[1]
|
Verdeil JL, Alemanno L, Niemenak N, Tranbarger TJ. 2007. Pluripotent versus totipotent plant stem cells: dependence versus autonomy? Trends in Plant Science 12:245−52 doi: 10.1016/j.tplants.2007.04.002
CrossRef Google Scholar
|
[2]
|
Li SZ, Wang J, Jia SG, Wang K, Li HJ. 2023. Synthetic apomixis: from genetic basis to agricultural application. Seed Biology 2:10 doi: 10.48130/seedbio-2023-0010
CrossRef Google Scholar
|
[3]
|
Shen K, Qu M, Zhao P. 2023. The roads to haploid embryogenesis. Plants 12:243 doi: 10.3390/plants12020243
CrossRef Google Scholar
|
[4]
|
Radoeva T, Vaddepalli P, Zhang Z, Weijers D. 2019. Evolution, initiation, and diversity in early plant embryogenesis. Developmental Cell 50:533−43 doi: 10.1016/j.devcel.2019.07.011
CrossRef Google Scholar
|
[5]
|
Testillano PS. 2019. Microspore embryogenesis: targeting the determinant factors of stress-induced cell reprogramming for crop improvement. Journal of Experimental Botany 70:2965−78 doi: 10.1093/jxb/ery464
CrossRef Google Scholar
|
[6]
|
Rodríguez-Sanz H, Solís MT, López MF, Gómez-Cadenas A, Risueño MC, et al. 2015. Auxin biosynthesis, accumulation, action and transport are involved in stress-induced microspore embryogenesis initiation and progression in Brassica napus. Plant and Cell Physiology 56:1401−17 doi: 10.1093/pcp/pcv058
CrossRef Google Scholar
|
[7]
|
Luo P, Jiang A, Zhou Y, Yang M, Zhou X, et al. 2022. Phospholipase C is a novel regulator at the early stages of microspore embryogenesis in Nicotiana tabacum. Plant Signaling & Behavior 17:2094618 doi: 10.1080/15592324.2022.2094618
CrossRef Google Scholar
|
[8]
|
Solís MT, El-Tantawy AA, Cano V, Risueño MC, Testillano PS. 2015. 5-azacytidine promotes microspore embryogenesis initiation by decreasing global DNA methylation, but prevents subsequent embryo development in rapeseed and barley. Frontiers in Plant Science 6:472 doi: 10.3389/fpls.2015.00472
CrossRef Google Scholar
|
[9]
|
Berenguer E, Bárány I, Solís MT, Pérez-Pérez Y, Risueño MC, et al. 2017. Inhibition of histone H3K9 methylation by BIX-01294 promotes stress-induced microspore totipotency and enhances embryogenesis initiation. Frontiers in Plant Science 8:1161 doi: 10.3389/fpls.2017.01161
CrossRef Google Scholar
|
[10]
|
Bárány I, Berenguer E, Solís MT, Pérez-Pérez Y, Santamaría ME, et al. 2018. Autophagy is activated and involved in cell death with participation of cathepsins during stress-induced microspore embryogenesis in barley. Journal of Experimental Botany 69:1387−402 doi: 10.1093/jxb/erx455
CrossRef Google Scholar
|
[11]
|
Soriano M, Li H, Boutilier K. 2013. Microspore embryogenesis: establishment of embryo identity and pattern in culture. Plant Reproduction 26:181−96 doi: 10.1007/s00497-013-0226-7
CrossRef Google Scholar
|
[12]
|
Maraschin SF, de Priester W, Spaink HP, Wang M. 2005. Androgenic switch: an example of plant embryogenesis from the male gametophyte perspective. Journal of Experimental Botany 56:1711−26 doi: 10.1093/jxb/eri190
CrossRef Google Scholar
|
[13]
|
Maraschin SF, Gaussand G, Pulido A, Olmedilla A, Lamers GEM, et al. 2005. Programmed cell death during the transition from multicellular structures to globular embryos in barley androgenesis. Planta 221:459−70 doi: 10.1007/s00425-004-1460-x
CrossRef Google Scholar
|
[14]
|
Daghma DS, Kumlehn J, Hensel G, Rutten T, Melzer M. 2012. Time-lapse imaging of the initiation of pollen embryogenesis in barley (Hordeum vulgare L. ). Journal of Experimental Botany 63:6017−21 doi: 10.1093/jxb/ers254
CrossRef Google Scholar
|
[15]
|
Maraschin SF, Vennik M, Lamers GE, Spaink HP, Wang M. 2005. Time-lapse tracking of barley androgenesis reveals position-determined cell death within pro-embryos. Planta 220:531−40 doi: 10.1007/s00425-004-1371-x
CrossRef Google Scholar
