[1]
|
Wang X, Hu M, Xia Y, Wen X, Ding K. 2012. Pyrosequencing analysis of bacterial diversity in 14 wastewater treatment systems in China. Applied and Environmental Microbiology 78(19):7042−47 doi: 10.1128/AEM.01617-12
CrossRef Google Scholar
|
[2]
|
Griffin JS, Wells GF. 2017. Regional synchrony in full-scale activated sludge bioreactors due to deterministic microbial community assembly. The ISME Journal 11(2):500−11 doi: 10.1038/ismej.2016.121
CrossRef Google Scholar
|
[3]
|
Stegen JC, Lin X, Konopka AE, Fredrickson JK. 2012. Stochastic and deterministic assembly processes in subsurface microbial communities. The ISME Journal 6(9):1653−64 doi: 10.1038/ismej.2012.22
CrossRef Google Scholar
|
[4]
|
Ju F, Zhang T. 2015. Bacterial assembly and temporal dynamics in activated sludge of a full-scale municipal wastewater treatment plant. The ISME Journal 9(3):683−95 doi: 10.1038/ismej.2014.162
CrossRef Google Scholar
|
[5]
|
Chen Y, Lan S, Wang L, Dong S, Zhou H, et al. 2017. A review: driving factors and regulation strategies of microbial community structure and dynamics in wastewater treatment systems. Chemosphere 174:173−82 doi: 10.1016/j.chemosphere.2017.01.129
CrossRef Google Scholar
|
[6]
|
Xia Y, Wang X, Wen X, Ding K, Zhou J, et al. 2014. Overall functional gene diversity of microbial communities in three full-scale activated sludge bioreactors. Applied Microbiology and Biotechnology 98(16):7233−42 doi: 10.1007/s00253-014-5791-7
CrossRef Google Scholar
|
[7]
|
Ibarbalz FM, Orellana E, Figuerola ELM, Erijman L. 2016. Shotgun metagenomic profiles have a high capacity to discriminate samples of activated sludge according to wastewater type. Applied and Environmental Microbiology 82(17):5186−96 doi: 10.1128/AEM.00916-16
CrossRef Google Scholar
|
[8]
|
Naghdi M, Taheran M, Brar SK, Kermanshahi-Pour A, Verma M, et al. 2018. Removal of pharmaceutical compounds in water and wastewater using fungal oxidoreductase enzymes. Environmental Pollution 234:190−213 doi: 10.1016/j.envpol.2017.11.060
CrossRef Google Scholar
|
[9]
|
Nguyen LN, van de Merwe JP, Hai FI, Leusch FD, Kang J, et al. 2016. Laccase–syringaldehyde-mediated degradation of trace organic contaminants in an enzymatic membrane reactor: removal efficiency and effluent toxicity. Bioresource Technology 200:477−84 doi: 10.1016/j.biortech.2015.10.054
CrossRef Google Scholar
|
[10]
|
Senthivelan T, Kanagaraj J, Panda RC. 2016. Recent trends in fungal laccase for various industrial applications: an eco-friendly approach-a review. Biotechnology and Bioprocess Engineering 21:19−38 doi: 10.1007/s12257-015-0278-7
CrossRef Google Scholar
|
[11]
|
Lucas D, Castellet-Rovira F, Villagrasa M, Badia-Fabregat M, Barceló D, et al. 2018. The role of sorption processes in the removal of pharmaceuticals by fungal treatment of wastewater. Science of the Total Environment 610−611:1147−53 doi: 10.1016/j.scitotenv.2017.08.118
CrossRef Google Scholar
|
[12]
|
Taheran M, Naghdi M, Brar SK, Knystautas EJ, Verma M, et al. 2017. Covalent immobilization of laccase onto nanofibrous membrane for degradation of pharmaceutical residues in water. ACS Sustainable Chemistry & Engineering 5(11):10430−38 doi: 10.1021/acssuschemeng.7b02465
CrossRef Google Scholar
|
[13]
|
Rouches E, Herpoël-Gimbert I, Steyer JP, Carrere H. 2016. Improvement of anaerobic degradation by white-rot fungi pretreatment of lignocellulosic biomass: a review. Renewable and Sustainable Energy Reviews 59:179−98 doi: 10.1016/j.rser.2015.12.317
CrossRef Google Scholar
|
[14]
|
