[1]
|
Kagale S, Robinson SJ, Nixon J, Xiao R, Huebert T, et al. 2014. Polyploid evolution of the Brassicaceae during the Cenozoic era. The Plant Cell 26:2777−91 doi: 10.1105/tpc.114.126391
CrossRef Google Scholar
|
[2]
|
Qi X, An H, Hall TE, Di C, Blischak PD, et al. 2021. Genes derived from ancient polyploidy have higher genetic diversity and are associated with domestication in Brassica rapa. New Phytologist 230:372−86 doi: 10.1111/nph.17194
CrossRef Google Scholar
|
[3]
|
Barker MS, Arrigo N, Baniaga AE, Li Z, Levin DA. 2016. On the relative abundance of autopolyploids and allopolyploids. New Phytologist 210:391−98 doi: 10.1111/nph.13698
CrossRef Google Scholar
|
[4]
|
Huang S, Li R, Zhang Z, Li L, Gu X, et al. 2009. The genome of the cucumber, Cucumis sativus L. Nature Genetics 41:1275−81 doi: 10.1038/ng.475
CrossRef Google Scholar
|
[5]
|
Yu T, Ma X, Liu Z, Feng X, Wang Z, et al. 2022. TVIR: a comprehensive vegetable information resource database for comparative and functional genomic studies. Horticulture Research 9:uhac213 doi: 10.1093/hr/uhac213
CrossRef Google Scholar
|
[6]
|
Edger PP, Heidel-Fischer HM, Bekaert M, Rota J, Glöckner G, et al. 2015. The butterfly plant arms-race escalated by gene and genome duplications. Proceedings of the National Academy of Sciences of the United States of America 112:8362−66 doi: 10.1073/pnas.1503926112
CrossRef Google Scholar
|
[7]
|
Jiao Y, Li J, Tang H, Paterson AH. 2014. Integrated syntenic and phylogenomic analyses reveal an ancient genome duplication in monocots. The Plant Cell 26:2792−802 doi: 10.1105/tpc.114.127597
CrossRef Google Scholar
|
[8]
|
Jiao Y, Leebens-Mack J, Ayyampalayam S, Bowers JE, McKain MR, et al. 2012. A genome triplication associated with early diversification of the core eudicots. Genome Biology 13:R3 doi: 10.1186/gb-2012-13-1-r3
CrossRef Google Scholar
|
[9]
|
Chanderbali AS, Jin L, Xu Q, Zhang Y, Zhang J, et al. 2022. Buxus and Tetracentron genomes help resolve eudicot genome history. Nature Communications 13:643 doi: 10.1038/s41467-022-28312-w
CrossRef Google Scholar
|
[10]
|
Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, et al. 2011. Ancestral polyploidy in seed plants and angiosperms. Nature 473:97−100 doi: 10.1038/nature09916
CrossRef Google Scholar
|
[11]
|
Soltis DE, Burleigh JG. 2009. Surviving the K-T mass extinction: new perspectives of polyploidization in angiosperms. Proceedings of the National Academy of Sciences of the United States of America 106:5455−56 doi: 10.1073/pnas.0901994106
CrossRef Google Scholar
|
[12]
|
Pfeil BE, Schlueter JA, Shoemaker RC, Doyle JJ. 2005. Placing paleopolyploidy in relation to taxon divergence: a phylogenetic analysis in legumes using 39 gene families. Systematic Biology 54:441−54 doi: 10.1080/10635150590945359
CrossRef Google Scholar
|
[13]
|
Zenil-Ferguson R, Burleigh JG, Freyman WA, Igić B, Mayrose I, et al. 2019. Interaction among ploidy, breeding system and lineage diversification. New Phytologist 224:1252−65 doi: 10.1111/nph.16184
CrossRef Google Scholar
|
[14]
|
Liu Y, Yu Y, Sun J, Cao Q, Tang Z, et al. 2019. Root-zone-specific sensitivity of K+-and Ca2+-permeable channels to H2O2 determines ion homeostasis in salinized diploid and hexaploid Ipomoea trifida. Journal of Experimental Botany 70:1389−405 doi: 10.1093/jxb/ery461
CrossRef Google Scholar
|
[15]
|
Chao D, Dilkes B, Luo H, Douglas A, Yakubova E, et al. 2013. Polyploids exhibit higher potassium uptake and salinity tolerance in Arabidopsis. Science 341:658−59 doi: 10.1126/science.1240561
