[1]
|
Kwak JH, Islam MS, Wang S, Messele SA, Naeth MA, et al. 2019. Biochar properties and lead (II) adsorption capacity depend on feedstock type, pyrolysis temperature, and steam activation. Chemosphere 231:393−404 doi: 10.1016/j.chemosphere.2019.05.128
CrossRef Google Scholar
|
[2]
|
Dissanayake DKRPL, Udumann SS, Dissanayaka DMNS, Nuwarapaksha TD, Atapattu, AJ. 2023. Effect of biochar application rate on macronutrient retention and leaching in two coconut growing soils. Technology in Agronomy 3:5 doi: 10.48130/TIA-2023-0005
CrossRef Google Scholar
|
[3]
|
Nichman L, Wolf M, Davidovits P, Onasch TB, Zhang Y, et al. 2019. Laboratory study of the heterogeneous ice nucleation on black-carbon-containing aerosol. Atmospheric Chemistry and Physics 19(19):12175−94 doi: 10.5194/acp-19-12175-2019
CrossRef Google Scholar
|
[4]
|
Singh B, Singh BP, Cowie AL. 2010. Characterisation and evaluation of biochars for their application as a soil amendment. Australian Journal of Soil Research 48(7):516 doi: 10.1071/SR10058
CrossRef Google Scholar
|
[5]
|
Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, et al. 2011. Biochar effects on soil biota - A review. Soil Biology and Biochemistry 43(9):1812−36 doi: 10.1016/j.soilbio.2011.04.022
CrossRef Google Scholar
|
[6]
|
Edenborn SL, Johnson LMK, Edenborn H. M, Albarran-Jack MR, Demetrion LD. 2018. Amendment of a hardwood biochar with compost tea: effects on plant growth, insect damage and the functional diversity of soil microbial communities. Biological Agriculture & Horticulture 34(2):88−106 doi: 10.1080/01448765.2017.1388847
CrossRef Google Scholar
|
[7]
|
Awogbemi O, Von Kallon DV. 2023. Application of biochar derived from crops residues for biofuel production. Fuel Communications 15:100088 doi: 10.1016/j.jfueco.2023.100088
CrossRef Google Scholar
|
[8]
|
Ekanayaka EMGN, Dissanayake DKRPL, Udumann SS, Dissanayaka DMNS, Nuwarapaksha TD, et al. 2023. Sustainable utilization of king coconut husk as a feedstock in biochar production with the highest conversion efficiency and desirable properties. IOP Conference Series: Earth and Environmental Science 1235:012009 doi: 10.1088/1755-1315/1235/1/012009
CrossRef Google Scholar
|
[9]
|
Dissanayake DKRPL, Dissanayaka DMNS, Udumann SS, Nuwarapaksha TD, Atapattu AJ. 2023. Is biochar a promising soil amendment to enhance perennial crop yield and soil quality in the tropics? Technology in Agronomy 3:4 doi: 10.48130/TIA-2023-0004
CrossRef Google Scholar
|
[10]
|
El-Naggar A, Lee SS, Awad YM, Yang X, Ryu C, et al. 2018. Influence of soil properties and feedstocks on biochar potential for carbon mineralization and improvement of infertile soils. Geoderma 332:100−8 doi: 10.1016/j.geoderma.2018.06.017
CrossRef Google Scholar
|
[11]
|
Volpe M, Goldfarb JL, Fiori L. 2018. Hydrothermal carbonization of Opuntia ficus-indica cladodes: Role of process parameters on hydrochar properties. Bioresource Technology 247:310−18 doi: 10.1016/j.biortech.2017.09.072
CrossRef Google Scholar
|
[12]
|
Kloss S, Zehetner F, Dellantonio A, Hamid R, Ottner F, et al. 2012. Characterization of Slow Pyrolysis Biochars: Effects of Feedstocks and Pyrolysis Temperature on Biochar Properties. Journal of Environmental Quality 41(4):990−1000 doi: 10.2134/jeq2011.0070
CrossRef Google Scholar
|
[13]
|
Dissanayaka DMNS, Udumann SS, Nuwarapaksha TD, Atapattu AJ. 2023. Effects of pyrolysis temperature on chemical composition of coconut-husk biochar for agricultural applications: a characterization study. Technology in Agronomy 3:13 doi: 10.48130/TIA-2023-0013
CrossRef Google Scholar