Khan AU, Ilyas M, Zamel D, Khan S, Ahmad A, et al. 2022. Bio-inspired fabrication of zinc oxide nanoparticles: Insight into biomedical applications. Annals of Advances in Chemistry 6:23−37 doi: 10.29328/journal.aac.1001028
CrossRef Google Scholar
|
[15]
|
Zafiu C, Part F, Ehmoser EK, Kähkönen MA. 2021. Investigations on inhibitory effects of nickel and cobalt salts on the decolorization of textile dyes by the white rot fungus Phanerochaete velutina. Ecotoxicology and Environmental Safety 215:112093 doi: 10.1016/j.ecoenv.2021.112093
CrossRef Google Scholar
|
[16]
|
Khan SA, Mehmood S, Nabeela, Iqbal A, Hamayun M. 2020. Industrial polluted soil borne fungi decolorize the recalcitrant azo dyes Synozol red HF-6BN and Synozol black B. Ecotoxicology and Environmental Safety 206:111381 doi: 10.1016/j.ecoenv.2020.111381
CrossRef Google Scholar
|
[17]
|
Kapoor RT, Danish M, Singh RS, Rafatullah M, Abdul Khalil HPS. 2021. Exploiting microbial biomass in treating azo dyes contaminated wastewater: mechanism of degradation and factors affecting microbial efficiency. Journal of Water Process Engineering 43:102255 doi: 10.1016/j.jwpe.2021.102255
CrossRef Google Scholar
|
[18]
|
Ambrósio ST, Vilar JC Jr, da Silva CAA, Okada K, Nascimento AE, et al. 2012. A biosorption isotherm model for the removal of reactive azo dyes by inactivated mycelia of Cunninghamella elegans UCP542. Molecules 17:452−62 doi: 10.3390/molecules17010452
CrossRef Google Scholar
|
[19]
|
Baccar R, Blánquez P, Bouzid J, Feki M, Attiya H, et al. 2011. Decolorization of a tannery dye: from fungal screening to bioreactor application. Biochemical Engineering Journal 56:184−89 doi: 10.1016/j.bej.2011.06.006
CrossRef Google Scholar
|
[20]
|
Mani P, VFidal VT, Bowman K, Breheny M, Chandra TS, et al. 2010. Degradation of azo dye (acid orange 7) in a microbial fuel cell: comparison between anodic microbial-mediated reduction and cathodic laccase-mediated oxidation. Frontiers in Energy Research 7:101 doi: 10.3389/fenrg.2019.00101
CrossRef Google Scholar
|
[21]
|
Chhabra M, Mishra S, Sreekrishnan TR. 2015. Immobilized laccase mediated dye decolorization and transformation pathway of azo dye acid red 27. Journal of Environmental Health Science and Engineering 13:38 doi: 10.1186/s40201-015-0192-0
CrossRef Google Scholar
|
[22]
|
Sarkar S, Banerjee A, Halder U, Biswas R, Bandopadhyay R. 2017. Degradation of synthetic azo dyes of textile industry: a sustainable approach using microbial enzymes. Water Conservation Science and Engineering 2:121−31 doi: 10.1007/s41101-017-0031-5
CrossRef Google Scholar
|
[23]
|
Mani P, Keshavarz T, Chandra TS, Kyazze G. 2017. Decolourisation of Acid orange 7 in a microbial fuel cell with a laccase-based biocathode: influence of mitigating pH changes in the cathode chamber. Enzyme and Microbial Technology 96:170−76 doi: 10.1016/j.enzmictec.2016.10.012
CrossRef Google Scholar
|
[24]
|
Nikam M, Patil S, Patil U, Khandare R, Govindwar S, et al. 2017. Biodegradation and detoxification of azo solvent dye by ethylene glycol tolerant ligninolytic ascomycete strain of Pseudocochlio bolus verruculosus NFCCI 3818. Biocatalysis and Agricultural Bio technology 9:209−17 doi: 10.1016/j.bcab.2017.01.004
CrossRef Google Scholar
|
[25]
|
Kookana RS, Drechsel P, Jamwal P, Vanderzalm J. 2020. Urbanisation and emerging economies: issues and potential solutions for water and food security. The Science of the Total Environment 732:139057 doi: 10.1016/j.scitotenv.2020.139057
CrossRef Google Scholar
|
[26]
|
Lellis B, Fávaro-Polonio CZ, Pamphile JA, Polonio JC. 2019. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation 3:275−90 doi: 10.1016/j.biori.2019.09.001
CrossRef Google Scholar