|
[16]
|
Lian N, Wang X, Jing Y, Lin J. 2021. Regulation of cytoskeleton-associated protein activities: Linking cellular signals to plant cytoskeletal function. Journal of Integrative Plant Biology 63:241−50 doi: 10.1111/jipb.13046
CrossRef Google Scholar
|
[17]
|
Dubas E, Custers J, Kieft H, Wędzony M, van Lammeren AAM. 2014. Characterization of polarity development through 2-and 3-D imaging during the initial phase of microspore embryogenesis in Brassica napus L. Protoplasma 251:103−13 doi: 10.1007/s00709-013-0530-y
CrossRef Google Scholar
|
[18]
|
Hause B, Hause G, Pechan P, Van Lammeren AAM. 1993. Cytoskeletal changes and induction of embryogenesis in microspore and pollen cultures of Brassica napus L. Cell Biology International 17:153−68 doi: 10.1006/cbir.1993.1052
CrossRef Google Scholar
|
[19]
|
Islam SM, Tuteja N. 2012. Enhancement of androgenesis by abiotic stress and other pretreatments in major crop species. Plant Science 182:134−44 doi: 10.1016/j.plantsci.2011.10.001
CrossRef Google Scholar
|
[20]
|
Gervais C, Newcomb W, Simmonds DH. 2000. Rearrangement of the actin filament and microtubule cytoskeleton during induction of microspore embryogenesis in Brassica napus L. cv. Topas. Protoplasma 213:194−202 doi: 10.1007/BF01282157
CrossRef Google Scholar
|
[21]
|
Soriano M, Cistué L, Castillo AM. 2008. Enhanced induction of microspore embryogenesis after n-butanol treatment in wheat (Triticum aestivum L. ) anther culture. Plant Cell Reports 27:805−11 doi: 10.1007/s00299-007-0500-y
CrossRef Google Scholar
|
[22]
|
Dubas E, Castillo AM, Zur I, Żur I, Krzewska M, Vallés MP. 2021. Microtubule organization changes severely after mannitol and n-butanol treatments inducing microspore embryogenesis in bread wheat. BMC Plant Biology 21:586 doi: 10.1186/s12870-021-03345-3
CrossRef Google Scholar
|
[23]
|
Cosgrove DJ. 2024. Structure and growth of plant cell walls. Nature Reviews Molecular Cell Biology 25:340−58 doi: 10.1038/s41580-023-00691-y
CrossRef Google Scholar
|
[24]
|
Cosgrove DJ. 2005. Growth of the plant cell wall. Nature Reviews Molecular Cell Biology 6:850−61 doi: 10.1038/nrm1746
CrossRef Google Scholar
|
[25]
|
Camacho-Fernández C, Seguí-Simarro JM, Mir R, Boutilier K, Corral-Martínez P. 2021. Cell wall composition and structure define the developmental fate of embryogenic microspores in Brassica napus. Frontiers in Plant Science 12:737139 doi: 10.3389/fpls.2021.737139
CrossRef Google Scholar
|
[26]
|
Pelloux J, Rustérucci C, Mellerowicz EJ. 2007. New insights into pectin methylesterase structure and function. Trends in Plant Science 12:267−77 doi: 10.1016/j.tplants.2007.04.001
CrossRef Google Scholar
|
[27]
|
Levesque-Tremblay G, Müller K, Mansfield SD, Haughn GW. 2015. HIGHLY METHYL ESTERIFIED SEEDS is a pectin methyl esterase involved in embryo development. Plant Physiology 167:725−37 doi: 10.1104/pp.114.255604
CrossRef Google Scholar
|
[28]
|
Tang XC, He YQ, Wang Y, Sun MX. 2006. The role of arabinogalactan proteins binding to Yariv reagents in the initiation, cell developmental fate, and maintenance of microspore embryogenesis in Brassica napus L. cv. Topas. Journal of Experimental Botany 57:2639−50 doi: 10.1093/jxb/erl027
CrossRef Google Scholar
|
[29]
|
Seifert GJ, Roberts K. 2007. The biology of arabinogalactan proteins. Annual Review of Plant Biology 58:137−61 doi: 10.1146/annurev.arplant.58.032806.103801
CrossRef Google Scholar
|
[30]
|
Tang X, Liu Y, He Y, Ma L, Sun MX. 2013. Exine dehiscing induces rape microspore polarity, which results in different daughter cell fate and fixes the apical–basal axis of the embryo. Journal of Experimental Botany 64:215−28 doi: 10.1093/jxb/ers327
CrossRef Google Scholar
|
[31]
|
