[1]
|
Giovannoni JJ. 2004. Genetic regulation of fruit development and ripening. The Plant Cell 16:S170−S180 doi: 10.1105/tpc.019158
CrossRef Google Scholar
|
[2]
|
Fait A, Hanhineva K, Beleggia R, Dai N, Rogachev I, et al. 2008. Reconfiguration of the achene and receptacle metabolic networks during strawberry fruit development. Plant Physiology 148:730−50 doi: 10.1104/pp.108.120691
CrossRef Google Scholar
|
[3]
|
Etienne A, Génard M, Lobit P, Mbeguié-A-Mbéguié D, Bugaud C. 2013. What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells Journal of Experimental Botany 64:1451−69 doi: 10.1093/jxb/ert035
CrossRef Google Scholar
|
[4]
|
Mandl J, Szarka A, Bánhegyi G. 2009. Vitamin C: update on physiology and pharmacology. British Journal of Pharmacology 157:1097−110 doi: 10.1111/j.1476-5381.2009.00282.x
CrossRef Google Scholar
|
[5]
|
Schlueter AK, Johnston CS. 2011. Vitamin C: overview and update. Journal of Evidence-Based Complementary & Alternative Medicine 16:49−57 doi: 10.1177/1533210110392951
CrossRef Google Scholar
|
[6]
|
Chen AY, Chen YC. 2013. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chemistry 138:2099−107 doi: 10.1016/j.foodchem.2012.11.139
CrossRef Google Scholar
|
[7]
|
Liu H, Ji Y, Liu Y, Tian S, Gao Q, et al. 2020. The sugar transporter system of strawberry: genome-wide identification and expression correlation with fruit soluble sugar-related traits in a Fragaria × ananassa germplasm collection. Horticulture Research 7:132 doi: 10.1038/s41438-020-00359-0
CrossRef Google Scholar
|
[8]
|
Chen T, Zhang Z, Li B, Qin G, Tian S. 2021. Molecular basis for optimizing sugar metabolism and transport during fruit development. aBIOTECH 2:330−40 doi: 10.1007/s42994-021-00061-2
CrossRef Google Scholar
|
[9]
|
Jia H, Wang Y, Sun M, Li B, Han Y, et al. 2013. Sucrose functions as a signal involved in the regulation of strawberry fruit development and ripening. New Phytologist 198:453−65 doi: 10.1111/nph.12176
CrossRef Google Scholar
|
[10]
|
Vallarino JG, Osorio S, Bombarely A, Casañal A, Cruz-Rus E, et al. 2015. Central role of FaGAMYB in the transition of the strawberry receptacle from development to ripening. New Phytologist 208:482−96 doi: 10.1111/nph.13463
CrossRef Google Scholar
|
[11]
|
Jia M, Ding N, Zhang Q, Xing S, Wei L, et al. 2017. A FERONIA-like receptor kinase regulates strawberry (Fragaria × ananassa) fruit ripening and quality formation. Frontiers in Plant Science 8:1099 doi: 10.3389/fpls.2017.01099
CrossRef Google Scholar
|
[12]
|
Wang S, Song M, Guo J, Huang Y, Zhang F, et al. 2018. The potassium channel FaTPK1 plays a critical role in fruit quality formation in strawberry (Fragaria × ananassa). Plant Biotechnology Journal 16:737−48 doi: 10.1111/pbi.12824
CrossRef Google Scholar
|
[13]
|
Huang Y, Xu P, Hou B, Shen Y. 2019. Strawberry tonoplast transporter, FaVPT1, controls phosphate accumulation and fruit quality. Plant, Cell & Environment 42:2715−29 doi: 10.1111/pce.13598
CrossRef Google Scholar
|
[14]
|
Yuan H, Pang F, Cai W, Chen X, Zhao M, et al. 2021. Genome-wide analysis of the invertase genes in strawberry (Fragaria × ananassa). Journal of Integrative Agriculture 20:2652−65 doi: 10.1016/S2095-3119(20)63381-0
CrossRef Google Scholar
|
[15]
|
