[1]
|
Wang X, Morris-Natschke SL, Lee KH. 2007. New developments in the chemistry and biology of the bioactive constituents of Tanshen. Medicinal Research Reviews 27:133−48 doi: 10.1002/med.20077
CrossRef Google Scholar
|
[2]
|
Pang H, Wu L, Tang Y, Zhou G, Qu C, et al. 2016. Chemical analysis of the herbal medicine Salviae miltiorrhizae Radix et Rhizoma (Danshen). Molecules 21:51 doi: 10.3390/molecules21010051
CrossRef Google Scholar
|
[3]
|
Guo R, Li L, Su J, Li S, Duncan SE, et al. 2020. Pharmacological activity and mechanism of tanshinone IIA in related diseases. Drug Design, Development and Therapy 14:4735−48 doi: 10.2147/DDDT.S266911
CrossRef Google Scholar
|
[4]
|
Zhang W, Liu C, Li J, Lu Y, Li H, et al. 2022. Tanshinone IIA: New perspective on the anti-tumor mechanism of a traditional natural medicine. The American Journal of Chinese Medicine 50:209−39 doi: 10.1142/S0192415X22500070
CrossRef Google Scholar
|
[5]
|
Kikowska M, Thiem B, Szopa A, Ekiert H. 2020. Accumulation of valuable secondary metabolites: phenolic acids and flavonoids in different in vitro systems of shoot cultures of the endangered plant species − Eryngium alpinum L. Plant Cell, Tissue Organ Cult 141:381−91 doi: 10.1007/s11240-020-01795-5
CrossRef Google Scholar
|
[6]
|
Tsai MK, Lin YL, Huang YT. 2010. Effects of salvianolic acids on oxidative stress and hepatic fibrosis in rats. Toxicology and Applied Pharmacology 242:155−64 doi: 10.1016/j.taap.2009.10.002
CrossRef Google Scholar
|
[7]
|
Yang T, Shen DP, Wang QL, Tao YY, Liu CH. 2013. Investigation of the absorbed and metabolized components of Danshen from Fuzheng Huayu recipe and study on the anti-hepatic fibrosis effects of these components. Journal of Ethnopharmacology 148:691−700 doi: 10.1016/j.jep.2013.05.031
CrossRef Google Scholar
|
[8]
|
Zhou ZT, Yang Y, Ge JP. 2006. The preventive effect of salvianolic acid B on malignant transformation of DMBA-induced oral premalignant lesion in hamsters. Carcinogenesis 27:826−32 doi: 10.1093/carcin/bgi271
CrossRef Google Scholar
|
[9]
|
Gao W, Sun HX, Xiao H, Cui G, Hillwig ML, et al. 2014. Combining metabolomics and transcriptomics to characterize tanshinone biosynthesis in Salvia miltiorrhiza. BMC Genomics 15:73 doi: 10.1186/1471-2164-15-73
CrossRef Google Scholar
|
[10]
|
Jiang Z, Gao W, Huang L. 2019. Tanshinones, critical pharmacological components in Salvia miltiorrhiza. Frontiers in Pharmacology 10:202 doi: 10.3389/fphar.2019.00202
CrossRef Google Scholar
|
[11]
|
Tholl D. 2015. Biosynthesis and biological functions of terpenoids in plants. In Biotechnology of Isoprenoids. Advances in Biochemical Engineering/Biotechnology, eds. Schrader J, Bohlmann J. vol 148. Switzerland: Springer, Cham. pp. 63−106. https://doi.org/10.1007/10_2014_295
|
[12]
|
Nagegowda DA, Gupta P. 2020. Advances in biosynthesis, regulation, and metabolic engineering of plant specialized terpenoids. Plant Science 294:110457 doi: 10.1016/j.plantsci.2020.110457
CrossRef Google Scholar
|
[13]
|
