[1]
|
Diamond J. 2002. Evolution, consequences and future of plant and animal domestication. Nature 418:700−7 doi: 10.1038/nature01019
CrossRef Google Scholar
|
[2]
|
Hancock JF. 2005. Contributions of domesticated plant studies to our understanding of plant evolution. Annals of Botany 96:953−63 doi: 10.1093/aob/mci259
CrossRef Google Scholar
|
[3]
|
Burke GR, Strand MR. 2012. Polydnaviruses of parasitic wasps: domestication of viruses to act as gene delivery vectors. Insects 3:91−119 doi: 10.3390/insects3010091
CrossRef Google Scholar
|
[4]
|
Gentles T. 1958. An observation of the domestication of aphids by ants. Blue Jay 16(4):172−74 doi: 10.29173/bluejay2543
CrossRef Google Scholar
|
[5]
|
Zeder MA, Emshwiller E, Smith BD, Bradley DG. 2006. Documenting domestication: the intersection of genetics and archaeology. Trends in Genetics 22:139−55 doi: 10.1016/j.tig.2006.01.007
CrossRef Google Scholar
|
[6]
|
Smartt J. 1990. Grain Legumes: Evolution and Genetic Resources. UK: Cambridge University Press. https://doi.org/10.1017/CBO9780511525483
|
[7]
|
Ramadoss D, Lakkineni VK, Bose P, Ali S, Annapurna K. 2013. Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats. SpringerPlus 2:6 doi: 10.1186/2193-1801-2-6
CrossRef Google Scholar
|
[8]
|
Chatrath R, Mishra B, Ortiz Ferrara G, Singh SK, Joshi AK. 2007. Challenges to wheat production in South Asia. Euphytica 157:447−56 doi: 10.1007/s10681-007-9515-2
CrossRef Google Scholar
|
[9]
|
Whitehead SR, Poveda K. 2019. Resource allocation trade-offs and the loss of chemical defences during apple domestication. Annals of Botany 123:1029−41 doi: 10.1093/aob/mcz010
CrossRef Google Scholar
|
[10]
|
Huang X, Wang B, Xi J, Zhang Y, He C, et al. 2018. Transcriptome comparison reveals distinct selection patterns in domesticated and wild Agave species, the important CAM plants. International Journal of Genomics 2018:5716518 doi: 10.1155/2018/5716518
CrossRef Google Scholar
|
[11]
|
Pérez-Jaramillo JE, Carrión VJ, de Hollander M, Raaijmakers JM. 2018. The wild side of plant microbiomes. Microbiome 6:143 doi: 10.1186/s40168-018-0519-z
CrossRef Google Scholar
|
[12]
|
Lind EM, Borer E, Seabloom E, Adler P, Bakker JD, et al. 2013. Life-history constraints in grassland plant species: a growth-defence trade-off is the norm. Ecology Letters 16:513−21 doi: 10.1111/ele.12078
CrossRef Google Scholar
|
[13]
|
Gustafson P, Raskina O, Ma X, Nevo E. 2009. Wheat evolution, domestication, and improvement. In Wheat Science and Trade, ed. Carver BF. USA: Wiley-Blackwell. pp. 3–30. https://doi.org/10.1002/9780813818832.ch1
|
[14]
|
Abbo S, Pinhasi van-Oss R, Gopher A, Saranga Y, Ofner I, et al. 2014. Plant domestication versus crop evolution: a conceptual framework for cereals and grain legumes. Trends in Plant Science 19:351−60 doi: 10.1016/j.tplants.2013.12.002
CrossRef Google Scholar
|
[15]
|
Peng JH, Sun D, Nevo E. 2011. Domestication evolution, genetics and genomics in wheat. Molecular Breeding 28:281−301 doi: 10.1007/s11032-011-9608-4
CrossRef Google Scholar
|
[16]
|
Koricheva J. 2002. Meta-analysis of sources of variation in fitness costs of plant antiherbivore defenses. Ecology 83:176−90 doi: 10.1890/0012-9658(2002)083[0176:MAOSOV]2.0.CO;2
CrossRef Google Scholar
|
[17]
|
Purugganan MD, Fuller DQ. 2009. The nature of selection during plant domestication. Nature 457:843−8 doi: 10.1038/nature07895
CrossRef Google Scholar
|
[18]
|
Karrenberg S, Suter M. 2003. Phenotypic trade-offs in the sexual reproduction of Salicaceae from flood Plains. American Journal of Botany 90:749−54 doi: 10.3732/ajb.90.5.749