Wei L, Mao W, Jia M, Xing S, Ali U, et al. 2018. FaMYB44.2, a transcriptional repressor, negatively regulates sucrose accumulation in strawberry receptacles through interplay with FaMYB10. Journal of Experimental Botany 69:4805−20 doi: 10.1093/jxb/ery249
CrossRef Google Scholar
|
[16]
|
Liu H, Lyu W, Tian S, Zou X, Zhang L, et al. 2019. The SWEET family genes in strawberry: identification and expression profiling during fruit development. South African Journal of Botany 125:176−87 doi: 10.1016/j.sajb.2019.07.002
CrossRef Google Scholar
|
[17]
|
Liu Y, Zhu L, Yang M, Xie X, Sun P, et al. 2022. R2R3-MYB transcription factor FaMYB5 is involved in citric acid metabolism in strawberry fruits. Journal of Plant Physiology 277:153789 doi: 10.1016/j.jplph.2022.153789
CrossRef Google Scholar
|
[18]
|
Yang M, Hou G, Peng Y, Wang L, Liu X, et al. 2023. FaGAPC2/FaPKc2.2 and FaPEPCK reveal differential citric acid metabolism regulation in late development of strawberry fruit. Frontiers in Plant Science 14:1138865 doi: 10.3389/fpls.2023.1138865
CrossRef Google Scholar
|
[19]
|
Lachapelle MY, Drouin G. 2011. Inactivation dates of the human and guinea pig vitamin C genes. Genetica 139:199−207 doi: 10.1007/s10709-010-9537-x
CrossRef Google Scholar
|
[20]
|
Fenech M, Amorim-Silva V, del Valle AE, Arnaud D, Ruiz-Lopez N, et al. 2021. The role of GDP-L-galactose phosphorylase in the control of ascorbate biosynthesis. Plant Physiology 185:1574−94 doi: 10.1093/plphys/kiab010
CrossRef Google Scholar
|
[21]
|
Muñoz P, Castillejo C, Gómez JA, Miranda L, Lesemann S, et al. 2023. QTL analysis for ascorbic acid content in strawberry fruit reveals a complex genetic architecture and association with GDP-L-galactose phosphorylase. Horticulture Research 10:uhad006 doi: 10.1093/hr/uhad006
CrossRef Google Scholar
|
[22]
|
Cruz-Rus E, Amaya I, Sánchez-Sevilla JF, Botella MA, Valpuesta V. 2011. Regulation of L-ascorbic acid content in strawberry fruits. Journal of Experimental Botany 62:4191−201 doi: 10.1093/jxb/err122
CrossRef Google Scholar
|
[23]
|
Wei L, Liu H, Ni Y, Dong J, Zhong C, et al. 2022. FaAKR23 modulates ascorbic acid and anthocyanin accumulation in strawberry (Fragaria × ananassa) fruits. Antioxidants 11:1828 doi: 10.3390/antiox11091828
CrossRef Google Scholar
|
[24]
|
Green MA, Fry SC. 2005. Vitamin C degradation in plant cells via enzymatic hydrolysis of 4-O-oxalyl-L-threonate. Nature 433:83−87 doi: 10.1038/nature03172
CrossRef Google Scholar
|
[25]
|
Wang R, Shu P, Zhang C, Zhang J, Chen Y, et al. 2022. Integrative analyses of metabolome and genome-wide transcriptome reveal the regulatory network governing flavor formation in kiwifruit (Actinidia chinensis). New Phytologist 233:373−89 doi: 10.1111/nph.17618
CrossRef Google Scholar
|
[26]
|
Shu P, Zhang Z, Wu Y, Chen Y, Li K, et al. 2023. A comprehensive metabolic map reveals major quality regulations in red-flesh kiwifruit (Actinidia chinensis). New Phytologist 238:2064−79 doi: 10.1111/nph.18840
CrossRef Google Scholar
|
[27]
|
Chen W, Gong L, Guo Z, Wang W, Zhang H, et al. 2013. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: application in the study of rice metabolomics. Molecular Plant 6:1769−80 doi: 10.1093/mp/sst080
CrossRef Google Scholar
|
[28]
|
Luan A, Zhang W, Yang M, Zhong Z, Wu J, et al. 2023. Unveiling the molecular mechanism involving anthocyanins in pineapple peel discoloration during fruit maturation. Food Chemistry 412:135482 doi: 10.1016/j.foodchem.2023.135482