Caffall KH, Mohnen D. 2009. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydrate Research 344:1879−900 doi: 10.1016/j.carres.2009.05.021
CrossRef Google Scholar
|
[32]
|
Wang C, Zhang P, He Y, Huang F, Wang X, et al. 2023. Exogenous spraying of IAA improved the efficiency of microspore embryogenesis in Wucai (Brassica campestris L.) by affecting the balance of endogenous hormones, energy metabolism, and cell wall degradation. BMC Genomics 24:380 doi: 10.1186/s12864-023-09483-2
CrossRef Google Scholar
|
[33]
|
Letarte J, Simion E, Miner M, Kasha KJ. 2006. Arabinogalactans and arabinogalactan-proteins induce embryogenesis in wheat (Triticum aestivum L.) microspore culture. Plant Cell Reports 24:691−98 doi: 10.1007/s00299-005-0013-5
CrossRef Google Scholar
|
[34]
|
Camacho-Fernández C, Corral-Martínez P, Calabuig-Serna A, Arjona-Mudarra P, Sancho-Oviedo D, et al. 2024. The different response of Brassica napus genotypes to microspore embryogenesis induced by heat shock and trichostatin A is not determined by changes in cell wall structure and composition but by different stress tolerance. Physiologia Plantarum 176:e14405 doi: 10.1111/ppl.14405
CrossRef Google Scholar
|
[35]
|
Li Z, Zhang D, Shi P, Htwe YM, Yu Q, et al. 2023. Cell wall lignification may be necessary for somatic embryogenesis of areca palm (Areca catechu). Scientia Horticulturae 307:111538 doi: 10.1016/j.scienta.2022.111538
CrossRef Google Scholar
|
[36]
|
Zhao P, Zhou XM, Zhang LY, Wang W, Ma LG, et al. 2013. A bipartite molecular module controls cell death activation in the Basal cell lineage of plant embryos. PLoS Biology 11:e1001655 doi: 10.1371/journal.pbio.1001655
CrossRef Google Scholar
|
[37]
|
Shi C, Luo P, Du YT, Chen H, Huang X, et al. 2019. Maternal control of suspensor programmed cell death via gibberellin signaling. Nature Communications 10:3484 doi: 10.1038/s41467-019-11476-3
CrossRef Google Scholar
|
[38]
|
Kacprzyk J, Burke R, Armengot L, Coppola M, Tattrie SB, et al. 2024. Roadmap for the next decade of plant programmed cell death research. New Phytologist 242:1865−75 doi: 10.1111/nph.19709
CrossRef Google Scholar
|
[39]
|
Touraev A, Vicente O, Heberle-Bors E. 1997. Initiation of microspore embryogenesis by stress. Trends in Plant Science 2:297−302 doi: 10.1016/S1360-1385(97)89951-7
CrossRef Google Scholar
|
[40]
|
Ali MF, Muday GK. 2024. Reactive oxygen species are signaling molecules that modulate plant reproduction. Plant, Cell & Environment 47:1592−605 doi: 10.1111/pce.14837
CrossRef Google Scholar
|
[41]
|
Pérez-Pérez ME, Lemaire SD, Crespo JL. 2012. Reactive oxygen species and autophagy in plants and algae. Plant Physiology 160:156−64 doi: 10.1104/pp.112.199992
CrossRef Google Scholar
|
[42]
|
Pérez-Pérez Y, Bárány I, Berenguer E, Carneros E, Risueño MC, et al. 2019. Modulation of autophagy and protease activities by small bioactive compounds to reduce cell death and improve stress-induced microspore embryogenesis initiation in rapeseed and barley. Plant Signaling & Behavior 14:1559577 doi: 10.1080/15592324.2018.1559577
CrossRef Google Scholar
|
[43]
|
Żur I, Kopeć P, Surówka E, Dubas E, Krzewska M, et al. 2021. Impact of ascorbate-glutathione cycle components on the effectiveness of embryogenesis induction in isolated microspore cultures of barley and triticale. Antioxidants 10:1254 doi: 10.3390/antiox10081254
CrossRef Google Scholar
|
[44]
|
Dubas E, Krzewska M, Surówka E, Kopeć P, Springer A, et al. 2024. New prospects for improving microspore embryogenesis induction in highly recalcitrant winter wheat lines. Plants 13:363 doi: 10.3390/plants13030363
CrossRef Google Scholar
|
[45]
|
Zhao P, Zhou XM, Zhao LL, Cheung AY, Sun MX. 2020. Autophagy-mediated compartmental cytoplasmic deletion is essential for tobacco pollen germination and male fertility. Autophagy 16:2180−92 doi: 10.1080/15548627.2020.1719722
