[1]
|
Caldwell BE, Howell RW. 1973. Soybeans: Improvement, Production, and Uses. Madison, WI: American Society of Agronomy.
|
[2]
|
Wang D, Su M, Hao JH, Li ZD, Dong S, et al. 2023. Dynamic transcriptome landscape of foxtail millet grain development. Seed Biology 2:19 doi: 10.48130/seedbio-2023-0019
CrossRef Google Scholar
|
[3]
|
Zhang Z, Zhang R, Meng F, Chen Y, Wang W, et al. 2023. A comprehensive atlas of long non-coding RNAs provides insight into grain development in wheat. Seed Biology 2:12 doi: 10.48130/seedbio-2023-0012
CrossRef Google Scholar
|
[4]
|
Fu Y, Li S, Xu L, Ji C, Xiao Q, et al. 2023. RNA sequencing of cleanly isolated early endosperms reveals coenocyte-to-cellularization transition features in maize. Seed Biology 2:8 doi: 10.48130/seedbio-2023-0008
CrossRef Google Scholar
|
[5]
|
Kovacik M, Nowicka A, Zwyrtková J, Strejčková B, Vardanega I, et al. 2024. The transcriptome landscape of developing barley seeds. The Plant Cell 36(7):2512−30 doi: 10.1093/plcell/koae095
CrossRef Google Scholar
|
[6]
|
Yi F, Gu W, Chen J, Song N, Gao X, et al. 2019. High temporal-resolution transcriptome landscape of early maize seed development. The Plant Cell 31(5):974−92 doi: 10.1105/tpc.18.00961
CrossRef Google Scholar
|
[7]
|
Verma S, Attuluri VPS, Robert HS. 2022. Transcriptional control of Arobidopsis seed development. Planta 255(4):90 doi: 10.1007/s00425-022-03870-x
CrossRef Google Scholar
|
[8]
|
Gao P, Xiang D, Quilichini TD, Venglat P, Pandey PK, et al. 2019. Gene expression atlas of embryo development in Arabidopsis. Plant Reproduction 32(1):93−104 doi: 10.1007/s00497-019-00364-x
CrossRef Google Scholar
|
[9]
|
Hofman F, Schon MA, Nodine MD. 2019. The embryonic transcriptome of Arabidopsis thaliana. Plant Reproduction 32(1):77−91 doi: 10.1007/s00497-018-00357-2
CrossRef Google Scholar
|
[10]
|
Zhou X, Liu Z, Shen K, Zhao P, Sun MX. 2020. Cell lineage-specific transcriptome analysis for interpreting cell fate specification of proembryos. Nature Communications 11:1366 doi: 10.1038/s41467-020-15189-w
CrossRef Google Scholar
|
[11]
|
Zhao P, Zhou X, Shen K, Liu Z, Cheng T, et al. 2019. Two-step maternal-to-zygotic transition with two-phase parental genome contributions. Developmental Cell 49(6):882−893.E3 doi: 10.1016/j.devcel.2019.04.016
CrossRef Google Scholar
|
[12]
|
Gao P, Quilichini TD, Yang H, Li Q, Nilsen KT, et al. 2022. Evolutionary divergence in embryo and seed coat development of U's Triangle Brassica species illustrated by a spatiotemporal transcriptome atlas. New Phytologist 233(1):30−51 doi: 10.1111/nph.17759
CrossRef Google Scholar
|
[13]
|
Zhang H, Hu Z, Yang Y, Liu X, Lv H, Song BH, An YQC, Li Z, Zhang D. 2021. Transcriptome profiling reveals the spatial-temporal dynamics of gene expression essential for soybean seed development. BMC Genomics 22:453 doi: 10.1186/s12864-021-07783-z
CrossRef Google Scholar
|
[14]
|
Sun S, Yi C, Ma J, Wang S, Peirats-Llobet M, et al. 2020. Analysis od spatio-temporal transcriptome profiles of soybean (Glycine max) tissues during early seed development. International Journal of Molecular Sciences 21(20):7603 doi: 10.3390/ijms21207603
CrossRef Google Scholar
|
[15]
|
Lin JY, Le BH, Chen M, Henry KF, Hur J, et al. 2017. Similarity between soybean and Arabidopsis seed methylomes and loss of non-CG methylation does not affect seed development. Proceedings of the National Academy of Sciences of the United States of America 114(45):E9730−E9739 doi: 10.1073/pnas.1716758114
