[1]
|
Vu LD, Gevaert K, De Smet I. 2018. Protein language: Post-translational modifications talking to each other. Trends In Plant Science 23:1068−80 doi: 10.1016/j.tplants.2018.09.004
CrossRef Google Scholar
|
[2]
|
Khan RA, Abbas N. 2023. Role of epigenetic and post-translational modifications in anthocyanin biosynthesis: A review. Gene 887:147694 doi: 10.1016/j.gene.2023.147694
CrossRef Google Scholar
|
[3]
|
Han D, Yu Z, Lai J, Yang C. 2022. Post-translational modification: a strategic response to high temperature in plants. aBIOTECH 15(3):49−64 doi: 10.1007/s42994-021-00067-w
CrossRef Google Scholar
|
[4]
|
Ghelis T. 2011. Signal processing by protein tyrosine phosphorylation in plants. Plant Signaling and Behavior 6:942−51 doi: 10.4161/psb.6.7.15261
CrossRef Google Scholar
|
[5]
|
Silva-Sanchez C, Li H, Chen S. 2015. Recent advances and challenges in plant phosphoproteomics. Proteomics 15:1127−41 doi: 10.1002/pmic.201400410
CrossRef Google Scholar
|
[6]
|
Chao J, Huang Z, Yang S, Deng X, Tian W. 2020. Genome-wide identification and expression analysis of the phosphatase 2A family in rubber tree (Hevea brasiliensis). PLoS One 15:e0228219 doi: 10.1371/journal.pone.0228219
CrossRef Google Scholar
|
[7]
|
Dephoure N, Gould KL, Gygi SP, Kellogg DR. 2013. Mapping and analysis of phosphorylation sites: A quick guide for cell biologists. Molecular Biology of The Cell 24:535−42 doi: 10.1091/mbc.e12-09-0677
CrossRef Google Scholar
|
[8]
|
Vu LD, Stes E, Bel MV, Nelissen H, Maddelein D, et al. 2016. An up-to date workflow for plant (phospho) proteomics identifies differential drought-responsive, phosphorylation events in Maize leaves. Journal of Proteome Research 15:4304−17 doi: 10.1021/acs.jproteome.6b00348
CrossRef Google Scholar
|
[9]
|
Zhang Z, Ke D, Hu M, Zhang C, Deng L, et al. 2019. Quantitative phosphoproteomic analyses provide evidence for extensive phosphorylation of regulatory proteins in the rhizobia-legume symbiosis. Plant Molecular Biology 100:265−83 doi: 10.1007/s11103-019-00857-3
CrossRef Google Scholar
|
[10]
|
Hakimi NMF, Lee SH, Lum WC, Mohamad SF, Osman Al Edrus SS, et al. 2021. Surface Modified Nanocellulose and Its Reinforcement in Natural Rubber Matrix Nanocomposites: A Review. Polymers 13:3241 doi: 10.3390/polym13193241
CrossRef Google Scholar
|
[11]
|
Cherian S, Ryu SB, Cornish K. 2019. Natural rubber biosynthesis in plants, the rubber transferase complex, and metabolic engineering progress and prospects. Plant Biotechnology Journal 17:2041−61 doi: 10.1111/pbi.13181
CrossRef Google Scholar
|
[12]
|
Priyadarshan PM, Goncalves PDS. 2003. Hevea gene pool for breeding. Genetic Resources and Crop Evolution 50:101−114 doi: 10.1023/A:1022972320696
CrossRef Google Scholar
|
[13]
|
Hao BZ, Wu JL. 2000. Laticifer differentiation in Hevea brasiliensis: induction by exogenous jasmonic acid and linolenic acid. Annals of Botany 85:37−43 doi: 10.1006/anbo.1999.0995
CrossRef Google Scholar
|
[14]
|
Wang KLC, Li H, Ecker JR. 2002. Ethylene biosynthesis and signaling networks. The Plant Cell 14:S131−S151 doi: 10.1105/tpc.001768