CrossRef Google Scholar
|
[46]
|
Zhao LL, Chen R, Bai Z, Liu J, Zhang Y, et al. 2024. Autophagy-mediated degradation of integumentary tapetum is critical for embryo pattern formation. Nature Communications 15:2676 doi: 10.1038/s41467-024-46902-8
CrossRef Google Scholar
|
[47]
|
Green DR, Levine B. 2014. To be or not to be? How selective autophagy and cell death govern cell fate. Cell 157:65−75 doi: 10.1016/j.cell.2014.02.049
CrossRef Google Scholar
|
[48]
|
Luo P, Zhao Z, Yang F, Zhang L, Li S, et al. 2025. Stress-induced autophagy is essential for microspore cell fate transition to the initial cell of androgenesis. Plant, Cell & Environment 48:421−34 doi: 10.1111/pce.15158
CrossRef Google Scholar
|
[49]
|
Kohli A, Sreenivasulu N, Lakshmanan P, Kumar PP. 2013. The phytohormone crosstalk paradigm takes center stage in understanding how plants respond to abiotic stresses. Plant Cell Reports 32:945−57 doi: 10.1007/s00299-013-1461-y
CrossRef Google Scholar
|
[50]
|
Jones B, Ljung K. 2011. Auxin and cytokinin regulate each other’s levels via a metabolic feedback loop. Plant Signaling & Behavior 6:901−4 doi: 10.4161/psb.6.6.15323
CrossRef Google Scholar
|
[51]
|
Yu Z, Zhang F, Friml J, Ding Z. 2022. Auxin signaling: Research advances over the past 30 years. Journal of Integrative Plant Biology 64:371−92 doi: 10.1111/jipb.13225
CrossRef Google Scholar
|
[52]
|
Song X, Xiong Y, Kong X, Huang G. 2023. Roles of auxin response factors in rice development and stress responses. Plant, Cell & Environment 46:1075−86 doi: 10.1111/pce.14494
CrossRef Google Scholar
|
[53]
|
Guha S, Maheshwari SC. 1964. In vitro production of embryos from anthers of Datura. Nature 204:497−97 doi: 10.1038/204497a0
CrossRef Google Scholar
|
[54]
|
Raghavan V. 2004. Role of 2, 4-dichlorophenoxyacetic acid (2,4-D) in somatic embryogenesis on cultured zygotic embryos of Arabidopsis: cell expansion, cell cycling, and morphogenesis during continuous exposure of embryos to 2,4-D. American Journal of Botany 91:1743−56 doi: 10.3732/ajb.91.11.1743
CrossRef Google Scholar
|
[55]
|
Lanková M, Smith RS, Pesek B, Kubes M, Zazímalová E, et al. 2010. Auxin influx inhibitors 1-NOA, 2-NOA, and CHPAA interfere with membrane dynamics in tobacco cells. Journal of Experimental Botany 61:3589−98 doi: 10.1093/jxb/erq172
CrossRef Google Scholar
|
[56]
|
Dollmantel HJ, Reinert J. 1980. Auxin levels, antiauxin(s) and androgenic plantlet formation in isolated pollen cultures of Nicotiana tabacum. Protoplasma 103:155−62 doi: 10.1007/BF01276672
CrossRef Google Scholar
|
[57]
|
Cistué L, Ramos A, Castillo AM. 1998. Influence of anther pretreatment and culture medium composition on the production of barley doubled haploids from model and low responding cultivars. Plant Cell, Tissue and Organ Culture 55:159−66 doi: 10.1023/A:1006130028396
CrossRef Google Scholar
|
[58]
|
Zhang Y, Wang A, Liu Y, Wang Y, Feng H. 2011. Effects of the antiauxin PCIB on microspore embryogenesis and plant regeneration in Brassica rapa. Scientia Horticulturae 130:32−37 doi: 10.1016/j.scienta.2011.06.047
CrossRef Google Scholar
|
[59]
|
Rodríguez-Sanz H, Manzanera J-A, Solís M-T, Gómez-Garay A, Pintos B, et al. 2014. Early markers are present in both embryogenesis pathways from microspores and immature zygotic embryos in cork oak, Quercus suber L. BMC Plant Biology 14:224 doi: 10.1186/s12870-014-0224-4
CrossRef Google Scholar
|
[60]
|
Prem D, Gupta K, Agnihotri A. 2005. Doubled haploids: a powerful biotechnological tool for genetic enhancement in oilseed brassicas. In Plant Biotechnology and Molecular Markers, eds. Srivastava P, Narula A, Srivastava S. Dordrecht: Springer. pp. 18−30. doi: 10.1007/1-4020-3213-7_2
|
[61]
|
