholar
|
[133]
|
Wu L, Shang G, Wang F, Gao J, Wan M, et al. 2022. Dynamic chromatin state profiling reveals regulatory roles of auxin and cytokinin in shoot regeneration. Developmental Cell 57:526−542.e7 doi: 10.1016/j.devcel.2021.12.019
CrossRef Google Scholar
|
[134]
|
Wang W, Chen K, Chen N, Gao J, Zhang W, et al. 2023. Chromatin accessibility dynamics insight into crosstalk between regulatory landscapes in poplar responses to multiple treatments. Tree Physiology 43:1023−41 doi: 10.1093/treephys/tpad023
CrossRef Google Scholar
|
[135]
|
Meng S, Wang X, Bian Z, Li Z, Yang F, et al. 2021. Melatonin enhances nitrogen metabolism and haustorium development in hemiparasite Santalum album Linn. Environmental and Experimental Botany 186:104460 doi: 10.1016/j.envexpbot.2021.104460
CrossRef Google Scholar
|
[136]
|
Ali I, Sher H, Ali A, Hussain S, Ullah Z. 2022. Simplified floral dip transformation method of Arabidopsis thaliana. Journal of Microbiological Methods 197:106492 doi: 10.1016/j.mimet.2022.106492
CrossRef Google Scholar
|
[137]
|
Cao X, Xie H, Song M, Zhao L, Liu H, et al. 2024. Simple method for transformation and gene editing in medicinal plants. Journal of Integrative Plant Biology 66:17−19 doi: 10.1111/jipb.13593
CrossRef Google Scholar
|
[138]
|
Lu J, Li S, Deng S, Wang M, Wu Y, et al. 2024. A method of genetic transformation and gene editing of succulents without tissue culture. Plant Biotechnology Journal 22:1981−88 doi: 10.1111/pbi.14318
CrossRef Google Scholar
|
[139]
|
Mei G, Chen A, Wang Y, Li S, Wu M, et al. 2024. A simple and efficient in planta transformation method based on the active regeneration capacity of plants. Plant Communications 5:100822 doi: 10.1016/j.xplc.2024.100822
CrossRef Google Scholar
|
[140]
|
Cody JP, Maher MF, Nasti RA, Starker CG, Chamness JC, et al. 2023. Direct delivery and fast-treated Agrobacterium co-culture (Fast-TrACC) plant transformation methods for Nicotiana benthamiana. Nature Protocols 18:81−107 doi: 10.1038/s41596-022-00749-9
CrossRef Google Scholar
|