CrossRef Google Scholar
|
[16]
|
Orozco-Arroyo G, Paolo D, Ezquer I, Colombo L. 2015. Networks controlling seed size in Arobidopsis. Plant Reproduction 28:17−32 doi: 10.1007/s00497-015-0255-5
CrossRef Google Scholar
|
[17]
|
Hu Y, Liu Y, Wei JJ, Zhang WK, Chen SY, et al. 2023. Regulation of seed traits in soybean. aBIOTECH 4(4):372−85 doi: 10.1007/s42994-023-00122-8
CrossRef Google Scholar
|
[18]
|
Nguyen QT, Kisiala A, Andreas P, Neil Emery RJ, Narine S. 2016. Soybean seed development: fatty acid and phytohormone metabolism and their interactions. Current Genomics 17(3):241−60 doi: 10.2174/1389202917666160202220238
CrossRef Google Scholar
|
[19]
|
Gupta M, Bhaskar PB, Sriram S, Wang PH. 2017. Integration of omics approaches to understand oil/protein content during seed development in oilseed crops. Plant Cell Reports 36(5):637−52 doi: 10.1007/s00299-016-2064-1
CrossRef Google Scholar
|
[20]
|
Du Y, Zhao Q, Chen L, Yao X, Zhang H, et al. 2020. Effect of drought stress during soybean R2-R6 growth stages on sucrose metabolism in leaf and seed. International Journal of Molecular Sciences 21(2):618 doi: 10.3390/ijms21020618
CrossRef Google Scholar
|
[21]
|
Poudel S, Vennam RR, Shrestha A, Reddy KR, Wijewardane NK, et al. 2023. Resilience of soybean cultivars to drought stress during flowering and early-seed setting stages. Science Report 13(1):1277 doi: 10.1038/s41598-023-28354-0
CrossRef Google Scholar
|
[22]
|
Jedličková V, Hejret V, Demko M, Jedlička P, Štefková M, et al. 2023. Transcriptome analysis of thermomorphogenesis in ovules and during early seed development in Brassica napus. BMC Genomics 24:236 doi: 10.1186/s12864-023-09316-2
CrossRef Google Scholar
|
[23]
|
Kotak S, Vierling E, Bäumlein H, von Koskull-Döring P. 2007. A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis. The Plant Cell 19:182−95 doi: 10.1105/tpc.106.048165
CrossRef Google Scholar
|
[24]
|
Sedivy EJ, Wu F, Hanzawa Y. 2017. Soybean domestication: the origin, genetic architecture and molecular bases. New Phytologist 214(2):539−53 doi: 10.1111/nph.14418
CrossRef Google Scholar
|
[25]
|
Liu Y, Du H, Li P, Shen Y, Peng H, et al. 2020. Pan-genome of wild and cultivated soybeans. Cell 182(1):162−76 doi: 10.1016/j.cell.2020.05.023
CrossRef Google Scholar
|
[26]
|
Zhuang Y, Wang X, Li X, Hu J, Fan L, et al. 2022. Phylogenomics of the genus Glycine sheds light on polyploid evolution and life-strategy transition. Nature Plants 8:233−44 doi: 10.1038/s41477-022-01102-4
CrossRef Google Scholar
|
[27]
|
Tan Z, Peng Y, Xiong Y, Xiong F, Zhang Y, et al. 2022. Comprehensive transcriptional variability analysis reveals gene networks regulating seed oil content of Brassica napus. Genome Biology 23:233 doi: 10.1186/s13059-022-02801-z
CrossRef Google Scholar
|
[28]
|
Li L, Tian Z, Chen J, Tan Z, Zhang Y, et al. 2023. Characterization of novel loci controlling seed oil content in Brassica napus by marker matebolite-based multi-omics analysis. Genome Biology 24:141 doi: 10.1186/s13059-023-02984-z
CrossRef Google Scholar
|
[29]
|
Yu L, Liu D, Yin F, Yu P, Lu S, et al. 2023. Interaction between phenylpropane metabolism and oil accumulation in the developing seed of Brassica napus revealed by high temporal-resolution transcriptomes. BMC Biology 21(1):202 doi: 10.1186/s12915-023-01705-z
CrossRef Google Scholar
|
[30]
|
Yuan X, Jiang X, Zhang M, Wang L, Jiao W, et al. 2024. Integrative omics analysis elucidates the genetic basis underlying seed weight and oil content in soybean. The Plant Cell 36(6):2160−75 doi: 10.1093/plcell/koae062