CrossRef Google Scholar
|
[16]
|
Ruiz M, Quiñones A, Martínez-Cuenca MR, Aleza P, Morillon R, et al. 2016. Tetraploidy enhances the ability to exclude chloride from leaves in carrizo citrange seedlings. Journal of Plant Physiology 205:1−10 doi: 10.1016/j.jplph.2016.08.002
CrossRef Google Scholar
|
[17]
|
Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, et al. 2009. The frequency of polyploid speciation in vascular plants. Proceedings of the National Academy of Sciences of the United States of America 106:13875−79 doi: 10.1073/pnas.0811575106
CrossRef Google Scholar
|
[18]
|
Kates HR, Johnson MG, Gardner EM, Zerega NJC, Wickett NJ. 2018. Allele phasing has minimal impact on phylogenetic reconstruction from targeted nuclear gene sequences in a case study of Artocarpus. American Journal of Botany 105:404−16 doi: 10.1002/ajb2.1068
CrossRef Google Scholar
|
[19]
|
Kamneva OK, Syring J, Liston A, Rosenberg NA. 2017. Evaluating allopolyploid origins in strawberries (Fragaria) using haplotypes generated from target capture sequencing. BMC Evolutionary Biology 17:180 doi: 10.1186/s12862-017-1019-7
CrossRef Google Scholar
|
[20]
|
Chawla HS, Lee H, Gabur I, Vollrath P, Tamilselvan-Nattar-Amutha S, et al. 2021. Long-read sequencing reveals widespread intragenic structural variants in a recent allopolyploid crop plant. Plant Biotechnology Journal 19:240−50 doi: 10.1111/pbi.13456
CrossRef Google Scholar
|
[21]
|
Zhou Q, Tang D, Huang W, Yang Z, Zhang Y, et al. 2020. Haplotype-resolved genome analyses of a heterozygous diploid potato. Nature Genetics 52:1018−23 doi: 10.1038/s41588-020-0699-x
CrossRef Google Scholar
|
[22]
|
Wang F, Xia Z, Zou M, Zhao L, Jiang S, et al. 2022. The autotetraploid potato genome provides insights into highly heterozygous species. Plant Biotechnology Journal 20:1996−2005 doi: 10.1111/pbi.13883
CrossRef Google Scholar
|
[23]
|
He Z, Ji R, Havlickova L, Wang L, Li Y, et al. 2021. Genome structural evolution in Brassica crops. Nature Plants 7:757−65 doi: 10.1038/s41477-021-00928-8
CrossRef Google Scholar
|
[24]
|
Cai X, Chang L, Zhang T, Chen H, Zhang L, et al. 2021. Impacts of allopolyploidization and structural variation on intraspecific diversification in Brassica rapa. Genome Biology 22:166 doi: 10.1186/s13059-021-02383-2
CrossRef Google Scholar
|
[25]
|
Hirakawa H, Shirasawa K, Kosugi S, Tashiro K, Nakayama S, et al. 2014. Dissection of the octoploid strawberry genome by deep sequencing of the genomes of Fragaria species. DNA Research 21:169−81 doi: 10.1093/dnares/dst049
CrossRef Google Scholar
|
[26]
|
Yu X, Wang P, Li J, Zhao Q, Ji C, et al. 2021. Whole-genome sequence of synthesized allopolyploids in Cucumis reveals insights into the genome evolution of allopolyploidization. Advanced Science 8:2004222 doi: 10.1002/advs.202004222
CrossRef Google Scholar
|
[27]
|
Wang M, Tu L, Yuan D, Zhu D, Shen C, et al. 2019. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nature Genetics 51:224−29 doi: 10.1038/s41588-018-0282-x
CrossRef Google Scholar
|
[28]
|
Wang K, Wang J, Zhu C, Yang L, Ren Y, et al. 2021. African lungfish genome sheds light on the vertebrate water-to-land transition. Cell 184:1362−1376.e18 doi: 10.1016/j.cell.2021.01.047
CrossRef Google Scholar
|
[29]
|
Matthews BJ, Dudchenko O, Kingan SB, Koren S, Antoshechkin I, et al. 2018. Improved reference genome of Aedes aegypti informs arbovirus vector control. Nature 563:501−07 doi: 10.1038/s41586-018-0692-z
CrossRef Google Scholar
|