|
[14]
|
Sarfraz R, Hussain A, Sabir A, Ben Fekih I, Ditta A, et al. 2019. Role of biochar and plant growth promoting rhizobacteria to enhance soil carbon sequestration - a review. Environmental Monitoring and Assessment 191:251 doi: 10.1007/s10661-019-7400-9
CrossRef Google Scholar
|
[15]
|
Pariyar P, Kumari K, Jain MK, Jadhao PS. 2020. Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental and agricultural application. Science of The Total Environment 713:136433 doi: 10.1016/j.scitotenv.2019.136433
CrossRef Google Scholar
|
[16]
|
Duku MH, Gu S, Hagan EB. 2011. Biochar production potential in Ghana - A review. Renewable and Sustainable Energy Reviews 15(8):3539−51 doi: 10.1016/j.rser.2011.05.010
CrossRef Google Scholar
|
[17]
|
Nuwarapaksha TD, Dissanayaka NS, Udumann SS, Atapattu AJ. 2023. Gliricidia as a beneficial crop in resource-limiting agroforestry systems in Sri Lanka. Indian Journal of Agroforestry 25:12−18
Google Scholar
|
[18]
|
Mesa-Sierra N, Escobar F, Laborde J. 2020. Appraising forest diversity in the seasonally dry tropical region of the Gulf of Mexico. Revista Mexicana de Biodiversidad 91:913175 doi: 10.22201/ib.20078706e.2020.91.3175
CrossRef Google Scholar
|
[19]
|
Kappil SR, Aneja R, Rani P. 2021. Decomposing the performance metrics of coconut cultivation in the South Indian States. Humanities and Social Sciences Communications 8:114 doi: 10.1057/s41599-021-00783-0
CrossRef Google Scholar
|
[20]
|
Beesley L, Moreno-Jiménez E, Gomez-Eyles JL, Harris E, Robinson B, et al. 2011. A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils. Environmental Pollution 159(12):3269−82 doi: 10.1016/j.envpol.2011.07.023
CrossRef Google Scholar
|
[21]
|
Zhao X, Liu D. 2012. Fractionating pretreatment of sugarcane bagasse by aqueous formic acid with direct recycle of spent liquor to increase cellulose digestibility–the Formiline process. Bioresource Technology 117:25−32 doi: 10.1016/j.biortech.2012.04.062
CrossRef Google Scholar
|
[22]
|
Hao F, Zhao X, Ouyang W, Lin C, Chen S, et al. 2013. Molecular structure of corncob-derived biochars and the mechanism of atrazine sorption. Agronomy Journal 105(3):773−82 doi: 10.2134/agronj2012.0311
CrossRef Google Scholar
|
[23]
|
Zhang Q, Chang J, Wang T, Xu Y. 2007. Review of biomass pyrolysis oil properties and upgrading research. Energy Conversion and Management 48(1):87−92 doi: 10.1016/j.enconman.2006.05.010
CrossRef Google Scholar
|
[24]
|
Ma X, Zhou B, Budai A, Jeng A, Hao X, et al. 2016. Study of Biochar Properties by Scanning Electron Microscope – Energy Dispersive X-Ray Spectroscopy (SEM-EDX). Communications in Soil Science and Plant Analysis 47(5):593−601 doi: 10.1080/00103624.2016.1146742
CrossRef Google Scholar
|
[25]
|
Kannan M. 2018. Scanning electron microscopy: Principle, components and applications. In A Textbook on Fundamentals and Applications of Nanotechnology, eds. Subramanian KS, Janavi GJ, Marimuthu S, Kannan M, RajaBerlin K. New Delhi: Daya Publishing House. pp. 81–92. www.researchgate.net/publication/341553212_Scanning_Electron_Microscopy_Principle_Components_and_Applications (Accessed on 29 May 2024)
|
[26]
|
Inkson BJ. 2016. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) for Materials Characterization. In Materials Characterization Using Nondestructive Evaluation (NDE) Methods, eds. Hübschen G, Altpeter I, Tschuncky R, Herrmann HG. Amsterdam, The Netherlands: Elsevier. pp. 17–43. https://doi.org/10.1016/B978-0-08-100040-3.00002-X
|
[27]
|