|
[27]
|
miR-Tutusaus JA, Baccar R, Caminal G, Sarrà M. 2018. Can white-rot fungi be a real wastewater treatment alternative for organic micropollutants removal? A review. Water Research 138:137−51 doi: 10.1016/j.watres.2018.02.056
CrossRef Google Scholar
|
[28]
|
Qin G, Niu Z, Yu J, Li Z, Ma J, et al. 2021. Soil heavy metal pollution and food safety in China: effects, sources and removing technology. Chemosphere 267:129205 doi: 10.1016/j.chemosphere.2020.129205
CrossRef Google Scholar
|
[29]
|
Lucas D, Barceló D, Rodriguez-Mozaz S. 2016. Removal of pharmaceuticals from wastewater by fungal treatment and reduction of hazard quotients. The Science of the Total Environment 571:909−15 doi: 10.1016/j.scitotenv.2016.07.074
CrossRef Google Scholar
|
[30]
|
Huang S, Li S, Wang Z, Lin S, Deng J. 2021. Enzyme degradation mechanism of white rot fungi and its research progress on Refractory Wastewater. E3S Web of Conferences 237:01002 doi: 10.1051/e3sconf/202123701002
CrossRef Google Scholar
|
[31]
|
Sharma P, Pandey AK, Kim SH, Singh SP, Chaturvedi P, et al. 2021. Critical review on microbial community during in-situ bioremediation of heavy metals from industrial wastewater. Environmental Technology & Innovation 24:101826 doi: 10.1016/j.eti.2021.101826
CrossRef Google Scholar
|
[32]
|
Lu N, Hu T, Zhai Y, Qin H, Aliyeva J, et al. 2020. Fungal cell with artificial metal container for heavy metals biosorption: equilibrium, kinetics study and mechanisms analysis. Environmental Research 182:109061 doi: 10.1016/j.envres.2019.109061
CrossRef Google Scholar
|
[33]
|
Noormohamadi HR, Fat’hi MR, Ghaedi M, Ghezelbash GR. 2019. Potentiality of white-rot fungi in biosorption of nickel and cadmium: modeling optimization and kinetics study. Chemosphere 216:124−30 doi: 10.1016/j.chemosphere.2018.10.113
CrossRef Google Scholar
|
[34]
|
Wollenberg A, Kretzschmar J, Drobot B, Hübner R, Freitag L, et al. 2021. Uranium(VI) bioassociation by different fungi - a comparative study into molecular processes. Journal of Hazardous Materials 411:125068 doi: 10.1016/j.jhazmat.2021.125068
CrossRef Google Scholar
|
[35]
|
Sharma KR, Giri R, Sharma RK. 2020. Lead, cadmium and nickel removal efficiency of white-rot fungus Phlebia brevispora. Letters in Applied Microbiology 71(6):637−44 doi: 10.1111/lam.13372
CrossRef Google Scholar
|
[36]
|
Pinedo-Rivilla C, Aleu J, Collado I. 2009. Pollutants biodegradation by fungi. Current Organic Chemistry 13(12):1194−214 doi: 10.2174/138527209788921774
CrossRef Google Scholar
|
[37]
|
Asemoloye MD, Ahmad R, Jonathan SG. 2017. Synergistic action of rhizospheric fungi with Megathyrsus maximus root speeds up hydrocarbon degradation kinetics in oil polluted soil. Chemosphere 187:1−10 doi: 10.1016/j.chemosphere.2017.07.158
CrossRef Google Scholar
|
[38]
|
Asemoloye MD, Jonathan SG, Jayeola AA, Ahmad R. 2017. Mediational influence of spent mushroom compost on phytoremediation of black-oil hydrocarbon polluted soil and response of Megathyrsus maximus Jacq. Journal of Environmental Management 200:253−62 doi: 10.1016/j.jenvman.2017.05.090
CrossRef Google Scholar
|
[39]
|
Mikhailenko P, Baaj H. 2019. Comparison of chemical and microstructural properties of virgin and reclaimed asphalt pavement binders and their saturate, aromatic, resin, and asphaltene fractions. Energy & Fuels 33:2633−40 doi: 10.1021/acs.energyfuels.8b03414
CrossRef Google Scholar
|
[40]
|
Cole GM. 1994. Assessment and remediation of petroleum contaminated site. 1st Edition. Boca Raton: CRC Press. DOI: 10.1201/9781315137810
|
[41]
|