[30]
|
Zhang X, Zhang S, Zhao Q, Ming R, Tang H. 2019. Assembly of allele-aware, chromosomal-scale autopolyploid genomes based on Hi-C data. Nature Plants 5:833−45 doi: 10.1038/s41477-019-0487-8
CrossRef Google Scholar
|
[31]
|
Schrinner SD, Mari RS, Ebler J, Rautiainen M, Seillier L, et al. 2020. Haplotype threading: accurate polyploid phasing from long reads. Genome Biology 21:252 doi: 10.1186/s13059-020-02158-1
CrossRef Google Scholar
|
[32]
|
Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, et al. 2017. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Research 27:722−36 doi: 10.1101/gr.215087.116
CrossRef Google Scholar
|
[33]
|
Cheng H, Concepcion GT, Feng X, Zhang H, Li H. 2021. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nature Methods 18:170−75 doi: 10.1038/s41592-020-01056-5
CrossRef Google Scholar
|
[34]
|
Zhang J, Zhang X, Tang H, Zhang Q, Hua X, et al. 2018. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nature Genetics 50:1565−73 doi: 10.1038/s41588-018-0237-2
CrossRef Google Scholar
|
[35]
|
Zhou C, Olukolu B, Gemenet DC, Wu S, Gruneberg W, et al. 2020. Assembly of whole-chromosome pseudomolecules for polyploid plant genomes using outbred mapping populations. Nature Genetics 52:1256−64 doi: 10.1038/s41588-020-00717-7
CrossRef Google Scholar
|
[36]
|
Chen H, Zeng Y, Yang Y, Huang L, Tang B, et al. 2020. Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nature Communications 11:2494 doi: 10.1038/s41467-020-16338-x
CrossRef Google Scholar
|
[37]
|
Wang Y, Yu J, Jiang M, Lei W, Zhang X, et al. 2023. Sequencing and assembly of polyploid genomes. In Polyploidy, ed. Van de Peer Y, volume 2545. New York, NY: Humana. pp. 429–58 https://doi.org/10.1007/978-1-0716-2561-3_23
|
[38]
|
Xu X, Pan S, Cheng S, Zhang B, Mu D, et al. 2011. Genome sequence and analysis of the tuber crop potato. Nature 475:189−95 doi: 10.1038/nature10158
CrossRef Google Scholar
|
[39]
|
Sato S, Tabata S, Hirakawa H, Asamizu E, Shirasawa K, et al. 2012. The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635−41 doi: 10.1038/nature11119
CrossRef Google Scholar
|
[40]
|
Chalhoub B, Denoeud F, Liu S, Parkin IAP, Tang H, et al. 2014. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950−53 doi: 10.1126/science.1253435
CrossRef Google Scholar
|
[41]
|
Kagale S, Koh C, Nixon J, Bollina V, Clarke WE, et al. 2014. The emerging biofuel crop Camelina sativa retains a highly undifferentiated hexaploid genome structure. Nature Communications 5:3706 doi: 10.1038/ncomms4706
CrossRef Google Scholar
|
[42]
|
Parkin IAP, Koh C, Tang H, Robinson SJ, Kagale S, et al. 2014. Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biology 15:R77 doi: 10.1186/gb-2014-15-6-r77
CrossRef Google Scholar
|
[43]
|
Yang J, Liu D, Wang X, Ji C, Cheng F, et al. 2016. The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nature Genetics 48:1225−32 doi: 10.1038/ng.3657
CrossRef Google Scholar
|
[44]
|
Sun H, Wu S, Zhang G, Jiao C, Guo S, et al. 2017. Karyotype stability and unbiased fractionation in the paleo-allotetraploid Cucurbita genomes. Molecular Plant 10:1293−306 doi: 10.1016/j.molp.2017.09.003
CrossRef Google Scholar
|
[45]
|
Reyes-Chin-Wo S, Wang Z, Yang X, Kozik A, Arikit S, et al. 2017. Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce. Nature Communications 8:14953 doi: 10.1038/ncomms14953
CrossRef Google Scholar
|
[46]
|
Edger PP, Poorten TJ, VanBuren R, Hardigan MA, Colle M, et al. 2019. Origin and evolution of the octoploid strawberry genome. Nature Genetics 51:541−47 doi: 10.1038/s41588-019-0356-4