Grover A, Sinha R, Jyoti D, Faggio C. 2022. Imperative role of electron microscopy in toxicity assessment: A review. Microscopy Research and Technique 85(5):1976−89 doi: 10.1002/jemt.24029
CrossRef Google Scholar
|
[28]
|
Cantrell KB, Hunt PG, Uchimiya M, Novak JM, Ro KS. 2012. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource Technology 107:419−28 doi: 10.1016/j.biortech.2011.11.084
CrossRef Google Scholar
|
[29]
|
Mohamed Noor N, Shariff A, Abdullah N, Mohamad Aziz NS. 2019. Temperature effect on biochar properties from slow pyrolysis of coconut flesh waste. Malaysian Journal of Fundamental and Applied Sciences 15(2):153−58 doi: 10.11113/mjfas.v15n2.1015
CrossRef Google Scholar
|
[30]
|
Hu Q, Yang H, Yao D, Zhu D, Wang X, et al. 2016. The densification of bio-char: Effect of pyrolysis temperature on the qualities of pellets. Bioresource Technology 200:521−27 doi: 10.1016/j.biortech.2015.10.077
CrossRef Google Scholar
|
[31]
|
Sarkar JK, Wang Q. 2020. Different pyrolysis process conditions of South Asian waste coconut shell and characterization of gas, bio-char, and bio-oil. Energies 13(8):1970 doi: 10.3390/en13081970
CrossRef Google Scholar
|
[32]
|
Dhar SA, Sakib TU, Hilary LN. 2022. Effects of pyrolysis temperature on production and physicochemical characterization of biochar derived from coconut fiber biomass through slow pyrolysis process. Biomass Conversion and Biorefinery 12(7):2631−47 doi: 10.1007/s13399-020-01116-y
CrossRef Google Scholar
|
[33]
|
Xu S, Chen J, Peng H, Leng S, Li H, et al. 2021. Effect of biomass type and pyrolysis temperature on nitrogen in biochar, and the comparison with hydrochar. Fuel 291:120128 doi: 10.1016/j.fuel.2021.120128
CrossRef Google Scholar
|
[34]
|
Zhao L, Cao X, Mašek O, Zimmerman A. 2013. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. Journal of Hazardous Materials 256–257:1−9 doi: 10.1016/j.jhazmat.2013.04.015
CrossRef Google Scholar
|
[35]
|
Bilias F, Kalderis D, Richardson C, Barbayiannis N, Gasparatos D. 2023. Biochar application as a soil potassium management strategy: A review. Science of The Total Environment 858:159782 doi: 10.1016/j.scitotenv.2022.159782
CrossRef Google Scholar
|
[36]
|
Dunnigan L, Morton BJ, Ashman PJ, Zhang X, Kwong CW. 2018. Emission characteristics of a pyrolysis-combustion system for the co-production of biochar and bioenergy from agricultural wastes. Waste Management 77:59−66 doi: 10.1016/j.wasman.2018.05.004
CrossRef Google Scholar
|
[37]
|
Yaman S. 2004. Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Conversion and Management 45(5):651−71 doi: 10.1016/S0196-8904(03)00177-8
CrossRef Google Scholar
|
[38]
|
Tomczyk A, Sokołowska Z, Boguta P. 2020. Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/Technology 19(1):191−215 doi: 10.1007/s11157-020-09523-3
CrossRef Google Scholar
|
[39]
|
Trubetskaya A, Jensen PA, Jensen AD, Glarborg P, Larsen FH, et al. 2016. Characterization of free radicals by electron spin resonance spectroscopy in biochars from pyrolysis at high heating rates and at high temperatures. Biomass and Bioenergy 94:117−29 doi: 10.1016/j.biombioe.2016.08.020
CrossRef Google Scholar
|
[40]
|
Kookana, RS, Sarmah AK, Van Zwieten L, Krull E, Singh B. 2011. Biochar application to soil: agronomic and environmental benefits and unintended consequences. Advances in Agronomy 112:103−43 doi: 10.1016/B978-0-12-385538-1.00003-2
CrossRef Google Scholar
|
[41]
|
Bolan N, Hoang SA, Beiyuan J, Gupta S, Hou D, et al. 2022. Multifunctional applications of biochar beyond carbon storage. International Materials Reviews 67(2):150−200 doi: 10.1080/09506608.2021.1922047
CrossRef Google Scholar
|