2023 Volume 2
Article Contents
About this article
REVIEW   Open Access    

Adaptive signal control and coordination for urban traffic control in a connected vehicle environment: A review

More Information
  • Existing signal control systems for urban traffic are usually based on traffic flow data from fixed location detectors. Because of rapid advances in emerging vehicular communication, connected vehicle (CV)-based signal control demonstrates significant improvements over existing conventional signal control systems. Though various CV-based signal control systems have been investigated in the past decades, these approaches still have many issues and drawbacks to overcome. We summarize typical components and structures of these existing CV-based urban traffic signal control systems and digest several important issues from the summarized vital concepts. Last, future research directions are discussed with some suggestions. We hope this survey can facilitate the connected and automated vehicle and transportation research community to efficiently approach next-generation urban traffic signal control methods and systems.
  • Columnar cacti are plants of the Cactaceae family distributed across arid and semi-arid regions of America, with ecological, economic, and cultural value[1]. One trait that makes it possible for the columnar cactus to survive in the desert ecosystem is its thick epidermis covered by a hydrophobic cuticle, which limits water loss in dry conditions[1]. The cuticle is the external layer that covers the non-woody aerial organs of land plants. The careful control of cuticle biosynthesis could produce drought stress tolerance in relevant crop plants[2]. In fleshy fruits, the cuticle maintains adequate water content during fruit development on the plant and reduces water loss in fruit during postharvest[3]. Efforts to elucidate the molecular pathway of cuticle biosynthesis have been carried out for fleshy fruits such as tomato (Solanum lycopersicum)[4], apple (Malus domestica)[5], sweet cherry (Prunus avium)[6], mango (Mangifera indica)[7], and pear (Pyrus 'Yuluxiang')[8].

    The plant cuticle is formed by the two main layers cutin and cuticular waxes[3]. Cutin is composed mainly of oxygenated long-chain (LC) fatty acids (FA), which are synthesized by cytochrome p450 (CYP) enzymes. CYP family 86 subfamily A (CYP86A) enzymes carry out the terminal (ω) oxidation of LC-FA[9]. Then, CYP77A carries out the mid-chain oxidation to synthesize the main cutin monomers. In Arabidopsis, AtCYP77A4 and AtCYP77A6 carry out the synthesis of mid-chain epoxy and mid-chain dihydroxy LC-FA, respectively[10,11]. AtCYP77A6 is required for the cutin biosynthesis and the correct formation of floral surfaces[10]. The expression of CYP77A19 (KF410855) and CYP77A20 (KF410856) from potato (Solanum tuberosum) restored the petal cuticular impermeability in Arabidopsis null mutant cyp77a6-1, tentatively by the synthesis of cutin monomers[12]. In eggplant (Solanum torvum), the over-expression of StoCYP77A2 leads to resistance to Verticillium dahlia infection in tobacco plants[13]. Although the function of CYP77A2 in cutin biosynthesis has not yet been tested, gene expression analysis suggests that CaCYP77A2 (A0A1U8GYB0) could play a role in cutin biosynthesis during pepper fruit development[14].

    It has been hypothesized that the export of cuticle precursors is carried out by ATP binding cassette subfamily G (ABCG) transporters. ABCG11/WBC11, ABCG12, and ABCG13 are required for the load of cuticle lipids in Arabidopsis[1517], but ABCG13 function appears to be specific to the flower epidermis[18]. The overexpression of TsABCG11 (JQ389853) from Thellungiella salsugineum increases cuticle amounts and promotes tolerance to different abiotic stresses in Arabidopsis[19].