CrossRef Google Scholar
|
[47]
|
Sun D, Wang C, Zhang X, Zhang W, Jiang H, et al. 2019. Draft genome sequence of cauliflower (Brassica oleracea L. var. botrytis) provides new insights into the C genome in Brassica species. Horticulture Research 6:82 doi: 10.1038/s41438-019-0164-0
CrossRef Google Scholar
|
[48]
|
Song J, Guan Z, Hu J, Guo C, Yang Z, et al. 2020. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nature Plants 6:34−45 doi: 10.1038/s41477-019-0577-7
CrossRef Google Scholar
|
[49]
|
Shen C, Du H, Chen Z, Lu H, Zhu F, et al. 2020. The chromosome-level genome sequence of the autotetraploid alfalfa and resequencing of core germplasms provide genomic resources for alfalfa research. Molecular Plant 13:1250−61 doi: 10.1016/j.molp.2020.07.003
CrossRef Google Scholar
|
[50]
|
Lv H, Wang Y, Han F, Ji J, Fang Z, et al. 2020. A high-quality reference genome for cabbage obtained with SMRT reveals novel genomic features and evolutionary characteristics. Scientific Reports 10:12394 doi: 10.1038/s41598-020-69389-x
CrossRef Google Scholar
|
[51]
|
Wei Q, Wang J, Wang W, Hu T, Hu H, et al. 2020. A high-quality chromosome-level genome assembly reveals genetics for important traits in eggplant. Horticulture Research 7:153 doi: 10.1038/s41438-020-00391-0
CrossRef Google Scholar
|
[52]
|
Sun X, Zhu S, Li N, Cheng Y, Zhao J, et al. 2020. A chromosome-level genome assembly of garlic (Allium sativum) provides insights into genome evolution and allicin biosynthesis. Molecular Plant 13:1328−39 doi: 10.1016/j.molp.2020.07.019
CrossRef Google Scholar
|
[53]
|
Chen X, Tong C, Zhang X, Song A, Hu M, et al. 2021. A high-quality Brassica napus genome reveals expansion of transposable elements, subgenome evolution and disease resistance. Plant Biotechnology Journal 19:615−30 doi: 10.1111/pbi.13493
CrossRef Google Scholar
|
[54]
|
Paritosh K, Yadava SK, Singh P, Bhayana L, Mukhopadhyay A, et al. 2021. A chromosome-scale assembly of allotetraploid Brassica juncea (AABB) elucidates comparative architecture of the A and B genomes. Plant Biotechnology Journal 19:602−14 doi: 10.1111/pbi.13492
CrossRef Google Scholar
|
[55]
|
Kang L, Qian L, Zheng M, Chen L, Chen H, et al. 2021. Genomic insights into the origin, domestication and diversification of Brassica juncea. Nature Genetics 53:1392−402 doi: 10.1038/s41588-021-00922-y
CrossRef Google Scholar
|
[56]
|
Guo N, Wang S, Gao L, Liu Y, Wang X, et al. 2021. Genome sequencing sheds light on the contribution of structural variants to Brassica oleracea diversification. BMC Biology 19:93 doi: 10.1186/s12915-021-01031-2
CrossRef Google Scholar
|
[57]
|
Sun H, Jiao W, Krause K, Campoy JA, Goel M, et al. 2022. Chromosome-scale and haplotype-resolved genome assembly of a tetraploid potato cultivar. Nature Genetics 54:342−48 doi: 10.1038/s41588-022-01015-0
CrossRef Google Scholar
|
[58]
|
Liao Y, Wang J, Zhu Z, Liu Y, Chen J, et al. 2022. The 3D architecture of the pepper genome and its relationship to function and evolution. Nature Communications 13:3479 doi: 10.1038/s41467-022-31112-x
CrossRef Google Scholar
|
[59]
|
Zhang X, Zhang S, Liu Z, Zhao W, Zhang X, et al. 2023. Characterization and acceleration of genome shuffling and ploidy reduction in synthetic allopolyploids by genome sequencing and editing. Nucleic Acids Research 51:198−217 doi: 10.1093/nar/gkac1209
CrossRef Google Scholar
|
[60]
|