CrossRef Google Scholar
|
[29]
|
Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology 37:907−15 doi: 10.1038/s41587-019-0201-4
CrossRef Google Scholar
|
[30]
|
Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550 doi: 10.1186/s13059-014-0550-8
CrossRef Google Scholar
|
[31]
|
Mao X, Cai T, Olyarchuk JG, Wei L. 2005. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21:3787−93 doi: 10.1093/bioinformatics/bti430
CrossRef Google Scholar
|
[32]
|
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. 2000. Gene Ontology: tool for the unification of biology. Nature Genetics 25:25−29 doi: 10.1038/75556
CrossRef Google Scholar
|
[33]
|
Zheng B, Zhao L, Jiang X, Cherono S, Liu J, et al. 2021. Assessment of organic acid accumulation and its related genes in peach. Food Chemistry 334:127567 doi: 10.1016/j.foodchem.2020.127567
CrossRef Google Scholar
|
[34]
|
Davey MW, Gilot C, Persiau G, Østergaard J, Han Y, et al. 1999. Ascorbate biosynthesis in Arabidopsis cell suspension culture. Plant Physiology 121:535−44 doi: 10.1104/pp.121.2.535
CrossRef Google Scholar
|
[35]
|
Langfelder P, Horvath S. 2008. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559 doi: 10.1186/1471-2105-9-559
CrossRef Google Scholar
|
[36]
|
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, et al. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13:2498−504 doi: 10.1101/gr.1239303
CrossRef Google Scholar
|
[37]
|
Schwieterman ML, Colquhoun TA, Jaworski EA, Bartoshuk LM, Gilbert JL, et al. 2014. Strawberry flavor: diverse chemical compositions, a seasonal influence, and effects on sensory perception. PLoS ONE 9:e88446 doi: 10.1371/journal.pone.0088446
CrossRef Google Scholar
|
[38]
|
Rashid A, Ruan H, Wang Y. 2021. The gene FvTST1 from strawberry modulates endogenous sugars enhancing plant growth and fruit ripening. Frontiers in Plant Science 12:774582 doi: 10.3389/fpls.2021.774582
CrossRef Google Scholar
|
[39]
|
Martín-Pizarro C, Vallarino JG, Osorio S, Meco V, Urrutia M, et al. 2021. The NAC transcription factor FaRIF controls fruit ripening in strawberry. The Plant Cell 33:1574−93 doi: 10.1093/plcell/koab070
CrossRef Google Scholar
|
[40]
|
Li X, Martín-Pizarro C, Zhou L, Hou B, Wang Y, et al. 2023. Deciphering the regulatory network of the NAC transcription factor FvRIF, a key regulator of strawberry (Fragaria vesca) fruit ripening. The Plant Cell 35:4020−45 doi: 10.1093/plcell/koad210
CrossRef Google Scholar
|
[41]
|
Xing S, Chen K, Zhu H, Zhang R, Zhang H, et al. 2020. Fine-tuning sugar content in strawberry. Genome Biology 21:230 doi: 10.1186/s13059-020-02146-5
CrossRef Google Scholar
|
[42]
|
Wang J, Wang Y, Zhang J, Ren Y, Li M, et al. 2021. The NAC transcription factor ClNAC68 positively regulates sugar content and seed development in watermelon by repressing ClINV and ClGH3.6. Horticulture Research 8:214 doi: 10.1038/s41438-021-00649-1
CrossRef Google Scholar
|
[43]
|
Wei W, Cheng M, Ba L, Zeng R, Luo D, et al. 2019. Pitaya HpWRKY3 is associated with fruit sugar accumulation by transcriptionally modulating sucrose metabolic genes HpINV2 and HpSuSy1. International Journal of Molecular Sciences 20:1890 doi: 10.3390/ijms20081890
CrossRef Google Scholar
|
[44]
|