CrossRef Google Scholar
|
[31]
|
Yang S, Miao L, He J, Zhang K, Li Y, et al. 2019. Dynamic transcriptome changes related to oil accumulation in developing soybean seeds. International Journal of Molecular Sciences 20(9):2202 doi: 10.3390/ijms20092202
CrossRef Google Scholar
|
[32]
|
Yao Y, Xiong E, Qu X, Li J, Liu H, et al. 2023. WGCNA and transcriptome profiling reveal hub genes for key development stage seed size/oil content between wild and cultivated soybean. BMC Genomics 24:494 doi: 10.1186/s12864-023-09617-6
CrossRef Google Scholar
|
[33]
|
Wang L, Jia G, Jiang X, Cao S, Chen ZJ, et al. 2021. Altered chromatin architecture and gene expression during polyploidization and domestication of soybean. The Plant Cell 33(5):1430−46 doi: 10.1093/plcell/koab081
CrossRef Google Scholar
|
[34]
|
Chen M, Lin JY, Wu X, Apuya NR, Henry KF, et al. 2021. Comparative analysis of embryo proper and suspensor transcriptomes in plant embryos with different morphologies. Proceedings of the National Academy of Sciences of the United States of America 118(6):e2024704118 doi: 10.1073/pnas.2024704118
CrossRef Google Scholar
|
[35]
|
Pelletier JM, Kwong RW, Park S, Le BH, Baden R, et al. 2017. LEC1 sequentially regulates the transcription of genes involved in diverse developmental processes during seed development. Proceedings of the National Academy of Sciences of the United States of America 114(32):E6710−E6719 doi: 10.1073/pnas.1707957114
CrossRef Google Scholar
|
[36]
|
Khan D, Ziegler D, Kalichuk JL, Hoi V, Huynh N, et al. 2022. Gene expression profiling reveals transcription factor networks and subgenome bias during Brassica napus seed development. The Plant Journal 109(3):477−89 doi: 10.1111/tpj.15587
CrossRef Google Scholar
|
[37]
|
Khanday I, Skinner D, Yang B, Mercier R, Sundaresan V. 2019. A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds. Nature 565:91−95 doi: 10.1038/s41586-018-0785-8
CrossRef Google Scholar
|
[38]
|
Wang C, Liu Q, Shen Y, Hua Y, Wang J, et al. 2019. Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes. Nature Biotechnology 37(3):283−86 doi: 10.1038/s41587-018-0003-0
CrossRef Google Scholar
|
[39]
|
Cao X, Du Q, Guo Y, Wang Y, Jiao Y. 2023. Condensation of STM is critical for shoot meristem maintenance and salt tolerance in Arabidopsis. Molecular Plant 16(9):1445−1459 doi: 10.1016/j.molp.2023.09.005
CrossRef Google Scholar
|
[40]
|
Wan Q, Zhai N, Xie D, Liu W, Xu L. 2023. WOX11: the founder of plant organ regeneration. Cell Regeneration 12:1 doi: 10.1186/s13619-022-00140-9
CrossRef Google Scholar
|
[41]
|
Liao J, Deng B, Cai X, Yang Q, Hu B, et al. 2023. Time-course transcriptome analysis reveals regulation of Arabidopsis seed dormancy by the transcription factor WOX11/12. Journal of Experimental Botany 74(3):1090−106 doi: 10.1093/jxb/erac457
CrossRef Google Scholar
|
[42]
|
Stahle MI, Kuehlich J, Staron L, von Arnim AG, Golz JF. 2009. YABBYs and the transcriptional corerepressors LEUNIG and LEUNIG_HOMOLOG maintain leaf polarity and meristem activity in Arabidopsis. The Plant Cell 21(10):3105−18 doi: 10.1105/tpc.109.070458
CrossRef Google Scholar
|
[43]
|
Wang Y, Wang N, Lan J, Pan Y, Jiang Y, et al. 2024. Arabidopsis transcription factor TCP4 controls the identity of the apical gynoecium. The Plant Cell 36(7):2668−88 doi: 10.1093/plcell/koae107
CrossRef Google Scholar
|
[44]