CrossRef Google Scholar
|
[19]
|
Tenaillon MI, U'Ren J, Tenaillon O, Gaut BS. 2004. Selection versus demography: a multilocus investigation of the domestication process in maize. Molecular Biology and Evolution 21:1214−25 doi: 10.1093/molbev/msh102
CrossRef Google Scholar
|
[20]
|
Haudry A, Cenci A, Ravel C, Bataillon T, Brunel D, et al. 2007. Grinding up wheat: a massive loss of nucleotide diversity since domestication. Molecular Biology and Evolution 24:1506−17 doi: 10.1093/molbev/msm077
CrossRef Google Scholar
|
[21]
|
Zaremba LS, Smoleński WH. 2000. Optimal portfolio choice under a liability constraint. Annals of Operations Research 97:131−41 doi: 10.1023/A:1018996712442
CrossRef Google Scholar
|
[22]
|
Mayrose M, Kane NC, Mayrose I, Dlugosch KM, Rieseberg LH. 2011. Increased growth in sunflower correlates with reduced defences and altered gene expression in response to biotic and abiotic stress. Molecular Ecology 20:4683−94 doi: 10.1111/j.1365-294X.2011.05301.x
CrossRef Google Scholar
|
[23]
|
Charmet G. 2011. Wheat domestication: lessons for the future. Comptes Rendus Biologies 334:212−20 doi: 10.1016/j.crvi.2010.12.013
CrossRef Google Scholar
|
[24]
|
Harlan JR, de Wet JMJ, Price EG. 1973. Comparative evolution of cereals. Evolution 27:311−25 doi: 10.2307/2406971
CrossRef Google Scholar
|
[25]
|
Gioia T, Nagel KA, Beleggia R, Fragasso M, Ficco DBM, et al. 2015. Impact of domestication on the phenotypic architecture of durum wheat under contrasting nitrogen fertilization. Journal of Experimental Botany 66:5519−30 doi: 10.1093/jxb/erv289
CrossRef Google Scholar
|
[26]
|
Iannucci A, Fragasso M, Beleggia R, Nigro F, Papa R. 2017. Evolution of the crop rhizosphere: impact of domestication on root exudates in tetraploid wheat (Triticum turgidum L.). Frontiers in Plant Science 8:2124 doi: 10.3389/fpls.2017.02124
CrossRef Google Scholar
|
[27]
|
Abdullaeva Y, Ambika Manirajan B, Honermeier B, Schnell S, Cardinale M. 2021. Domestication affects the composition, diversity, and co-occurrence of the cereal seed microbiota. Journal of Advanced Research 31:75−86 doi: 10.1016/j.jare.2020.12.008
CrossRef Google Scholar
|
[28]
|
Matson PA, Parton WJ, Power AG, Swift MJ. 1997. Agricultural intensification and ecosystem properties. Science 277:504−9 doi: 10.1126/science.277.5325.504
CrossRef Google Scholar
|
[29]
|
Pérez-Jaramillo JE, Mendes R, Raaijmakers JM. 2016. Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Molecular Biology 90:635−44 doi: 10.1007/s11103-015-0337-7
CrossRef Google Scholar
|
[30]
|
Robinson RJ, Fraaije BA, Clark IM, Jackson RW, Hirsch PR, et al. 2016. Endophytic bacterial community composition in wheat (Triticum aestivum) is determined by plant tissue type, developmental stage and soil nutrient availability. Plant and Soil 405:381−96 doi: 10.1007/s11104-015-2495-4
CrossRef Google Scholar
|
[31]
|
López-Bucio J, Nieto-Jacobo MF, Ramírez-Rodríguez V, Herrera-Estrella L. 2000. Organic acid metabolism in plants: from adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Science 160:1−13 doi: 10.1016/S0168-9452(00)00347-2
CrossRef Google Scholar
|
[32]
|
He L, Mazza Rodrigues JL, Soudzilovskaia NA, Barceló M, Olsson PA, et al. 2020. Global biogeography of fungal and bacterial biomass carbon in topsoil. Soil Biology & Biochemistry X:151 doi: 10.1016/j.soilbio.2020.108024
CrossRef Google Scholar
|
[33]
|