Rodríguez-Sanz H, Moreno-Romero J, Solís MT, Köhler C, Risueño MC, et al. 2014. Changes in histone methylation and acetylation during microspore reprogramming to embryogenesis occur concomitantly with BnHKMT and BnHAT expression and are associated with cell totipotency, proliferation, and differentiation in Brassica napus. Cytogenetic and Genome Research 143:209−18 doi: 10.1159/000365261
CrossRef Google Scholar
|
[62]
|
Dubas E, Moravčíková J, Libantová J, Matušíková I, Benková E, et al. 2014. The influence of heat stress on auxin distribution in transgenic B. napus microspores and microspore-derived embryos. Protoplasma 251:1077−87 doi: 10.1007/s00709-014-0616-1
CrossRef Google Scholar
|
[63]
|
Li SM, Zheng HX, Zhang XS, Sui N. 2021. Cytokinins as central regulators during plant growth and stress response. Plant Cell Reports 40:271−82 doi: 10.1007/s00299-020-02612-1
CrossRef Google Scholar
|
[64]
|
Żur I, Dubas E, Golemiec E, Szechyńska-Hebda M, Gołębiowska G, et al. 2009. Stress-related variation in antioxidative enzymes activity and cell metabolism efficiency associated with embryogenesis induction in isolated microspore culture of triticale (× Triticosecale Wittm.). Plant Cell Reports 28:1279−87 doi: 10.1007/s00299-009-0730-2
CrossRef Google Scholar
|
[65]
|
Juzoń-Sikora K, Nowicka A, Plačková L, Doležal K, Żur I. 2023. Hormonal homeostasis associated with effective induction of triticale microspore embryogenesis. Plant Cell, Tissue and Organ Culture 152:583−604 doi: 10.1007/s11240-022-02433-y
CrossRef Google Scholar
|
[66]
|
Chen K, Li GJ, Bressan RA, Song CP, Zhu JK, et al. 2020. Abscisic acid dynamics, signaling, and functions in plants. Journal of Integrative Plant Biology 62:25−54 doi: 10.1111/jipb.12899
CrossRef Google Scholar
|
[67]
|
Hoekstra S, van Bergen S, van Brouwershaven IR, Schilperoort RA, Wang M. 1997. Androgenesis in Hordeum vulgare L.: Effects of mannitol, calcium and abscisic acid on anther pretreatment. Plant Science 126:211−18 doi: 10.1016/S0168-9452(97)00096-4
CrossRef Google Scholar
|
[68]
|
Reynolds TL, Crawford RL. 1996. Changes in abundance of an abscisic acid-responsive, early cysteine-labeled metallothionein transcript during pollen embryogenesis in bread wheat (Triticum aestivum). Plant Molecular Biology 32:823−29 doi: 10.1007/BF00020480
CrossRef Google Scholar
|
[69]
|
Imamura J, Harada H. 1980. Effects of abscisic acid and water stress on the embryo and plantlet formation in anther culture of Nicotiana tabacum cv. Samsun. Zeitschrift für Pflanzenphysiologie 100:285−89 doi: 10.1016/s0044-328x(80)80232-7
CrossRef Google Scholar
|
[70]
|
Żur I, Dubas E, Krzewska M, Janowiak F, Hura K, et al. 2014. Antioxidant activity and ROS tolerance in triticale (× Triticosecale Wittm.) anthers affect the efficiency of microspore embryogenesis. Plant Cell, Tissue and Organ Culture 119:79−94 doi: 10.1007/s11240-014-0515-3
CrossRef Google Scholar
|
[71]
|
Żur I, Dubas E, Krzewska M, Waligórski P, Dziurka M, et al. 2015. Hormonal requirements for effective induction of microspore embryogenesis in triticale (× Triticosecale Wittm.) anther cultures. Plant Cell Reports 34:47−62 doi: 10.1007/s00299-014-1686-4
CrossRef Google Scholar
|
[72]
|
Ahmadi B, Shariatpanahi ME, Teixeira da Silva JA. 2014. Efficient induction of microspore embryogenesis using abscisic acid, jasmonic acid and salicylic acid in Brassica napus L. Plant Cell, Tissue and Organ Culture 116:343−51 doi: 10.1007/s11240-013-0408-x
CrossRef Google Scholar
|
[73]
|
Berenguer E, Carneros E, Pérez-Pérez Y, Gil C, Martínez A, Testillano PS. 2021. Small molecule inhibitors of mammalian GSK-3β promote in vitro plant cell reprogramming and somatic embryogenesis in crop and forest species. Journal of Experimental Botany 72:7808−25 doi: 10.1093/jxb/erab365
CrossRef Google Scholar
|
[74]
|