Zamel D, Khan AU, Waris A, Ebrahim A, Abd El-Sattar NE. 2023. Nanomaterials advancements for enhanced contaminant removal in wastewater treatment: nanoparticles, nanofibers, and metal-organic frameworks (MOFs). Results in Chemistry 6:101092 doi: 10.1016/j.rechem.2023.101092
CrossRef Google Scholar
|
[42]
|
Aydin S, Karaçay HA, Shahi A, Gökçe S, Ince B, et al. 2017. Aerobic and anaerobic fungal metabolism and Omics insights for increasing polycyclic aromatic hydrocarbons biodegradation. Fungal Biology Reviews 31:61−72 doi: 10.1016/j.fbr.2016.12.001
CrossRef Google Scholar
|
[43]
|
Varjani SJ, Rana DP, Jain AK, Bateja S, Upasani VN. 2015. Synergistic ex-situ biodegradation of crude oil by halotolerant bacterial consortium of indigenous strains isolated from on shore sites of Gujarat, India. International Biodeterioration & Biodegradation 103:116−24 doi: 10.1016/j.ibiod.2015.03.030
CrossRef Google Scholar
|
[44]
|
Varjani SJ, Upasani VN. 2017. A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants. International Biodeterioration & Biodegradation 120:71−83 doi: 10.1016/j.ibiod.2017.02.006
CrossRef Google Scholar
|
[45]
|
Durairaj P, Malla S, Nadarajan SP, Lee PG, Jung E, et al. 2015. Fungal cytochrome P450 monooxygenases of Fusarium oxysporum for the synthesis of ω-hydroxy fatty acids in engineered Saccharomyces cerevisiae. Microbial Cell Factories 14:45 doi: 10.1186/s12934-015-0228-2
CrossRef Google Scholar
|
[46]
|
Asemoloye MD, Jonathan SG, Ahmad R. 2019. Synergistic plant-microbes interactions in the rhizosphere: a potential headway for the remediation of hydrocarbon polluted soils. International Journal of Phytoremediation 21:71−83 doi: 10.1080/15226514.2018.1474437
CrossRef Google Scholar
|
[47]
|
Shin JY, Bui DC, Lee Y, Nam H, Jung S, et al. 2017. Functional characterization of cytochrome P450 monooxygenases in the cereal head blight fungus Fusarium gramine arum. Environmental Microbiology 19:2053−67 doi: 10.1111/1462-2920.13730
CrossRef Google Scholar
|
[48]
|
Shin J, Kim JE, Lee YW, Son H. 2018. Fungal cytochrome P450s and the P450 complement (CYPome) of Fusarium gramine arum. Toxins 10(3):112 doi: 10.3390/toxins10030112
CrossRef Google Scholar
|
[49]
|
Chen W, Lee MK, Jefcoate C, Kim SC, Chen F, et al. 2014. Fungal cytochrome P450 monooxygenases: their distribution, structure, functions, family expansion, and evolutionary origin. Genome Biology and Evolution 6:1620−34 doi: 10.1093/gbe/evu132
CrossRef Google Scholar
|
[50]
|
Lamb DC, Waterman MR. 2013. Unusual properties of the cytochrome P450 superfamily. Philosophical Transactions of the Royal Society B: Biological Sciences 368:20120434 doi: 10.1098/rstb.2012.0434
CrossRef Google Scholar
|
[51]
|
Meng L, Li H, Bao M, Sun P. 2017. Metabolic pathway for a new strain Pseudomonas synxantha LSH-7’: from chemotaxis to uptake of n-hexadecane. Scientific Reports 7:39068 doi: 10.1038/srep39068
CrossRef Google Scholar
|
[52]
|
Prenafeta-Boldú FX, de Hoog GS, Summerbell RC. 2019. Fungal communities in hydrocarbon degradation. In Microbial Communities Utilizing Hydrocarbons and Lipids: Members, Metagenomics and Ecophysiology. Handbook of Hydrocarbon and Lipid Microbiology, ed. McGenity T. Cham: Springer. pp. 307−42. DOI: 10.1007/978-3-030-14785-3_8
|
[53]
|
Abbasian F, Lockington R, Mallavarapu M, Naidu R. 2015. A comprehensive review of aliphatic hydrocarbon biodegradation by bacteria. Applied Biochemistry and Biotechnology 176:670−99 doi: 10.1007/s12010-015-1603-5
CrossRef Google Scholar
|
[54]
|
Morales LT, González-García LN, Orozco MC, Restrepo S, Vives MJ. 2017. The genomic study of an environmental isolate of Scedosporium apiospermum shows its metabolic potential to degrade hydrocarbons. Standards in Genomic Sciences 12:71 doi: 10.1186/s40793-017-0287-6