Chatzav M, Peleg Z, Ozturk L, Yazici A, Fahima T, et al. 2010. Genetic diversity for grain nutrients in wild emmer wheat: potential for wheat improvement. Annals of Botany 105:1211−20 doi: 10.1093/aob/mcq024
CrossRef Google Scholar
|
[34]
|
Drew GC, Stevens EJ, King KC. 2021. Microbial evolution and transitions along the parasite-mutualist continuum. Nature Reviews Microbiology 19:623−38 doi: 10.1038/s41579-021-00550-7
CrossRef Google Scholar
|
[35]
|
Mendes R, Garbeva P, Raaijmakers JM. 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews 37:634−63 doi: 10.1111/1574-6976.12028
CrossRef Google Scholar
|
[36]
|
Levy A, Conway JM, Dangl JL, Woyke T. 2018. Elucidating bacterial gene functions in the plant microbiome. Cell Host & Microbe 24:475−85 doi: 10.1016/j.chom.2018.09.005
CrossRef Google Scholar
|
[37]
|
Yang J, Kloepper JW, Ryu CM. 2009. Rhizosphere bacteria help plants tolerate abiotic stress. Trends in Plant Science 14:1−4 doi: 10.1016/j.tplants.2008.10.004
CrossRef Google Scholar
|
[38]
|
Sharma MP, Srivastava K, Sharma SK. 2010. Biochemical characterization and metabolic diversity of soybean rhizobia isolated from Malwa region of Central India. Plant, Soil and Environment 56:375−83 doi: 10.17221/247/2009-PSE
CrossRef Google Scholar
|
[39]
|
Narula N, Deubel A, Gans W, Behl RK, Merbach W. 2006. Paranodules and colonization of wheat roots by phytohormone producing bacteria in soil. Plant, Soil and Environment 52:119−29 doi: 10.17221/3355-PSE
CrossRef Google Scholar
|
[40]
|
Kenawy A, Dailin DJ, Abo-Zaid GA, Malek RA, Ambehabati KK, et al. 2019. Biosynthesis of antibiotics by PGPR and their roles in biocontrol of plant diseases. In Plant Growth Promoting Rhizobacteria for Sustainable Stress Management . Microorganisms for Sustainability, ed. Sayyed R. vol 13. Singapore: Springer. pp. 1-13. https://doi.org/10.1007/978-981-13-6986-5_1
|
[41]
|
Fernando WGD, Ramarathnam R, Krishnamoorthy AS, Savchuk SC. 2005. Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biology & Biochemistry 37(5):955−64 doi: 10.1016/j.soilbio.2004.10.021
CrossRef Google Scholar
|
[42]
|
Chen Q, Cui H, Su J, Penuelas J, Zhu Y. 2019. Antibiotic resistomes in plant microbiomes. Trends in Plant Science 24:530−41 doi: 10.1016/j.tplants.2019.02.010
CrossRef Google Scholar
|
[43]
|
Adesemoye AO, Torbert HA, Kloepper JW. 2008. Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system. Canadian Journal of Microbiology 54:876−86 doi: 10.1139/W08-081
CrossRef Google Scholar
|
[44]
|
Abbasi MK, Sharif S, Kazmi M, Sultan T, Aslam M. 2011. Isolation of plant growth promoting rhizobacteria from wheat rhizosphere and their effect on improving growth, yield and nutrient uptake of plants. Plant Biosystems - an International Journal Dealing With All Aspects of Plant Biology 145:159−68 doi: 10.1080/11263504.2010.542318
CrossRef Google Scholar
|
[45]
|
El-Borollosy AM, Oraby MM. 2012. Induced systemic resistance against Cucumber mosaic Cucumovirus and promotion of cucumber growth by some plant growth-promoting rhizobacteria. Annals of Agricultural Sciences 57:91−97 doi: 10.1016/j.aoas.2012.08.001
CrossRef Google Scholar
|
[46]
|
Saskia KS bohm, Maria G, Jasper H, Wietse M, Garbeva P, et al. 2018. The Role of Soil Beneficial Bacteria in Wheat Production: A Review. Phytobiomes J 1(3):1−26 doi: 10.1016/j.micres.2015.12.003
CrossRef Google Scholar
|
[47]
|
Sayyed RZ. 2019. Plant Growth Promoting Rhizobacteria for Sustainable Stress Management. 2:XVI, 419. Singapore: Springer Singapore. https://doi.org/10.1007/978-981-13-6986-5
|
[48]
|