Youn JH, Kim TW. 2015. Functional insights of plant GSK3-like kinases: multi-taskers in diverse cellular signal transduction pathways. Molecular Plant 8:552−65 doi: 10.1016/j.molp.2014.12.006
CrossRef Google Scholar
|
[75]
|
Huang X, Zhao P, Peng X, Sun MX. 2023. Seed development in Arabidopsis: what we have learnt in the past 30 years. Seed Biology 2:6 doi: 10.48130/SeedBio-2023-0006
CrossRef Google Scholar
|
[76]
|
Xiong M, Feng GN, Gao Q, Zhang CQ, Li QF, et al. 2022. Brassinosteroid regulation in rice seed biology. Seed Biology 1:2 doi: 10.48130/seedbio-2022-0002
CrossRef Google Scholar
|
[77]
|
Wong C, Alabadí D, Blázquez MA. 2023. Spatial regulation of plant hormone action. Journal of Experimental Botany 74:6089−103 doi: 10.1093/jxb/erad244
CrossRef Google Scholar
|
[78]
|
Haddadi P, Moieni A, Karimzadeh G, Abdollahi MR. 2012. Effects of gibberellin, abscisic acid and embryo desiccation on normal plantlet regeneration, secondary embryogenesis and callogenesis in microspore culture of Brassica napus L. cv. PF704. International Journal of Plant Production 2:153−62 doi: 10.22069/IJPP.2012.607
CrossRef Google Scholar
|
[79]
|
Ahmadi B, Alizadeh K, Teixeira da Silva JA. 2012. Enhanced regeneration of haploid plantlets from microspores of Brassica napus L. using bleomycin, PCIB, and phytohormones. Plant Cell, Tissue and Organ Culture 109:525−33 doi: 10.1007/s11240-012-0119-8
CrossRef Google Scholar
|
[80]
|
Hays DB, Yeung EC, Pharis RP. 2002. The role of gibberellins in embryo axis development. Journal of Experimental Botany 53:1747−51 doi: 10.1093/jxb/erf017
CrossRef Google Scholar
|
[81]
|
Huang H, Chen Y, Wang S, Qi T, Song S. 2023. Jasmonate action and crosstalk in flower development and fertility. Journal of Experimental Botany 74:1186−97 doi: 10.1093/jxb/erac251
CrossRef Google Scholar
|
[82]
|
Jacquard C, Mazeyrat-Gourbeyre F, Devaux P, Boutilier K, Baillieul F, et al. 2009. Microspore embryogenesis in barley: anther pre-treatment stimulates plant defence gene expression. Planta 229:393−402 doi: 10.1007/s00425-008-0838-6
CrossRef Google Scholar
|
[83]
|
Zeng H, Bai Y, Wei Y, Reiter RJ, Shi H. 2022. Phytomelatonin as a central molecule in plant disease resistance. Journal of Experimental Botany 73:5874−85 doi: 10.1093/jxb/erac111
CrossRef Google Scholar
|
[84]
|
Ma B, Ma T, Xian W, Hu B, Chu C. 2023. Interplay between ethylene and nitrogen nutrition: How ethylene orchestrates nitrogen responses in plants. Journal of Integrative Plant Biology 65:399−407 doi: 10.1111/jipb.13355
CrossRef Google Scholar
|
[85]
|
Binder BM. 2020. Ethylene signaling in plants. Journal of Biological Chemistry 295:7710−25 doi: 10.1074/jbc.REV120.010854
CrossRef Google Scholar
|
[86]
|
Cho UH, Kasha KJ. 1989. Ethylene production and embryogenesis from anther cultures of barley (Hordeum vulgare). Plant Cell Reports 8:415−17 doi: 10.1007/BF00270082
CrossRef Google Scholar
|
[87]
|
Prem D, Gupta K, Agnihotri A. 2005. Effect of various exogenous and endogenous factors on microspore embryogenesis in Indian mustard (Brassica juncea (L.) Czern and Coss). In Vitro Cellular & Developmental Biology - Plant 41:266−73 doi: 10.1079/IVP2005636
CrossRef Google Scholar
|
[88]
|
Prem D, Gupta K, Sarkar G, Agnihotri A. 2008. Activated charcoal induced high frequency microspore embryogenesis and efficient doubled haploid production in Brassica juncea. Plant Cell, Tissue and Organ Culture 93:269−82 doi: 10.1007/s11240-008-9373-1
CrossRef Google Scholar
|
[89]
|
Leroux B, Carmoy N, Giraudet D, Potin P, Larher F, et al. 2009. Inhibition of ethylene biosynthesis enhances embryogenesis of cultured microspores of Brassica napus. Plant Biotechnology Reports 3:347−53 doi: 10.1007/s11816-009-0109-4
CrossRef Google Scholar
|
[90]
|