Jayakodi M, Golicz AA, Kreplak J, Fechete LI, Angra D, et al. 2023. The giant diploid faba genome unlocks variation in a global protein crop. Nature 615:652−59 doi: 10.1038/s41586-023-05791-5
CrossRef Google Scholar
|
[61]
|
Shen F, Qin Y, Wang R, Huang X, Wang Y, et al. 2023. Comparative genomics reveals a unique nitrogen-carbon balance system in Asteraceae. Nature Communications 14:4334 doi: 10.1038/s41467-023-40002-9
CrossRef Google Scholar
|
[62]
|
Wong GKS, Soltis DE, Leebens-Mack J, Wickett NJ, Barker MS, et al. 2020. Sequencing and analyzing the transcriptomes of a thousand species across the tree of life for green plants. Annual Review of Plant Biology 71:741−65 doi: 10.1146/annurev-arplant-042916-041040
CrossRef Google Scholar
|
[63]
|
Wang J, Sun P, Li Y, Liu Y, Yang N, et al. 2018. An overlooked paleotetraploidization in Cucurbitaceae. Molecular Biology and Evolution 35:16−26 doi: 10.1093/molbev/msx242
CrossRef Google Scholar
|
[64]
|
Sun X, Feng D, Liu M, Qin R, Li Y, et al. 2022. Single-cell transcriptome reveals dominant subgenome expression and transcriptional response to heat stress in Chinese cabbage. Genome Biology 23:262 doi: 10.1186/s13059-022-02834-4
CrossRef Google Scholar
|
[65]
|
McClintock B. 1984. The significance of responses of the genome to challenge. Science 226:792−801 doi: 10.1126/science.15739260
CrossRef Google Scholar
|
[66]
|
Li Z, McKibben MTW, Finch GS, Blischak PD, Sutherland BL, et al. 2021. Patterns and processes of diploidization in land plants. Annual Review of Plant Biology 72:387−410 doi: 10.1146/annurev-arplant-050718-100344
CrossRef Google Scholar
|
[67]
|
Zou J, Mao L, Qiu J, Wang M, Jia L, et al. 2019. Genome-wide selection footprints and deleterious variations in young Asian allotetraploid rapeseed. Plant Biotechnology Journal 17:1998−2010 doi: 10.1111/pbi.13115
CrossRef Google Scholar
|
[68]
|
Zhang Z, Gou X, Xun H, Bian Y, Ma X, et al. 2020. Homoeologous exchanges occur through intragenic recombination generating novel transcripts and proteins in wheat and other polyploids. Proceedings of the National Academy of Sciences of the United States of America 117:14561−71 doi: 10.1073/pnas.2003505117
CrossRef Google Scholar
|
[69]
|
Gonzalo A, Lucas MO, Charpentier C, Sandmann G, Lloyd A, et al. 2019. Reducing MSH4 copy number prevents meiotic crossovers between non-homologous chromosomes in Brassica napus. Nature Communications 10:2354 doi: 10.1038/s41467-019-10010-9
CrossRef Google Scholar
|
[70]
|
Hurgobin B, Golicz AA, Bayer PE, Chan CKK, Tirnaz S, et al. 2018. Homoeologous exchange is a major cause of gene presence/absence variation in the amphidiploid Brassica napus. Plant Biotechnology Journal 16:1265−74 doi: 10.1111/pbi.12867
CrossRef Google Scholar
|
[71]
|
Lloyd A, Blary A, Charif D, Charpentier C, Tran J, et al. 2018. Homoeologous exchanges cause extensive dosage-dependent gene expression changes in an allopolyploid crop. New Phytologist 217:367−77 doi: 10.1111/nph.14836
CrossRef Google Scholar
|
[72]
|
Zhang H, Bian Y, Gou X, Zhu B, Xu C, et al. 2013. Persistent whole-chromosome aneuploidy is generally associated with nascent allohexaploid wheat. Proceedings of the National Academy of Sciences of the United States of America 110:3447−52 doi: 10.1073/pnas.1300153110
CrossRef Google Scholar
|
[73]
|
Glover NM, Redestig H, Dessimoz C. 2016. Homoeologs: what are they and how do we infer them? Trends in Plant Science 21:609−21 doi: 10.1016/j.tplants.2016.02.005
CrossRef Google Scholar
|
[74]
|