Jetiyanon K, Kloepper JW. 2002. Mixtures of plant growth-promoting rhizobacteria for induction of systemic resistance against multiple plant diseases. Biological Control 24:285−91 doi: 10.1016/S1049-9644(02)00022-1
CrossRef Google Scholar
|
[49]
|
Çakmakçı R, Turan M, Güllüce M, Şahin F. 2014. Rhizobacteria for reduced fertilizer inputs in wheat (Triticum aestivum spp. vulgare) and barley (Hordeum vulgare) on Aridisols in Turkey. International Journal of Plant Production 8:163−82
Google Scholar
|
[50]
|
Adesemoye AO, Torbert HA, Kloepper JW. 2009. Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microbial Ecology 58:921−29 doi: 10.1007/s00248-009-9531-y
CrossRef Google Scholar
|
[51]
|
Ilyas N, Mumtaz K, Akhtar N, Yasmin H, Sayyed RZ, et al. 2020. Exopolysaccharides producing bacteria for the amelioration of drought stress in wheat. Sustainability 12:8876 doi: 10.3390/su12218876
CrossRef Google Scholar
|
[52]
|
Strickland MS, Rousk J. 2010. Considering fungal: bacterial dominance in soils–Methods, controls, and ecosystem implications. Soil Biology and Biochemistry 42:1385−95 doi: 10.1016/j.soilbio.2010.05.007
CrossRef Google Scholar
|
[53]
|
Bardgett RD, Hobbs PJ, Frostegård Å. 1996. Changes in soil fungal: bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biology and Fertility of Soils 22:261−64 doi: 10.1007/BF00382522
CrossRef Google Scholar
|
[54]
|
Zhu X, Song F, Liu S, Liu F. 2016. Arbuscular mycorrhiza improve growth, nitrogen uptake, and nitrogen use efficiency in wheat grown under elevated CO2. Mycorrhiza 26:133−40 doi: 10.1007/s00572-015-0654-3
CrossRef Google Scholar
|
[55]
|
Abdel-Salam E, Alatar A, El-Sheikh MA. 2018. Inoculation with arbuscular mycorrhizal fungi alleviates harmful effects of drought stress on damask rose. Saudi Journal of Biological Sciences 25:1772−80 doi: 10.1016/j.sjbs.2017.10.015
CrossRef Google Scholar
|
[56]
|
Begum N, Qin C, Ahanger MA, Raza S, Khan MI, et al. 2019. Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Frontiers in Plant Science 10:1068 doi: 10.3389/fpls.2019.01068
CrossRef Google Scholar
|
[57]
|
Thirkell TJ, Charters MD, Elliott AJ, Sait SM, Field KJ. 2017. Are mycorrhizal fungi our sustainable saviours? Considerations for achieving food security Journal of Ecology 105:921−29 doi: 10.1111/1365-2745.12788
CrossRef Google Scholar
|
[58]
|
Darmwal NS, Gaur AC. 1988. Associative effect of cellulolytic fungi and Azospirillum lipoferum on yield and nitrogen uptake by wheat. Plant and Soil 107:211−18 doi: 10.1007/BF02370549
CrossRef Google Scholar
|
[59]
|
Ridout M, Newcombe G. 2016. Disease suppression in winter wheat from novel symbiosis with forest fungi. Fungal Ecology 20:40−48 doi: 10.1016/j.funeco.2015.10.005
CrossRef Google Scholar
|
[60]
|
Links MG, Demeke T, Gräfenhan T, Hill JE, Hemmingsen SM, et al. 2014. Simultaneous profiling of seed-associated bacteria and fungi reveals antagonistic interactions between microorganisms within a shared epiphytic microbiome on Triticum and Brassica seeds. New Phytologist 202:542−53 doi: 10.1111/nph.12693
CrossRef Google Scholar
|
[61]
|
Xiao C, Chi R, He H, Qiu G, Wang D, et al. 2009. Isolation of phosphate-solubilizing fungi from phosphate mines and their effect on wheat seedling growth. Applied Biochemistry and Biotechnology 159:330−42 doi: 10.1007/s12010-009-8590-3
CrossRef Google Scholar
|
[62]
|
Khokhar I, Haider MS, Mukhtar I, Ali A, Mushtaq S, et al. 2013. Effect of Penicillium species culture filtrate on seedling growth of wheat. International Research Journal of Agricultural Science and Soil Science 3:24−29