Ma Y, Cui G, Chen T, Ma X, Wang R, et al. 2021. Expansion within the CYP71D subfamily drives the heterocyclization of tanshinones synthesis in Salvia miltiorrhiza. Nature Communications 12:685 doi: 10.1038/s41467-021-20959-1
CrossRef Google Scholar
|
[14]
|
Song JJ, Fang X, Li CY, Jiang Y, Li JX, et al. 2022. A 2-oxoglutarate-dependent dioxygenase converts dihydrofuran to furan in Salvia diterpenoids. Plant Physiology 188:1496−506 doi: 10.1093/plphys/kiab567
CrossRef Google Scholar
|
[15]
|
Ma XH, Ma Y, Tang JF, He YL, Liu YC, et al. 2015. The biosynthetic pathways of tanshinones and phenolic acids in Salvia miltiorrhiza. Molecules 20:16235−54 doi: 10.3390/molecules200916235
CrossRef Google Scholar
|
[16]
|
Khojasteh A, Mirjalili MH, Alcalde MA, Cusido RM, Eibl R, et al. 2020. Powerful plant antioxidants: A New biosustainable approach to the production of rosmarinic acid. Antioxidants 9:1273 doi: 10.3390/antiox9121273
CrossRef Google Scholar
|
[17]
|
Fu R, Shi M, Deng C, Zhang Y, Zhang X, et al. 2020. Improved phenolic acid content and bioactivities of Salvia miltiorrhiza hairy roots by genetic manipulation of RAS and CYP98A14. Food Chemistry 331:127365 doi: 10.1016/j.foodchem.2020.127365
CrossRef Google Scholar
|
[18]
|
Zheng X, Chen D, Chen B, Liang L, Huang Z, et al. 2021. Insights into salvianolic acid B biosynthesis from chromosome-scale assembly of the Salvia bowleyana genome. Journal of Integrative Plant Biology 63:1309−23 doi: 10.1111/jipb.13085
CrossRef Google Scholar
|
[19]
|
Niazian M, Sabbatini P. 2021. Traditional in vitro strategies for sustainable production of bioactive compounds and manipulation of metabolomic profile in medicinal, aromatic and ornamental plants. Planta 254:111 doi: 10.1007/s00425-021-03771-5
CrossRef Google Scholar
|
[20]
|
Xiao Y, Gao S, Di P, Chen J, Chen W, et al. 2010. Lithospermic acid B is more responsive to silver ions (Ag+) than rosmarinic acid in Salvia miltiorrhiza hairy root cultures. Bioscience Reports 30:33−40 doi: 10.1042/BSR20080124
CrossRef Google Scholar
|
[21]
|
Xiao Y, Gao S, Di P, Chen J, Chen W, et al. 2009. Methyl jasmonate dramatically enhances the accumulation of phenolic acids in Salvia miltiorrhiza hairy root cultures. Physiologia Plantarum 137:1−9 doi: 10.1111/j.1399-3054.2009.01257.x
CrossRef Google Scholar
|
[22]
|
Liu S, Gao X, Shi M, Sun M, Li K, et al. 2023. Jasmonic acid regulates the biosynthesis of medicinal metabolites via the JAZ9-MYB76 complex in Salvia miltiorrhiza. Horticulture Research 10:uhad004 doi: 10.1093/hr/uhad004
CrossRef Google Scholar
|
[23]
|
Liu S, Wang Y, Shi M, Maoz I, Gao X, et al. 2022. SmbHLH60 and SmMYC2 antagonistically regulate phenolic acids and anthocyanins biosynthesis in Salvia miltiorrhiza. Journal of Advanced Research 42:205−19 doi: 10.1016/j.jare.2022.02.005
CrossRef Google Scholar
|
[24]
|
Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114−20 doi: 10.1093/bioinformatics/btu170
CrossRef Google Scholar
|
[25]
|
Schmieder R, Edwards R. 2011. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27:863−64 doi: 10.1093/bioinformatics/btr026