CrossRef Google Scholar
|
[55]
|
Young D, Rice J, Martin R, Lindquist E, Lipzen A, et al. 2015. Degradation of bunker C fuel oil by white-rot fungi in sawdust cultures suggests potential applications in bioremediation. PLoS One 10:e0130381 doi: 10.1371/journal.pone.0130381
CrossRef Google Scholar
|
[56]
|
Marco-Urrea E, Gabarrell X, Caminal G, Vicent T, Adinarayana Reddy C. 2008. Aerobic degradation by white-rot fungi of trichloroethylene (TCE) and mixtures of TCE and perchloroethylene (PCE). Journal of Chemical Technology & Biotechnology 83:1190−96 doi: 10.1002/jctb.1914
CrossRef Google Scholar
|
[57]
|
Marco-Urrea E, Aranda E, Caminal G, Guillén F. 2009. Induction of hydroxyl radical production in Trametes versicolor to degrade recalcitrant chlorinated hydrocarbons. Bioresource Technology 100:5757−62 doi: 10.1016/j.biortech.2009.06.078
CrossRef Google Scholar
|
[58]
|
Daccò C, Girometta C, Asemoloye MD, Carpani G, Picco AM, et al. 2020. Key fungal degradation patterns, enzymes and their applications for the removal of aliphatic hydrocarbons in polluted soils: A review. International Biodeterioration & Biodegradation 147:104866 doi: 10.1016/j.ibiod.2019.104866
CrossRef Google Scholar
|
[59]
|
Lawton LA, Robertson PKJ. 1999. Physico-chemical treatment methods for the removal of microcystins (cyanobacterial hepatotoxins) from potable waters. Chemical Society Reviews 28:217−24 doi: 10.1039/A805416I
CrossRef Google Scholar
|
[60]
|
Gómez-Toribio V, García-Martín AB, Martínez MJ, Martínez AT, Guillén F. 2009. Enhancing the production of hydroxyl radicals by Pleurotus eryngii via quinone redox cycling for pollutant removal. Applied and Environmental Microbiology 75(12):3954−62 doi: 10.1128/AEM.02138-08
CrossRef Google Scholar
|
[61]
|
Gómez-Toribio V, García-Martín AB, Martínez MJ, Martínez AT, Guillén F. 2009. Induction of extracellular hydroxyl radical production by white-rot fungi through quinone redox cycling. Applied and Environmental Microbiology 75(12):3944−53 doi: 10.1128/AEM.02137-08
CrossRef Google Scholar
|
[62]
|
Lundell TK, Mäkelä MR, Hildén K. 2010. Lignin-modifying enzymes in filamentous basidiomycetes—ecological, functional and phylogenetic review. Journal of Basic Microbiology 50:5−20 doi: 10.1002/jobm.200900338
CrossRef Google Scholar
|
[63]
|
Nelson DR, Kamataki T, Waxman DJ, Guengerich FP, Estabrook RW, et al. 1993. The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA and Cell Biology 12:1−51 doi: 10.1089/dna.1993.12.1
CrossRef Google Scholar
|
[64]
|
Santos HF, Carmo FL, Paes JES, Rosado AS, Peixoto RS. 2011. Bioremediation of mangroves impacted by petroleum. Water, Air, & Soil Pollution 216:329−50 doi: 10.1007/s11270-010-0536-4
CrossRef Google Scholar
|
[65]
|
Mbadinga SM, Wang LY, Zhou L, Liu JF, Gu JD, et al. 2011. Microbial communities involved in anaerobic degradation of alkanes. International Biodeterioration & Biodegradation 65:1−13 doi: 10.1016/j.ibiod.2010.11.009
CrossRef Google Scholar
|
[66]
|
Hosoda A, Kasai Y, Hamamura N, Takahata Y, Watanabe K. 2005. Development of a PCR method for the detection and quantification of benzoyl-CoA reductase genes and its application to monitored natural attenuation. Biodegradation 16:591−601 doi: 10.1007/s10532-005-0826-5
CrossRef Google Scholar
|
[67]
|
Dar MA, Kaushik G, Villareal Chiu JF. 2020. Pollution status and biodegradation of organophosphate pesticides in the environment. In Abatement of environmental pollutants, eds. Singh P, Kumar A, Borthakur A. Amsterdam, Netherlands: Elsevier. pp. 25–66. DOI: 10.1016/B978-0-12-818095-2.00002-3