Evans JM, Batty NP. 1994. Ethylene precursors and antagonists increase embryogenesis of Hordeum vulgare L. anther culture. Plant Cell Reports 13:676−78 doi: 10.1007/BF00231622
CrossRef Google Scholar
|
[91]
|
Kiviharju E, Moisander S, Laurila J. 2005. Improved green plant regeneration rates from oat anther culture and the agronomic performance of some DH lines. Plant Cell, Tissue and Organ Culture 81:1−9 doi: 10.1007/s11240-004-1560-0
CrossRef Google Scholar
|
[92]
|
Begcy K, Dresselhaus T. 2018. Epigenetic responses to abiotic stresses during reproductive development in cereals. Plant Reproduction 31:343−55 doi: 10.1007/s00497-018-0343-4
CrossRef Google Scholar
|
[93]
|
Lee K, Seo PJ. 2018. Dynamic epigenetic changes during plant regeneration. Trends in Plant Science 23:235−47 doi: 10.1016/j.tplants.2017.11.009
CrossRef Google Scholar
|
[94]
|
Ono A, Kinoshita T. 2021. Epigenetics and plant reproduction: Multiple steps for responsibly handling succession. Current Opinion in Plant Biology 61:102032 doi: 10.1016/j.pbi.2021.102032
CrossRef Google Scholar
|
[95]
|
Ahmad A, Zhang Y, Cao XF. 2010. Decoding the epigenetic language of plant development. Molecular Plant 3:719−28 doi: 10.1093/mp/ssq026
CrossRef Google Scholar
|
[96]
|
He S, Feng X. 2022. DNA methylation dynamics during germline development. Journal of Integrative Plant Biology 64:2240−51 doi: 10.1111/jipb.13422
CrossRef Google Scholar
|
[97]
|
El-Tantawy AA, Solís MT, Risueño MC, Testillano PS. 2014. Changes in DNA methylation levels and nuclear distribution patterns after microspore reprogramming to embryogenesis in barley. Cytogenetic and Genome Research 143:200−8 doi: 10.1159/000365232
CrossRef Google Scholar
|
[98]
|
Li J, Huang Q, Sun M, Zhang T, Li H, et al. 2016. Global DNA methylation variations after short-term heat shock treatment in cultured microspores of Brassica napus cv. Topas. Scientific Reports 6:38401 doi: 10.1038/srep38401
CrossRef Google Scholar
|
[99]
|
Sun L, Cao Y, Li Z, Liu Y, Yin X, et al. 2023. Conserved H3K27me3-associated chromatin looping mediates physical interactions of gene clusters in plants. Journal of Integrative Plant Biology 65:1966−82 doi: 10.1111/jipb.13502
CrossRef Google Scholar
|
[100]
|
Nowicka A, Juzoń K, Krzewska M, Dziurka M, Dubas E, et al. 2019. Chemically-induced DNA de-methylation alters the effectiveness of microspore embryogenesis in triticale. Plant Science 287:110189 doi: 10.1016/j.plantsci.2019.110189
CrossRef Google Scholar
|
[101]
|
Solís MT, Rodríguez-Serrano M, Meijón M, Cañal MJ, Cifuentes A, et al. 2012. DNA methylation dynamics and MET1a-like gene expression changes during stress-induced pollen reprogramming to embryogenesis. Journal of Experimental Botany 63:6431−44 doi: 10.1093/jxb/ers298
CrossRef Google Scholar
|
[102]
|
Krzewska M, Dubas E, Gołębiowska G, Nowicka A, Janas A, et al. 2021. Comparative proteomic analysis provides new insights into regulation of microspore embryogenesis induction in winter triticale (× Triticosecale Wittm.) after 5-azacytidine treatment. Scientific Reports 11:22215 doi: 10.1038/s41598-021-01671-y
CrossRef Google Scholar
|
[103]
|
Kong C, Su H, Deng S, Ji J, Wang Y, et al. 2022. Global DNA methylation and mRNA-miRNA variations activated by heat shock boost early microspore embryogenesis in cabbage (Brassica oleracea). International Journal of Molecular Sciences 23:5147 doi: 10.3390/ijms23095147
CrossRef Google Scholar
|
[104]
|
Pandey R, Müller A, Napoli CA, Selinger DA, Pikaard CS, et al. 2002. Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Research 30:5036−55 doi: 10.1093/nar/gkf660
CrossRef Google Scholar
|
[105]
|
Liu C, Lu F, Cui X, Cao X. 2010. Histone methylation in higher plants. Annual Review of Plant Biology 61:395−420 doi: 10.1146/annurev.arplant.043008.091939
CrossRef Google Scholar
