[1]
|
Rong F, Chen F, Huang L, Zhang J, Zhang C, et al. 2019. A mutation in class III homeodomain-leucine zipper (HD-ZIP III) transcription factor results in curly leaf (cul) in cucumber (Cucumis sativus L.). Theoretical and Applied Genetics 132:113−23 doi: 10.1007/s00122-018-3198-z
CrossRef Google Scholar
|
[2]
|
Luo L, Ando S, Sakamoto Y, Suzuki T, Takahashi H, et al. 2020. The formation of perinucleolar bodies is important for normal leaf development and requires the zinc-finger DNA-binding motif in Arabidopsis ASYMMETRIC LEAVES2. The Plant Journal 101:1118−34 doi: 10.1111/tpj.14579
CrossRef Google Scholar
|
[3]
|
Ram H, Sahadevan S, Gale N, Caggiano MP, Yu X, et al. 2020. An integrated analysis of cell-type specific gene expression reveals genes regulated by REVOLUTA and KANADI1 in the Arabidopsis shoot apical meristem. PLoS Genetics 16:e1008661 doi: 10.1371/journal.pgen.1008661
CrossRef Google Scholar
|
[4]
|
Juarez MT, Kui JS, Thomas J, Heller BA, Timmermans MCP. 2004. microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428:84−88 doi: 10.1038/nature02363
CrossRef Google Scholar
|
[5]
|
Sarojam R, Sappl PG, Goldshmidt A, Efroni I, Floyd SK, et al. 2010. Differentiating arabidopsis shoots from leaves by combined YABBY activities. The Plant Cell 22:2113−30 doi: 10.1105/tpc.110.075853
CrossRef Google Scholar
|
[6]
|
Kidner C. 1999. YABBY genes in plants. Trends in Genetics 15:260 doi: 10.1016/S0168-9525(99)01804-1
CrossRef Google Scholar
|
[7]
|
Lee JY, Baum SF, Oh SH, Jiang C, Chen J, et al. 2005. Recruitment of CRABS CLAW to promote nectary development within the eudicot clade. Development 132:5021−32 doi: 10.1242/dev.02067
CrossRef Google Scholar
|
[8]
|
Yamada T, Hirayama Y, Imaichi R, Kato M. 2008. AINTEGUMENTA homolog expression in Gnetum (gymnosperms) and implications for the evolution of ovulate axes in seed plants. Evolution & development 10:280−87 doi: 10.1111/j.1525-142X.2008.00237.x
CrossRef Google Scholar
|
[9]
|
Bowman JL. 2000. The YABBY gene family and abaxial cell fate. Current Opinion in Plant Biology 3:17−22 doi: 10.1016/S1369-5266(99)00035-7
CrossRef Google Scholar
|
[10]
|
Strable J, Wallace JG, Unger-Wallace E, Briggs S, Bradbury PJ, et al. 2017. Maize YABBY Genes drooping leaf1 and drooping leaf2 regulate plant architecture. The Plant Cell 29:1622−41 doi: 10.1105/tpc.16.00477
CrossRef Google Scholar
|
[11]
|
Siegfried KR, Eshed Y, Baum SF, Otsuga D, Drews GN, et al. 1999. Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development 126:4117−28 doi: 10.1242/dev.126.18.4117
CrossRef Google Scholar
|
[12]
|
Sawa S, Watanabe K, Goto K, Liu YG, Shibata D, et al. 1999. FILAMENTOUS FLOWER, a meristem and organ identity gene of Arabidopsis, encodes a protein with a zinc finger and HMG-related domains. Genes & Development 13:1079−88 doi: 10.1101/gad.13.9.1079
CrossRef Google Scholar
|
[13]
|
Dai M, Hu Y, Zhao Y, Liu H, Zhou DX. 2007. A WUSCHEL-LIKE HOMEOBOX gene represses a YABBY gene expression required for rice leaf development. Plant Physiology 144:380−90 doi: 10.1104/pp.107.095737
CrossRef Google Scholar
|
[14]
|
Yamaguchi T, Nagasawa N, Kawasaki S, Matsuoka M, Nagato Y, Hirano HY. 2004. The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. The Plant Cell 16:500−9 doi: 10.1105/tpc.018044
CrossRef Google Scholar
|
[15]
|
Chen XH, Zhuang CG, He YF, Wang L, Han GQ, et al. 2010. Photosynthesis, yield, and chemical composition of Tieguanyin tea plants (Camellia sinensis (L.) O. Kuntze) in response to irrigation treatments. Agricultural Water Management 97:419−25 doi: 10.1016/j.agwat.2009.10.015
CrossRef Google Scholar
|
[16]
|
Chen Q, Shi J, Mu B, Chen Z, Dai W, et al. 2020. Metabolomics combined with proteomics provides a novel interpretation of the changes in nonvolatile compounds during white tea processing. Food Chemistry 332:127412 doi: 10.1016/j.foodchem.2020.127412
CrossRef Google Scholar
|
[17]
|