Yu J, Gu K, Zhang L, Sun C, Zhang Q, et al. 2022. MdbHLH3 modulates apple soluble sugar content by activating phosphofructokinase gene expression. Journal of Integrative Plant Biology 64:884−900 doi: 10.1111/jipb.13236
CrossRef Google Scholar
|
[45]
|
Li S, Yin X, Wang W, Liu X, Zhang B, et al. 2017. Citrus CitNAC62 cooperates with CitWRKY1 to participate in citric acid degradation via up-regulation of CitAco3. Journal of Experimental Botany 68:3419−26 doi: 10.1093/jxb/erx187
CrossRef Google Scholar
|
[46]
|
Liu S, Liu X, Gou B, Wang D, Liu C, et al. 2022. The interaction between CitMYB52 and CitbHLH2 negatively regulates citrate accumulation by activating CitALMT in citrus fruit. Frontiers in Plant Science 13:848869 doi: 10.3389/fpls.2022.848869
CrossRef Google Scholar
|
[47]
|
Li S, Yin X, Xie X, Allan AC, Ge H, et al. 2016. The Citrus transcription factor, CitERF13, regulates citric acid accumulation via a protein-protein interaction with the vacuolar proton pump, CitVHA-c4. Scientific Reports 6:20151 doi: 10.1038/srep20151
CrossRef Google Scholar
|
[48]
|
Hu D, Sun C, Ma Q, You C, Cheng L, et al. 2016. MdMYB1 regulates anthocyanin and malate accumulation by directly facilitating their transport into vacuoles in apples. Plant Physiology 170:1315−30 doi: 10.1104/pp.15.01333
CrossRef Google Scholar
|
[49]
|
Hu D, Li Y, Zhang Q, Li M, Sun C, et al. 2017. The R2R3-MYB transcription factor MdMYB73 is involved in malate accumulation and vacuolar acidification in apple. The Plant Journal 91:443−54 doi: 10.1111/tpj.13579
CrossRef Google Scholar
|
[50]
|
Jia D, Wu P, Shen F, Li W, Zheng X, et al. 2021. Genetic variation in the promoter of an R2R3−MYB transcription factor determines fruit malate content in apple (Malus domestica Borkh.). Plant Physiology 186:549−68 doi: 10.1093/plphys/kiab098
CrossRef Google Scholar
|
[51]
|
Peng Y, Yuan Y, Chang W, Zheng L, Ma W, et al. 2023. Transcriptional repression of MdMa1 by MdMYB21 in Ma locus decreases malic acid content in apple fruit. The Plant Journal 115:1231−42 doi: 10.1111/tpj.16314
CrossRef Google Scholar
|
[52]
|
Hamada A, Tanaka Y, Ishikawa T, Maruta T. 2023. Chloroplast dehydroascorbate reductase and glutathione cooperatively determine the capacity for ascorbate accumulation under photooxidative stress conditions. The Plant Journal 114:68−82 doi: 10.1111/tpj.16117
CrossRef Google Scholar
|
[53]
|
Agius F, González-Lamothe R, Caballero JL, Muñoz-Blanco J, Botella MA, et al. 2003. Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. Nature Biotechnology 21:177−81 doi: 10.1038/nbt777
CrossRef Google Scholar
|
[54]
|
Zheng X, Gong M, Zhang Q, Tan H, Li L, et al. 2022. Metabolism and regulation of ascorbic acid in fruits. Plants 11:1602 doi: 10.3390/plants11121602
CrossRef Google Scholar
|
[55]
|
Lu D, Wu Y, Pan Q, Zhang Y, Qi Y, et al. 2022. Identification of key genes controlling L-ascorbic acid during Jujube (Ziziphus jujuba Mill.) fruit development by integrating transcriptome and metabolome analysis. Frontiers in Plant Science 13:950103 doi: 10.3389/fpls.2022.950103
CrossRef Google Scholar
|
[56]
|
Xu X, Zhang Q, Gao X, Wu G, Wu M, et al. 2022. Auxin and abscisic acid antagonistically regulate ascorbic acid production via the SlMAPK8–SlARF4–SlMYB11 module in tomato. The Plant Cell 24:4409−27 doi: 10.1093/plcell/koac262
CrossRef Google Scholar
|