CrossRef Google Scholar
|
[15]
|
Dubois M, Van den Broeck L, Inzé D. 2018. The pivotal role of ethylene in plant growth. Trends In Plant Science 23:311−23 doi: 10.1016/j.tplants.2018.01.003
CrossRef Google Scholar
|
[16]
|
Nakano Y, Mitsuda N, Ide K, Mori T, Mira FR, et al. 2021. Transcriptome analysis of Pará rubber tree (H. brasiliensis) seedlings under ethylene stimulation. BMC Plant Biology 21:420 doi: 10.1186/s12870-021-03196-y
CrossRef Google Scholar
|
[17]
|
Liu JP, Zhuang YF, Guo XL, Li YJ. 2016. Molecular mechanism of ethylene stimulation of latex yield in rubber tree (Hevea brasiliensis) revealed by de novo sequencing and transcriptome analysis. BMC Genomics 17:257 doi: 10.1186/s12864-016-2587-4
CrossRef Google Scholar
|
[18]
|
Wang D, Xie Q, Sun Y, Tong Z, Chang L, et al. 2019. Proteomic Landscape Has Revealed Small Rubber Particles Are Crucial Rubber Biosynthetic Machines for Ethylene-Stimulation in Natural Rubber Production. International Journal of Molecular Sciences 20:5082 doi: 10.3390/ijms20205082
CrossRef Google Scholar
|
[19]
|
Dai L, Kang G, Nie Z, Li Y, Zeng R. 2016. Comparative proteomic analysis of latex from Hevea brasiliensis treated with Ethrel and methyl jasmonate using iTRAQ-coupled two-dimensional LC-MS/MS. Journal of Proteomics 132:167−75 doi: 10.1016/j.jprot.2015.11.012
CrossRef Google Scholar
|
[20]
|
Wang X, Wang D, Sun Y, Yang Q, Chang L, et al. 2015. Comprehensive Proteomics Analysis of Laticifer Latex Reveals New Insights into Ethylene Stimulation of Natural Rubber Production. Scientific Reports 5:13778 doi: 10.1038/srep13778
CrossRef Google Scholar
|
[21]
|
Chao J, Yang S, Chen Y, Tian WM. 2017. Transcript Profiling of Hevea brasiliensis during Latex Flow. Frontiers in Plant Science 8:1904 doi: 10.3389/fpls.2017.01904
CrossRef Google Scholar
|
[22]
|
Wang X, Shi M, Lu X, Ma R, Wu C, et al. 2010. A method for protein extraction from different subcellular fractions of laticifer latex in Hevea brasiliensis compatible with 2-DE and MS. Proteome Science 8:35 doi: 10.1186/1477-5956-8-35
CrossRef Google Scholar
|
[23]
|
Chao J, Wu S, Shi M, Xu X, Gao Q, et al. 2023. Genomic insight into domestication of rubber tree. Nature Communications 14:4651 doi: 10.1038/s41467-023-40304-y
CrossRef Google Scholar
|
[24]
|
Lee TY, Lin ZQ, Hsieh SJ, Bretaña NA, Lu CT. 2011. Exploiting maximal dependence decomposition to identify conserved motifs from a group of aligned signal sequences. Bioinformatics 27:1780−87 doi: 10.1093/bioinformatics/btr291
CrossRef Google Scholar
|
[25]
|
Amagai A, Honda Y, Ishikawa S, Hara Y, Kuwamura M, et al. 2018. Phosphoproteomic profiling reveals ABA-responsive phosphosignaling pathways in Physcomitrella patens. The Plant Journal 94:699−708 doi: 10.1111/tpj.13891
CrossRef Google Scholar
|
[26]
|
Ji J, Yang L, Fang Z, Zhang Y, Zhuang M, et al. 2022. Plant SWEET Family of Sugar Transporters: Structure, Evolution and Biological Functions. Biomolecules 12:205 doi: 10.3390/biom12020205
CrossRef Google Scholar
|
[27]
|