    Once exported, the cutin monomers are polymerized on the surface of epidermal cells. CD1 code for a Gly-Asp-Ser-Leu motif lipase/esterase (GDSL) from tomato required for the cutin formation through 2-mono(10,16-dihydroxyhexadecanoyl)glycerol esterification[20]. GDSL1 from tomato carries out the ester bond cross-links of cutin monomers located at the cuticle layers and is required for cuticle deposition in tomato fruits[21]. It has been shown that the transcription factor MIXTA-like reduces water loss in tomato fruits through the positive regulation of the expression of CYP77A2, ABCG11, and GDSL1[22]. Despite the relevant role of cuticles in maintaining cactus homeostasis in desert environments[1], the molecular mechanism of cuticle biosynthesis has yet to be described for cactus fruits.

    Stenocereus thurberi is a columnar cactus endemic from the Sonoran desert (Mexico), which produces an ovoid-globose fleshy fruit named sweet pitaya[23]. In its mature state, the pulp of sweet pitaya contains around 86% water with a high content of antioxidants and natural pigments such as betalains and phenolic compounds, which have nutraceutical and industrial relevance[23]. Due to the arid environment in which pitaya fruit grows, studying its molecular mechanism of cuticle biosynthesis can generate new insights into understanding species' adaptation mechanisms to arid environments. Nevertheless, sequences of transcripts from S. thurberi in public databases are scarce.

    RNA-sequencing technology (RNA-seq) allows the massive generation of almost all the transcripts from non-model plants, even if no complete assembled genome is available[24]. Recent advances in bioinformatic tools has improved our capacity to identify long non-coding RNA (lncRNA), which have been showed to play regulatory roles in relevant biological processes, such as the regulation of drought stress tolerance in plants[25], fruit development, and ripening[2629].

    In this study, RNA-seq data were obtained for the de novo assembly and characterization of the S. thurberi fruit peel transcriptome. As a first approach, three transcripts, StCYP77A, StABCG11, and StGDSL1, tentatively involved in cuticle biosynthesis, were identified and quantified during sweet pitaya fruit development. Due to no gene expression analysis having been carried out yet for S. thurberi, stably expressed constitutive genes were identified for the first time.

    Sweet pitaya fruits (S. thurberi) without physical damage were hand harvested from plants in a native conditions field located at Carbó, Sonora, México. They were collocated in a cooler containing dry ice and transported immediately to the laboratory. The superficial part of the peels (~1 mm deep) was removed carefully from the fruits using a scalpel. Peel samples from three fruits were pooled according to their tentative stage of development defined by their visual characteristics, frozen in liquid nitrogen, and pulverized to create a single biological replicate. Four samples belonging to four different plants were analyzed. All fruits harvested were close to the ripening stage. Samples named M1 and M2 were turning from green to ripe [~35−40 Days After Flowering (DAF)], whereas samples M3 and M4 were turning from ripe to overripe (~40−45 DAF).

    Total RNA was isolated from the peels through the Hot Borate method[30]. The concentration and purity of RNA were determined in a spectrophotometer Nanodrop 2000 (Thermo Fisher) by measuring the 260/280 and 260/230 absorbance ratios. RNA integrity was evaluated through electrophoresis in agarose gel 1% and a Bioanalyzer 2100 (Agilent). Pure RNA was sequenced in the paired-end mode in an Illumina NextSeq 500 platform at the University of Arizona Genetics Core Facility. Four RNA-seq libraries, each of them from each sample, were obtained, which include a total of 288,199,704 short reads with a length of 150 base pairs (bp). The resulting sequence data can be accessed at the Sequence Read Archive (SRA) repository of the NCBI through the BioProject ID PRJNA1030439. Libraries are named corresponding to the names of samples M1, M2, M3, and M4.

    FastQC software (www.bioinformatics.babraham.ac.uk/projects/fastqc) was used for short reads quality analysis. Short reads with poor quality were trimmed or eliminated by Trimmomatic (www.usadellab.org/cms/?page=trimmomatic) with a trailing and leading of 25, a sliding window of 4:25, and a minimum read length of 80 bp. A total of 243,194,888 reads with at least a 25 quality score on the Phred scale were used to carry out the de novo assembly by Trinity (https://github.com/trinityrnaseq/trinityrnaseq/wiki) with the following parameters: minimal k-mer coverage of 1, normalization of 50, and minimal transcript length of 200 bp.