Google Scholar
|
[63]
|
Schlaeppi K, Bulgarelli D. 2015. The plant microbiome at work. Molecular Plant-Microbe Interactions® 28:212−17 doi: 10.1094/MPMI-10-14-0334-FI
CrossRef Google Scholar
|
[64]
|
Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH. 2013. Going back to the roots: the microbial ecology of the rhizosphere. Nature Reviews Microbiology 11:789−99 doi: 10.1038/nrmicro3109
CrossRef Google Scholar
|
[65]
|
Hinsinger P, Gobran GR, Gregory PJ, Wenzel WW. 2005. Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes. New Phytologist 168:293−303 doi: 10.1111/j.1469-8137.2005.01512.x
CrossRef Google Scholar
|
[66]
|
Preece C, Peñuelas J. 2020. A return to the wild: root exudates and food security. Trends in Plant Science 25:14−21 doi: 10.1016/j.tplants.2019.09.010
CrossRef Google Scholar
|
[67]
|
Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM. 2006. The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology 57:233−66 doi: 10.1146/annurev.arplant.57.032905.105159
CrossRef Google Scholar
|
[68]
|
Jones DL, Nguyen C, Finlay RD. 2009. Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant and Soil 321:5−33 doi: 10.1007/s11104-009-9925-0
CrossRef Google Scholar
|
[69]
|
Badri DV, Vivanco JM. 2009. Regulation and function of root exudates. Plant, Cell & Environment 32:666−81 doi: 10.1111/j.1365-3040.2009.01926.x
CrossRef Google Scholar
|
[70]
|
Ahmad S, Veyrat N, Gordon-Weeks R, Zhang Y, Martin J, et al. 2011. Benzoxazinoid metabolites regulate innate immunity against aphids and fungi in maize. Plant Physiology 157:317−27 doi: 10.1104/pp.111.180224
CrossRef Google Scholar
|
[71]
|
Schenkel D, Lemfack MC, Piechulla B, Splivallo R. 2015. A meta-analysis approach for assessing the diversity and specificity of belowground root and microbial volatiles. Frontiers in Plant Science 6:707 doi: 10.3389/fpls.2015.00707
CrossRef Google Scholar
|
[72]
|
Pineda A, Kaplan I, Bezemer TM. 2017. Steering soil microbiomes to suppress aboveground insect pests. Trends in Plant Science 22:770−78 doi: 10.1016/j.tplants.2017.07.002
CrossRef Google Scholar
|
[73]
|
Niculaes C, Abramov A, Hannemann L, Frey M. 2018. Plant protection by benzoxazinoids—recent insights into biosynthesis and function. Agronomy 8:143 doi: 10.3390/agronomy8080143
CrossRef Google Scholar
|
[74]
|
Haichar FEZ, Santaella C, Heulin T, Achouak W. 2014. Root exudates mediated interactions belowground. Soil Biology and Biochemistry 77:69−80 doi: 10.1016/j.soilbio.2014.06.017
CrossRef Google Scholar
|
[75]
|
Sasse J, Martinoia E, Northen T. 2018. Feed your friends: do plant exudates shape the root microbiome? Trends in Plant Science 23:25−41 doi: 10.1016/j.tplants.2017.09.003
CrossRef Google Scholar
|
[76]
|
Johnston-Monje D, Mousa WK, Lazarovits G, Raizada MN. 2014. Impact of swapping soils on the endophytic bacterial communities of pre-domesticated, ancient and modern maize. BMC Plant Biology 14:233 doi: 10.1186/s12870-014-0233-3
CrossRef Google Scholar
|
[77]
|
Johnston-Monje D, Raizada MN. 2011. Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. PLoS One 6:e20396 doi: 10.1371/journal.pone.0020396
CrossRef Google Scholar
|
[78]
|
Zhou X, Wang J, Zhang Z, Li W, Chen W, et al. 2020. Microbiota in the rhizosphere and seed of rice from China, with reference to their transmission and biogeography. Frontiers in Microbiology 11:995 doi: 10.3389/fmicb.2020.00995
CrossRef Google Scholar
|
[79]
|
Schlaeppi K, Dombrowski N, Oter RG, van Themaat EVL, Schulze-Lefert P. 2014. Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. PNAS 111:585−92 doi: 10.1073/pnas.1321597111