Ferreira de Carvalho J, Stoeckel S, Eber F, Lodé-Taburel M, Gilet MM, et al. 2021. Untangling structural factors driving genome stabilization in nascent Brassica napus allopolyploids. New Phytologist 230:2072−84 doi: 10.1111/nph.17308
CrossRef Google Scholar
|
[75]
|
Bayer PE, Scheben A, Golicz AA, Yuan Y, Faure S, et al. 2021. Modelling of gene loss propensity in the pangenomes of three Brassica species suggests different mechanisms between polyploids and diploids. Plant Biotechnology Journal 19:2488−500 doi: 10.1111/pbi.13674
CrossRef Google Scholar
|
[76]
|
Higgins EE, Howell EC, Armstrong SJ, Parkin IAP. 2021. A major quantitative trait locus on chromosome A9, BnaPh1, controls homoeologous recombination in Brassica napus. New Phytologist 229:3281−93 doi: 10.1111/nph.16986
CrossRef Google Scholar
|
[77]
|
Lysak MA, Berr A, Pecinka A, Schmidt R, McBreen K, et al. 2006. Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proceedings of the National Academy of Sciences of the United States of America 103:5224−29 doi: 10.1073/pnas.0510791103
CrossRef Google Scholar
|
[78]
|
Bird KA, VanBuren R, Puzey JR, Edger PP. 2018. The causes and consequences of subgenome dominance in hybrids and recent polyploids. New Phytologist 220:87−93 doi: 10.1111/nph.15256
CrossRef Google Scholar
|
[79]
|
Alger EI, Edger PP. 2020. One subgenome to rule them all: underlying mechanisms of subgenome dominance. Current Opinion in Plant Biology 54:108−13 doi: 10.1016/j.pbi.2020.03.004
CrossRef Google Scholar
|
[80]
|
Edger PP, Smith R, McKain MR, Cooley AM, Vallejo-Marin M, et al. 2017. Subgenome dominance in an interspecific hybrid, synthetic allopolyploid, and a 140-year-old naturally established neo-allopolyploid monkeyflower. The Plant Cell 29:2150−67 doi: 10.1105/tpc.17.00010
CrossRef Google Scholar
|
[81]
|
Bird KA, Niederhuth CE, Ou S, Gehan M, Pires JC, et al. 2021. Replaying the evolutionary tape to investigate subgenome dominance in allopolyploid Brassica napus. New Phytologist 230:354−71 doi: 10.1111/nph.17137
CrossRef Google Scholar
|
[82]
|
Li M, Sun W, Wang F, Wu X, Wang J. 2021. Asymmetric epigenetic modification and homoeolog expression bias in the establishment and evolution of allopolyploid Brassica napus. New Phytologist 232:898−913 doi: 10.1111/nph.17621
CrossRef Google Scholar
|
[83]
|
Gao P, Quilichini TD, Yang H, Li Q, Nilsen KT, et al. 2022. Evolutionary divergence in embryo and seed coat development of U's Triangle Brassica species illustrated by a spatiotemporal transcriptome atlas. New Phytologist 233:30−51 doi: 10.1111/nph.17759
CrossRef Google Scholar
|
[84]
|
Zhang K, Zhang L, Cui Y, Yang Y, Wu J, et al. 2023. The lack of negative association between TE load and subgenome dominance in synthesized Brassica allotetraploids. Proceedings of the National Academy of Sciences of the United States of America 120:e2305208120 doi: 10.1073/pnas.2305208120
CrossRef Google Scholar
|
[85]
|
Martinez Palacios P, Jacquemot MP, Tapie M, Rousselet A, Diop M, et al. 2019. Assessing the response of small RNA populations to allopolyploidy using resynthesized Brassica napus allotetraploids. Molecular Biology and Evolution 36:709−26 doi: 10.1093/molbev/msz007
CrossRef Google Scholar
|
[86]
|
Jiao W, Yuan J, Jiang S, Liu Y, Wang L, et al. 2018. Asymmetrical changes of gene expression, small RNAs and chromatin in two resynthesized wheat allotetraploids. The Plant Journal 93:828−42 doi: 10.1111/tpj.13805
CrossRef Google Scholar
|
[87]
|
Wendel JF, Lisch D, Hu G, Mason AS. 2018. The long and short of doubling down: polyploidy, epigenetics, and the temporal dynamics of genome fractionation. Current Opinion in Genetics & Development 49:1−7 doi: 10.1016/j.gde.2018.01.004