CrossRef Google Scholar
|
[26]
|
Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nature Methods 12:357−60 doi: 10.1038/nmeth.3317
CrossRef Google Scholar
|
[27]
|
Liao Y, Smyth GK, Shi W. 2014. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923−30 doi: 10.1093/bioinformatics/btt656
CrossRef Google Scholar
|
[28]
|
Varet H, Brillet-Guéguen L, Coppée JY, Dillies MA. 2016. SARTools: A DESeq2- and EdgeR-Based R pipeline for comprehensive differential analysis of RNA-Seq Data. PLoS One 11:e0157022 doi: 10.1371/journal.pone.0157022
CrossRef Google Scholar
|
[29]
|
Langfelder P, Horvath S. 2008. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559 doi: 10.1186/1471-2105-9-559
CrossRef Google Scholar
|
[30]
|
Shi M, Zhu R, Zhang Y, Zhang S, Liu T, et al. 2022. A novel WRKY34-bZIP3 module regulates phenolic acid and tanshinone biosynthesis in Salvia miltiorrhiza. Metabolic Engineering 73:182−91 doi: 10.1016/j.ymben.2022.08.002
CrossRef Google Scholar
|
[31]
|
Deng C, Shi M, Fu R, Zhang Y, Wang Q, et al. 2020. ABA-responsive transcription factor bZIP1 is involved in modulating biosynthesis of phenolic acids and tanshinones in Salvia miltiorrhiza. Journal of Experimental Botany 71:5948−62 doi: 10.1093/jxb/eraa295
CrossRef Google Scholar
|
[32]
|
Huang Q, Sun M, Yuan T, Wang Y, Shi M, et al. 2019. The AP2/ERF transcription factor SmERF1L1 regulates the biosynthesis of tanshinones and phenolic acids in Salvia miltiorrhiza. Food Chemistry 274:368−75 doi: 10.1016/j.foodchem.2018.08.119
CrossRef Google Scholar
|
[33]
|
Ruan J, Zhou Y, Zhou M, Yan J, Khurshid M, et al. 2019. Jasmonic acid signaling pathway in plants. International Journal of Molecular Sciences 20:2479 doi: 10.3390/ijms20102479
CrossRef Google Scholar
|
[34]
|
Kautsar SA, Suarez Duran HG, Blin K, Osbourn A, Medema MH. 2017. plantiSMASH: automated identification, annotation and expression analysis of plant biosynthetic gene clusters. Nucleic Acids Research 45:W55−W63 doi: 10.1093/nar/gkx305
CrossRef Google Scholar
|
[35]
|
Laule O, Fürholz A, Chang HS, Zhu T, Wang X, et al. 2003. Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 100:6866−71 doi: 10.1073/pnas.1031755100
CrossRef Google Scholar
|
[36]
|
Zhang S, Yan Y, Wang B, Liang Z, Liu Y, et al. 2014. Selective responses of enzymes in the two parallel pathways of rosmarinic acid biosynthetic pathway to elicitors in Salvia miltiorrhiza hairy root cultures. Journal of Bioscience and Bioengineering 117:645−51 doi: 10.1016/j.jbiosc.2013.10.013
CrossRef Google Scholar
|
[37]
|
Xu H, Song J, Luo H, Zhang Y, Li Q, et al. 2016. Analysis of the genome sequence of the medicinal plant Salvia miltiorrhiza. Molecular Plant 9:949−52 doi: 10.1016/j.molp.2016.03.010
CrossRef Google Scholar
|
[38]
|
Hu Z, Ren L, Bu J, Liu X, Li Q, et al. 2022. Functional characterization of a 2OGD involved in Abietane-type diterpenoids biosynthetic pathway in Salvia miltiorrhiza. Frontiers in Plant Science 13:947674 doi: 10.3389/fpls.2022.947674
CrossRef Google Scholar
|