|
[106]
|
Valero-Rubira I, Castillo AM, Burrell MÁ, Vallés MP. 2023. Microspore embryogenesis induction by mannitol and TSA results in a complex regulation of epigenetic dynamics and gene expression in bread wheat. Frontiers in Plant Science 13:1058421 doi: 10.3389/fpls.2022.1058421
CrossRef Google Scholar
|
[107]
|
Valero-Rubira I, Vallés MP, Echávarri B, Fustero P, Costar MA, et al. 2024. New epigenetic modifier inhibitors enhance microspore embryogenesis in bread wheat. Plants 13:772 doi: 10.3390/plants13060772
CrossRef Google Scholar
|
[108]
|
Liu C, Song G, Fang B, Liu Z, Zou J, et al. 2023. Suberoylanilide hydroxamic acid induced microspore embryogenesis and promoted plantlet regeneration in ornamental kale (Brassica oleracea var. acephala). Protoplasma 260:117−29 doi: 10.1007/s00709-022-01764-z
CrossRef Google Scholar
|
[109]
|
Touraev A, Indrianto A, Wratschko I, Vicente O, Heberle-Bors E. 1996. Efficient microspore embryogenesis in wheat (Triticum aestivum L.) induced by starvation at high temperature. Sexual Plant Reproduction 9:209−15 doi: 10.1007/BF02173100
CrossRef Google Scholar
|
[110]
|
Olsen FL. 1992. Isolation and cultivation of embryogenic microspores from barley (Hordeum vulgare L.). Hereditas 115:255−66 doi: 10.1111/j.1601-5223.1992.tb00568.x
CrossRef Google Scholar
|
[111]
|
Barnabas B, Fransz PF, Schel JHN. 1987. Ultrastructural studies on pollen embryogenesis in maize (Zea mays L.). Plant Cell Reports 6:212−15 doi: 10.1007/BF00268482
CrossRef Google Scholar
|
[112]
|
Gu HH, Hagberg P, Zhou WJ. 2004. Cold pretreatment enhances microspore embryogenesis in oilseed rape (Brassica napus L.). Plant Growth Regulation 42:137−43 doi: 10.1023/B:GROW.0000017488.29181.fa
CrossRef Google Scholar
|
[113]
|
Perez-Piñar T, Hartmann A, Bössow S, Gnad H, Mock HP. 2024. Metabolic changes during wheat microspore embryogenesis induction using the highly responsive cultivar Svilena. Journal of Plant Physiology 294:154193 doi: 10.1016/j.jplph.2024.154193
CrossRef Google Scholar
|
[114]
|
Gajecka M, Marzec M, Chmielewska B, Jelonek J, Zbieszczyk J, et al. 2020. Plastid differentiation during microgametogenesis determines green plant regeneration in barley microspore culture. Plant Science 291:110321 doi: 10.1016/j.plantsci.2019.110321
CrossRef Google Scholar
|
[115]
|
Esteves P, Belzile FJ. 2019. Isolated microspore culture in barley. Methods in Molecular Biology 1900:53−71 doi: 10.1007/978-1-4939-8944-7_5
CrossRef Google Scholar
|
[116]
|
Vergne P, Gaillard A. 2021. Isolation of staged and viable maize microspores for DH production. Methods in Molecular Biology 2287:281−93 doi: 10.1007/978-1-0716-1315-3_15
CrossRef Google Scholar
|
[117]
|
Bhowmik P, Dirpaul J, Polowick P, Ferrie AMR. 2011. A high throughput Brassica napus microspore culture system: influence of percoll gradient separation and bud selection on embryogenesis. Plant Cell, Tissue and Organ Culture 106:359−62 doi: 10.1007/s11240-010-9913-3
CrossRef Google Scholar
|
[118]
|
Winarto B, Teixeira da Silva JA. 2011. Microspore culture protocol for Indonesian Brassica oleracea. Plant Cell, Tissue and Organ Culture 107:305−15 doi: 10.1007/s11240-011-9981-z
CrossRef Google Scholar
|
[119]
|
Niu L, Shi F, Feng H, Zhang Y. 2019. Efficient doubled haploid production in microspore culture of Zengcheng flowering Chinese cabbage (Brassica campestris L. ssp. chinensis [L.] Makino var. utilis Tsen et Lee). Scientia Horticulturae 245:57−64 doi: 10.1016/j.scienta.2018.09.076
CrossRef Google Scholar
|
[120]
|
Jia J, Zhang Y, Cui L, Feng H. 2019. Effect of thidiazuron on microspore embryogenesis and plantlet regeneration in Chinese flowering cabbage (Brassica rapa. var. parachinenis). Plant Breeding 138:916−24 doi: 10.1111/pbr.12738
CrossRef Google Scholar
|