CrossRef Google Scholar
|
[88]
|
Zhang Q, Guan P, Zhao L, Ma M, Xie L, et al. 2021. Asymmetric epigenome maps of subgenomes reveal imbalanced transcription and distinct evolutionary trends in Brassica napus. Molecular Plant 14:604−19 doi: 10.1016/j.molp.2020.12.020
CrossRef Google Scholar
|
[89]
|
Colle M, Leisner CP, Wai CM, Ou S, Bird KA, et al. 2019. Haplotype-phased genome and evolution of phytonutrient pathways of tetraploid blueberry. GigaScience 8:giz012 doi: 10.1093/gigascience/giz012
CrossRef Google Scholar
|
[90]
|
Sashidhar N, Harloff HJ, Jung C. 2020. Identification of phytic acid mutants in oilseed rape (Brassica napus) by large-scale screening of mutant populations through amplicon sequencing. New Phytologist 225:2022−34 doi: 10.1111/nph.16281
CrossRef Google Scholar
|
[91]
|
Sashidhar N, Harloff HJ, Potgieter L, Jung C. 2020. Gene editing of three BnITPK genes in tetraploid oilseed rape leads to significant reduction of phytic acid in seeds. Plant Biotechnology Journal 18:2241−50 doi: 10.1111/pbi.13380
CrossRef Google Scholar
|
[92]
|
Yang J, Wang J, Li Z, Li X, He Z, et al. 2021. Genomic signatures of vegetable and oilseed allopolyploid Brassica juncea and genetic loci controlling the accumulation of glucosinolates. Plant Biotechnology Journal 19:2619−28 doi: 10.1111/pbi.13687
CrossRef Google Scholar
|
[93]
|
Guo X, Liang J, Lin R, Zhang L, Zhang Z, et al. 2022. Single-cell transcriptome reveals differentiation between adaxial and abaxial mesophyll cells in Brassica rapa. Plant Biotechnology Journal 20:2233−35 doi: 10.1111/pbi.13919
CrossRef Google Scholar
|
[94]
|
McLeod L, Barchi L, Tumino G, Tripodi P, Salinier J, et al. 2023. Multi-environment association study highlights candidate genes for robust agronomic quantitative trait loci in a novel worldwide Capsicum core collection. The Plant Journal 116:1508−28 doi: 10.1111/tpj.16425
CrossRef Google Scholar
|
[95]
|
Sumitomo K, Shirasawa K, Isobe S, Hirakawa H, Hisamatsu T, et al. 2019. Genome-wide association study overcomes the genome complexity in autohexaploid chrysanthemum and tags SNP markers onto the flower color genes. Scientific Reports 9:13947 doi: 10.1038/s41598-019-50028-z
CrossRef Google Scholar
|
[96]
|
Yang X, Luo Z, Todd J, Sood S, Wang J. 2020. Genome-wide association study of multiple yield traits in a diversity panel of polyploid sugarcane (Saccharum spp.). The Plant Genome 13:e20006 doi: 10.1002/tpg2.20006
CrossRef Google Scholar
|
[97]
|
Zhang F, Qu L, Gu Y, Xu Z, Xue H. 2022. Resequencing and genome-wide association studies of autotetraploid potato. Molecular Horticulture 2:6 doi: 10.1186/s43897-022-00027-y
CrossRef Google Scholar
|
[98]
|
Xuan L, Yan T, Lu L, Zhao X, Wu D, et al. 2020. Genome-wide association study reveals new genes involved in leaf trichome formation in polyploid oilseed rape (Brassica napus L.). Plant, Cell & Environment 43:675−91 doi: 10.1111/pce.13694
CrossRef Google Scholar
|
[99]
|
Fan Z, Tieman DM, Knapp SJ, Zerbe P, Famula R, et al. 2022. A multi-omics framework reveals strawberry flavor genes and their regulatory elements. New Phytologist 236:1089−107 doi: 10.1111/nph.18416
CrossRef Google Scholar
|
[100]
|
Wu Y, Li D, Hu Y, Li H, Ramstein GP, et al. 2023. Phylogenomic discovery of deleterious mutations facilitates hybrid potato breeding. Cell 186:2313−2328.e15 doi: 10.1016/j.cell.2023.04.008
CrossRef Google Scholar
|