CrossRef Google Scholar
|
[80]
|
Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, et al. 2015. Structure, variation, and assembly of the root-associated microbiomes of rice. PNAS 112:E911−E920 doi: 10.1073/pnas.1423603112
CrossRef Google Scholar
|
[81]
|
Szoboszlay M, Lambers J, Chappell J, Kupper JV, Moe LA, et al. 2015. Comparison of root system architecture and rhizosphere microbial communities of Balsas teosinte and domesticated corn cultivars. Soil Biology and Biochemistry 80:34−44 doi: 10.1016/j.soilbio.2014.09.001
CrossRef Google Scholar
|
[82]
|
Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P. 2013. Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology 64:807−38 doi: 10.1146/annurev-arplant-050312-120106
CrossRef Google Scholar
|
[83]
|
Schnorr SL, Candela M, Rampelli S, Centanni M, Consolandi C, et al. 2014. Gut microbiome of the hadza hunter-gatherers. Nature Communications 5:3654 doi: 10.1038/ncomms4654
CrossRef Google Scholar
|
[84]
|
Hetrick BAD, Wilson GWT, Figge DAH. 1994. The influence of mycorrhizal symbiosis and fertilizer amendments on establishment of vegetation in heavy metal mine spoil. Environmental Pollution 86:171−79 doi: 10.1016/0269-7491(94)90188-0
CrossRef Google Scholar
|
[85]
|
Aleklett K, Leff JW, Fierer N, Hart M. 2015. Wild plant species growing closely connected in a subalpine meadow host distinct root-associated bacterial communities. PeerJ 3:e804 doi: 10.7717/peerj.804
CrossRef Google Scholar
|
[86]
|
Abdullaeva Y, Ratering S, Ambika Manirajan B, Rosado-Porto D, Schnell S, et al. 2022. Domestication impacts the wheat-associated microbiota and the rhizosphere colonization by seed- and soil-originated microbiomes, across different fields. Frontiers in Plant Science 12:806915 doi: 10.3389/fpls.2021.806915
CrossRef Google Scholar
|
[87]
|
Berlemont R, Martiny AC. 2015. Genomic potential for polysaccharide deconstruction in bacteria. Applied and Environmental Microbiology 81:1513−19 doi: 10.1128/AEM.03718-14
CrossRef Google Scholar
|
[88]
|
Javed MT, Akram MS, Tanwir K, Javed Chaudhary H, Ali Q, et al. 2017. Cadmium spiked soil modulates root organic acids exudation and ionic contents of two differentially Cd tolerant maize (Zea mays L.) cultivars. Ecotoxicology and Environmental Safety 141:216−25 doi: 10.1016/j.ecoenv.2017.03.027
CrossRef Google Scholar
|
[89]
|
Albuzio A, Ferrari G. 1989. Modulation of the molecular size of humic substances by organic acids of the root exudates. Plant and Soil 113:237−41 doi: 10.1007/BF02280186
CrossRef Google Scholar
|
[90]
|
Oleghe E, Naveed M, Baggs EM, Hallett PD. 2017. Plant exudates improve the mechanical conditions for root penetration through compacted soils. Plant and Soil 421:19−30 doi: 10.1007/s11104-017-3424-5
CrossRef Google Scholar
|
[91]
|
Cortés AJ, Monserrate FA, Ramírez-Villegas J, Madriñán S, Blair MW. 2013. Drought tolerance in wild plant populations: the case of common beans (Phaseolus vulgaris L.). PLoS One 8:e62898 doi: 10.1371/journal.pone.0062898
CrossRef Google Scholar
|
[92]
|
Pérez-Jaramillo JE, Carrión VJ, Bosse M, Ferrão LFV, de Hollander M, et al. 2017. Linking rhizosphere microbiome composition of wild and domesticated Phaseolus vulgaris to genotypic and root phenotypic traits. The ISME Journal 11:2244−57 doi: 10.1038/ismej.2017.85
CrossRef Google Scholar
|
[93]
|
Placido DF, Campbell MT, Folsom JJ, Cui X, Kruger GR, et al. 2013. Introgression of novel traits from a wild wheat relative improves drought adaptation in wheat. Plant Physiology 161:1806−19 doi: 10.1104/pp.113.214262