Chen Q, Hu T, Li X, Song CP, Zhu JK, et al. 2022. Phosphorylation of SWEET sucrose transporters regulates plant root: shoot ratio under drought. Nature Plants 8:68−77 doi: 10.1038/s41477-021-01040-7
CrossRef Google Scholar
|
[28]
|
Tang C, Huang D, Yang J, Liu S, Sakr S, et al. 2010. The sucrose transporter HbSUT3 plays an active role in sucrose loading to laticifer and rubber productivity in exploited trees of Hevea brasiliensis (para rubber tree). Plant Cell and Environment 33:1708−20 doi: 10.1111/j.1365-3040.2010.02175.x
CrossRef Google Scholar
|
[29]
|
Kitajima S, Sakakibara R, Uyeda K. 1983. Significance of phosphorylation of phosphofructokinase. Journal of Biological Chemistry 258:13292−98 doi: 10.1016/S0021-9258(17)44115-9
CrossRef Google Scholar
|
[30]
|
Ren M, Yang X, Bie J, Wang Z, Liu M, et al. 2020. Citrate synthase desuccinylation by SIRT5 promotes colon cancer cell proliferation and migration. Biological Chemistry 401:1031−1039 doi: 10.1515/hsz-2020-0118
CrossRef Google Scholar
|
[31]
|
Wei H, Xu C, Movahedi A, Sun W, Li D, et al. 2019. Characterization and function of 3-hydroxy-3-methylglutaryl-CoA reductase in Populus trichocarpa: Overexpression of PtHMGR enhances terpenoids in transgenic poplar. Frontiers in Plant Science 10:1476 doi: 10.3389/fpls.2019.01476
CrossRef Google Scholar
|
[32]
|
Shi MJ, Cai FG, Tian WM. 2016. Ethrel-stimulated prolongation of latex flow in the rubber tree (Hevea brasiliensis Muell. Arg.): an Hev b 7-like protein acts as a universal antagonist of rubber particle aggregating factors from lutoids and C-serum. Journal Of Biochemistry 159:209−16 doi: 10.1093/jb/mvv095
CrossRef Google Scholar
|
[33]
|
Xin X, Wei D, Lei L, Zheng H, Wallace IS, et al. 2023. CALCIUM-DEPENDENT PROTEIN KINASE32 regulates cellulose biosynthesis through post-translational modification of cellulose synthase. New Phytologist 239:2212−2224 doi: 10.1111/nph.19106
CrossRef Google Scholar
|
[34]
|
Shi M, Li Y, Deng S, Wang D, Chen Y, et al. 2019. The formation and accumulation of protein-networks by physical interactions in the rapid occlusion of laticifer cells in rubber tree undergoing successive mechanical wounding. BMC Plant Biology 19:8 doi: 10.1186/s12870-018-1617-6
CrossRef Google Scholar
|
[35]
|
Kohama K, Kohno T, Okagaki T, Shimmen, T. 1991. Role of actin in the myosin-linked Ca2+-regulation of ATP-dependent interaction between actin and myosin of a lower eukaryote, Physarum polycephalum. Journal of Biochemistry 110:508−513 doi: 10.1093/oxfordjournals.jbchem.a123611
CrossRef Google Scholar
|
[36]
|
Zhang Y, Leclercq J, Montoro P. 2017. Reactive oxygen species in Hevea brasiliensis latex and relevance to Tapping Panel Dryness. Tree Physiology 37:261−269 doi: 10.1093/treephys/tpw106
CrossRef Google Scholar
|
[37]
|
Csar XF, Wilson NJ, Strike P, Sparrow L, McMahon KA, et al. 2001. Copper/zinc superoxide dismutase is phosphorylated and modulated specifically by granulocyte-colony stimulating factor in myeloid cells. Proteomics 1:435−43 doi: 10.1002/1615-9861(200103)1:3<435::AID-PROT435>3.0.CO;2-Q
CrossRef Google Scholar
|