Liu Y, Hou H, Jiang X, Wang P, Dai X, et al. 2018. A WD40 repeat protein from Camellia sinensis regulates anthocyanin and proanthocyanidin accumulation through the formation of MYB−bHLH−WD40 ternary complexes. International Journal of Molecular Sciences 19:1686 doi: 10.3390/ijms19061686
CrossRef Google Scholar
|
[18]
|
Bailey TL, Elkan C. 1994. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proceedings. International Conference on Intelligent Systems for Molecular Biology 2:28−36
Google Scholar
|
[19]
|
Wang Y, Xu Y, Gao L, Yu O, Wang X, et al. 2014. Functional analysis of Flavonoid 3',5'-hydroxylase from Tea plant (Camellia sinensis): critical role in the accumulation of catechins. BMC Plant Biology 14:347 doi: 10.1186/s12870-014-0347-7
CrossRef Google Scholar
|
[20]
|
Clough SJ, Bent AF. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16:735−43 doi: 10.1046/j.1365-313x.1998.00343.x
CrossRef Google Scholar
|
[21]
|
Shi Z, Wang J, Wan X, Shen G, Wang X, et al. 2007. Over-expression of rice OsAGO7 gene induces upward curling of the leaf blade that enhanced erect-leaf habit. Planta 226:99−108 doi: 10.1007/s00425-006-0472-0
CrossRef Google Scholar
|
[22]
|
Xia EH, Li FD, Tong W, Li PH, Wu Q, et al. 2019. Tea Plant Information Archive: a comprehensive genomics and bioinformatics platform for tea plant. Plant Biotechnol Journal 17:1938−53 doi: 10.1111/pbi.13111
CrossRef Google Scholar
|
[23]
|
Bowman JL, Eshed Y, Baum SF. 2002. Establishment of polarity in angiosperm lateral organs. Trends in Genetics 18:134−41 doi: 10.1016/S0168-9525(01)02601-4
CrossRef Google Scholar
|
[24]
|
Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, et al. 2003. Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Current Biology 13:1768−74 doi: 10.1016/j.cub.2003.09.035
CrossRef Google Scholar
|
[25]
|
Yang H, Shi G, Li X, Hu D, Cui Y, et al. 2019. Overexpression of a soybean YABBY gene, GmFILa, causes leaf curling in Arabidopsis thaliana. BMC Plant Biology 19:234 doi: 10.1186/s12870-019-1810-2
CrossRef Google Scholar
|
[26]
|
Kumaran MK, Bowman JL, Sundaresan V. 2002. YABBY polarity genes mediate the repression of KNOX homeobox genes in Arabidopsis. The Plant Cell 14:2761−70 doi: 10.1105/tpc.004911
CrossRef Google Scholar
|
[27]
|
Kalve S, De Vos D, Beemster GTS. 2014. Leaf development: a cellular perspective. Frontiers in Plant Science 5:362 doi: 10.3389/fpls.2014.00362
CrossRef Google Scholar
|
[28]
|
Bonaccorso O, Lee JE, Puah L, Scutt CP, Golz JF. 2012. FILAMENTOUS FLOWER controls lateral organ development by acting as both an activator and a repressor. BMC Plant Biology 12:176 doi: 10.1186/1471-2229-12-176
CrossRef Google Scholar
|
[29]
|
Ding Y, Hayes MJ, Widhalm M. 2011. Measuring economic impacts of drought: a review and discussion. Disaster Prevention and Management 20:434−46 doi: 10.1108/09653561111161752
CrossRef Google Scholar
|
[30]
|
Vile D, Pervent M, Belluau M, Vasseur F, Bresson J, et al. 2012. Arabidopsis growth under prolonged high temperature and water deficit: independent or interactive effects? Plant, Cell & Environment 35:702−18 doi: 10.1111/j.1365-3040.2011.02445.x
CrossRef Google Scholar
|
[31]
|
Pasternak T, Rudas V, Potters G, Jansen MAK. 2005. Morphogenic effects of abiotic stress: reorientation of growth in Arabidopsis thaliana seedlings. Environmental and Experimental Botany 53:299−314 doi: 10.1016/j.envexpbot.2004.04.009
CrossRef Google Scholar
|
[32]
|
Weldegergis BT, Zhu F, Poelman EH, Dicke M. 2015. Drought stress affects plant metabolites and herbivore preference but not host location by its parasitoids. Oecologia 177:701−13 doi: 10.1007/s00442-014-3129-x
CrossRef Google Scholar
|
[33]
|
Zhang Q, Li J, Zhang W, Yan S, Wang R, et al. 2012. The putative auxin efflux carrier OsPIN3t is involved in the drought stress response and drought tolerance. The Plant Journal 72:805−16 doi: 10.1111/j.1365-313X.2012.05121.x
CrossRef Google Scholar
|