CrossRef Google Scholar
|
[94]
|
Bacher H, Zhu F, Gao T, Liu K, Dhatt BK, et al. 2021. Wild emmer introgression alters root-to-shoot growth dynamics in durum wheat in response to water stress. Plant Physiology 187:1149−62 doi: 10.1093/plphys/kiab292
CrossRef Google Scholar
|
[95]
|
Waines JG, Ehdaie B. 2007. Domestication and crop physiology: roots of green-revolution wheat. Annals of Botany 100:991−98 doi: 10.1093/aob/mcm180
CrossRef Google Scholar
|
[96]
|
Al-Karaki GN, Al-Raddad A. 1997. Effects of arbuscular mycorrhizal fungi and drought stress on growth and nutrient uptake of two wheat genotypes differing in drought resistance. Mycorrhiza 7:83−8888 doi: 10.1007/s005720050166
CrossRef Google Scholar
|
[97]
|
Hetrick BAD, Wilson GWT, Gill BS, Cox TS. 1995. Chromosome location of mycorrhizal responsive genes in wheat. Canadian Journal of Botany 73:891−97
Google Scholar
|
[98]
|
Boscaiu M, Donat PM, Llinares J, Vicente O. 2012. Stress-tolerant wild plants: a source of knowledge and biotechnological tools for the genetic improvement of stress tolerance in crop plants. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 40:323−27 doi: 10.15835/nbha4028199
CrossRef Google Scholar
|
[99]
|
Sharma S, Sharma R, Pujar M, Yadav D, Yadav Y, et al. 2021. Use of wild Pennisetum species for improving biotic and abiotic stress tolerance in pearl millet. Crop Science 61:289−304 doi: 10.1002/csc2.20408
CrossRef Google Scholar
|
[100]
|
Rubio Teso ML, Lara-Romero C, Rubiales D, Parra-Quijano M, Iriondo JM. 2022. Searching for abiotic tolerant and biotic stress resistant wild lentils for introgression breeding through predictive characterization. Frontiers in Plant Science 13:817849 doi: 10.3389/fpls.2022.817849
CrossRef Google Scholar
|
[101]
|
Lau JA, Lennon JT. 2011. Evolutionary ecology of plant-microbe interactions: soil microbial structure alters selection on plant traits. New Phytologist 192:215−24 doi: 10.1111/j.1469-8137.2011.03790.x
CrossRef Google Scholar
|
[102]
|
Rolli E, Marasco R, Vigani G, Ettoumi B, Mapelli F, et al. 2015. Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environmental Microbiology 17:316−31 doi: 10.1111/1462-2920.12439
CrossRef Google Scholar
|
[103]
|
Chaluvadi S, Bennetzen JL. 2018. Species-associated differences in the below-ground microbiomes of wild and domesticated Setaria. Frontiers in Plant Science 9:1183 doi: 10.3389/fpls.2018.01183
CrossRef Google Scholar
|
[104]
|
Pérez-Jaramillo JE, de Hollander M, Ramírez CA, Mendes R, Raaijmakers JM, et al. 2019. Deciphering rhizosphere microbiome assembly of wild and modern common bean (Phaseolus vulgaris) in native and agricultural soils from Colombia. Microbiome 7:114 doi: 10.1186/s40168-019-0727-1
CrossRef Google Scholar
|
[105]
|
Lugtenberg B, Kamilova F. 2009. Plant-growth-promoting rhizobacteria. Annual Review of Microbiology 63:541−56 doi: 10.1146/annurev.micro.62.081307.162918
CrossRef Google Scholar
|
[106]
|
Germida J, Siciliano S. 2001. Taxonomic diversity of bacteria associated with the roots of modern, recent and ancient wheat cultivars. Biology and Fertility of Soils 33:410−15 doi: 10.1007/s003740100343
CrossRef Google Scholar
|
[107]
|
Martínez-Romero E, Aguirre-Noyola JL, Taco-Taype N, Martínez-Romero J, Zuñiga-Dávila D. 2020. Plant microbiota modified by plant domestication. Systematic and Applied Microbiology 43:126106 doi: 10.1016/j.syapm.2020.126106
CrossRef Google Scholar
|