|
[68]
|
Singh B, Mandal K. 2013. Environmental impact of pesticides belonging to newer chemistry. In Integrated Pest Management, ed. Dhawan AK, Singh B, Brar-Bhullar M, Arora R. Jodhpur: Scientific Publishers. pp. 152–90. https://researchoutreach.org/wp-content/uploads/2020/09/Surendra-K-Dara-High-Res-DPS.pdf
|
[69]
|
SLarson SJ, Capel PD, Majewski M. 2010. Pesticides in surface waters: distribution, trends, and governing factors, ed. Larson SJ. Boca Raton: CRC Press. doi: 10.1201/9780429062797
|
[70]
|
Trajkovska S, Mbaye M, Gaye Seye MD, Aaron JJ, Chevreuil M, et al. 2009. Toxicological study of pesticides in air and precipitations of Paris by means of a bioluminescence method. Analytical and Bioanalytical Chemistry 394:1099−106 doi: 10.1007/s00216-009-2783-z
CrossRef Google Scholar
|
[71]
|
Wilen CA. 2014. Pesticides: safe and effective use in the home landscape. Division of Agriculture and Natural Resources. University of California Statewide IPM Program. 6 pp. https://anrcatalog.ucanr.edu/Details.aspx?itemNo=74126
|
[72]
|
Spina F, Cecchi G, Landinez-Torres A, Pecoraro L, Russo F, et al. 2018. Fungi as a toolbox for sustainable bioremediation of pesticides in soil and water. Plant Biosystems - an International Journal Dealing with All Aspects of Plant Biology 152:474−88 doi: 10.1080/11263504.2018.1445130
CrossRef Google Scholar
|
[73]
|
Díaz E. 2004. Bacterial degradation of aromatic pollutants: a paradigm of metabolic versatility. International Microbiology 7:173−80
Google Scholar
|
[74]
|
van Hamme JD. 2004. Bioavailability and biodegradation of organic pollutants – a microbial perspective. In Biodegradation and bioremediation. Soil Biology, ed. Singh A, Ward OP. vol 2. Berlin, Heidelberg: Springer. pp. 37–56. DOI: 10.1007/978-3-662-06066-7_3
|
[75]
|
Fenner K, Canonica S, Wackett LP, Elsner M. 2013. Evaluating pesticide degradation in the environment: blind spots and emerging opportunities. Science 341:752−58 doi: 10.1126/science.1236281
CrossRef Google Scholar
|
[76]
|
Jochimsen B, Lolle S, McSorley FR, Nabi M, Stougaard J, et al. 2011. Five phosphonate operon gene products as components of a multi-subunit complex of the carbon-phosphorus lyase pathway. Proceedings of the National Academy of Sciences of the United States of America 108:11393−98 doi: 10.1073/pnas.1104922108
CrossRef Google Scholar
|
[77]
|
Trincone A. 2010. Potential biocatalysts originating from sea environments. Journal of Molecular Catalysis B: Enzymatic 66:241−56 doi: 10.1016/j.molcatb.2010.06.004
CrossRef Google Scholar
|
[78]
|
Bigley AN, Raushel FM. 2013. Catalytic mechanisms for phosphotriesterases. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1834:443−53 doi: 10.1016/j.bbapap.2012.04.004
CrossRef Google Scholar
|
[79]
|
Bonugli-Santos RC, Durrant LR, da Silva M, Sette LD. 2010. Production of laccase, manganese peroxidase and lignin peroxidase by Brazilian marine-derived fungi. Enzyme and Microbial Technology 46:32−37 doi: 10.1016/j.enzmictec.2009.07.014
CrossRef Google Scholar
|
[80]
|
dos Santos VMR, Donnici CL, DaCosta JBN, Caixeiro JMR. 2007. Organophosphorus pentavalent compounds: history, synthetic methods of preparation and application as insecticides and antitumor agents. Química Nova 30:159−70 doi: 10.1590/s0100-40422007000100028
CrossRef Google Scholar
|
[81]
|
Kadri T, Rouissi T, Brar SK, Cledon M, Sarma S, et al. 2017. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: A review. Journal of Environmental Sciences 51:52−74 doi: 10.1016/j.jes.2016.08.023
CrossRef Google Scholar
|