|
Lan J, Wang N, Wang Y, Jiang Y, Yu H, et al. 2023. Arabidopsis TCP4 transcription factor inhibits high temperature-induced homeotic conversion of ovules. Nature Communications 14:5673 doi: 10.1038/s41467-023-41416-1
CrossRef Google Scholar
|
[45]
|
Zhao B, Dai A, Wei H, Yang S, Wang B, et al. 2016. Arobidopsis KLU homologue GmCYP78A72 regulates seed size in soybean. Plant Molecular Biology 90:33−47 doi: 10.1007/s11103-015-0392-0
CrossRef Google Scholar
|
[46]
|
Li Y, Yu Y, Liu X, Zhang X, Su Y. 2021. The arabidopsis MATERNAL EFFECT EMBRYO ARREST45 protein modulates maternal auxin biosynthesis and controls seed size by inducing AINTEGUMENTA. The Plant Cell 33(6):1907−26 doi: 10.1093/plcell/koab084
CrossRef Google Scholar
|
[47]
|
Fang C, Yang M, Tang Y, Zhang L, Zhao H, et al. 2023. Dynamics of cis-regulatory sequences and transcriptional divergence of duplicated genes in soybean. Proceedings of the National Academy of Sciences of the United States of America 120(44):e2303836120 doi: 10.1073/pnas.2303836120
CrossRef Google Scholar
|
[48]
|
Yu TF, Hou ZH, Wang HL, Chang SY, Song XY, et al. 2024. Soybean steroids improve crop abiotic stress tolerance and increase yield. Plant Biotechnology Journal 22(8):2333−47 doi: 10.1111/pbi.14349
CrossRef Google Scholar
|
[49]
|
Yuan F, Chen Y, Chen X, Zhu P, Jiang S, et al. 2023. Preliminary identification of the changes of physiological characteristics and transcripts in rice after-ripened seeds. Seed Biology 2:5 doi: 10.48130/seedbio-2023-0005
CrossRef Google Scholar
|
[50]
|
Smolikova G, Leonova T, Vashurina N, Frolov A, Medvedev S. 2020. Desiccation tolerance as the basis of long-term seed viability. International Journal of Molecular Sciences 22(1):101 doi: 10.3390/ijms22010101
CrossRef Google Scholar
|
[51]
|
Li C, Chen Y, Hu Q, Yang X, Zhao Y, et al. 2024. PSEUDO-RESPONSE REGULATOR 3b and transcription factor ABF3 modelate abscisic acid-dependent drought stress response in soybean. Plant Physiology 195(4):3053−71 doi: 10.1093/plphys/kiae269
CrossRef Google Scholar
|
[52]
|
Sun Z, Li S, Chen W, Zhang J, Zhang L, et al. 2021. Plant dehydrins: expression, regulatory networks, and protective roles in plants challenged by abiotic stress. International Journal of Molecular Sciences 22(23):12619 doi: 10.3390/ijms222312619
CrossRef Google Scholar
|
[53]
|
Leprince O, Pellizzaro A, Berriri S, Buitink J. 2017. Late seed maturation: drying without dying. Journal of Experimental Botany 68(4):827−41 doi: 10.1093/jxb/erw363
CrossRef Google Scholar
|
[54]
|
Jia J, Lu W, Liu B, Fang H, Yu Y, et al. 2022. An atlas of plant full-length RNA reveals tissue-specific and monocots-dicots conserved regulation of poly(A) tail length. Nature Plants 8(9):1118−26 doi: 10.1038/s41477-022-01224-9
CrossRef Google Scholar
|
[55]
|
Liang W, Dong H, Guo X, Rodríguez V, Cheng M, et al. 2023. Identification of long-lived and stable mRNAs in the aged seeds of wheat. Seed Biology 2:14 doi: 10.48130/seedbio-2023-0014
CrossRef Google Scholar
|
[56]
|
Liu Y, Zhang Y, Liu X, Shen Y, Tian D, et al. 2023. SoyOmics: A deeply integrated database on soybean multi-omics. Molecular Plant 16(5):794−97 doi: 10.1016/j.molp.2023.03.011
CrossRef Google Scholar
|
[57]
|
Yang Z, Luo C, Pei X, Wang S, Huang Y, et al. 2024. SoyMD: a platform combining multi-omics data with various tools for soybean research and breeding. Nucleic Acids Research 52(D1):D1639−D1650 doi: 10.1093/nar/gkad786
CrossRef Google Scholar
|