    Removal of contaminating sequences and ribosomal RNA (rRNA) was carried out through SeqClean. To remove redundancy, transcripts with equal or more than 90% of identity were merged through CD-hit (www.bioinformatics.org/cd-hit/). Alignment and quantification in terms of transcripts per million (TPM) were carried out through Bowtie (https://bowtie-bio.sourceforge.net/index.shtml) and RSEM (https://github.com/deweylab/RSEM), respectively. Transcripts showing a low expression (TPM < 0.01) were discarded. Assembly quality was evaluated by calculating the parameters N50 value, mean transcript length, TransRate score, and completeness. The statistics of the transcriptome were determined by TrinityStats and TransRate (https://hibberdlab.com/transrate/). The transcriptome completeness was determined through a BLASTn alignment (E value < 1 × 10−3) by BUSCO (https://busco.ezlab.org/) against the database of conserved orthologous genes from Embryophyte.

    To predict the proteins tentatively coded in the S. thurberi transcriptome, the best homology match of the assembled transcripts was found by alignment to the Swiss-Prot, RefSeq, nr-NCBI, PlantTFDB, iTAK, TAIR, and ITAG databases using the BLAST algorithm with an E value threshold of 1 × 10−10 for the nr-NCBI database and of 1 × 10−5 for the others[3134]. An additional alignment was carried out to the protein databases of commercial fruits Persea americana, Prunus persica, Fragaria vesca, Citrus cinensis, and Vitis vinifera to proteins of the cactus Opuntia streptacantha, and the transcriptomes of the cactus Hylocereus polyrhizus, Pachycereus pringlei, and Selenicereus undatus. The list of all databases and the database websites of commercial fruits and cactus are provided in Supplementary Tables S1 & S2. The open reading frame (ORF) of the transcripts and the protein sequences tentative coded from the sweet pitaya transcriptome was predicted by TransDecoder (https://github.com/TransDecoder/TransDecoder/wiki), considering a minimal ORF length of 75 amino acids (aa). The search for protein domains was carried out by the InterPro database (www.ebi.ac.uk/interpro). Functional categorization was carried out by Blast2GO based on GO terms and KEGG metabolic pathways[35].

    LncRNA were identified based on the methods reported in previous studies[25,29,36]. Transcripts without homology to any protein from Swiss-Prot, RefSeq, nr-NCBI, PlantTFDB, iTAK, TAIR, ITAG, P. americana, P. persica, F. vesca, C. cinensis, V. vinifera, and O. streptacantha databases, without a predicted ORF longer than 75 aa, and without protein domains in the InterPro database were selected to identify tentative lncRNA.

    Transcripts coding for signal peptide or transmembrane helices were identified by SignalP (https://services.healthtech.dtu.dk/services/SignalP-6.0/) and TMHMM (https://services.healthtech.dtu.dk/services/TMHMM-2.0/), respectively, and discarded. Further, transcripts corresponding to other non-coding RNAs (ribosomal RNA and transfer RNA) were identified through Infernal by using the Rfam database[37] and discarded. The remaining transcripts were analyzed by CPC[38], and CPC2[39] to calculate their coding potential. Transcripts with a coding potential score lower than −1 for CPC and a coding probability lower than 0.1 for CPC2 were considered lncRNA. To characterize the identified lncRNA, the length and abundance of coding and lncRNA were calculated. Bowtie and RSEM were used to align and quantify raw counts, respectively. The edgeR package[40] was used to normalize raw count data in terms of counts per million (CPM) for both coding and lncRNA.

    To obtain the transcript's expression, the aligning of short reads and quantifying of transcripts were carried out through Bowtie and RSEM software, respectively. A differential expression analysis was carried out between the four libraries by edgeR package in R Studio. Only the transcripts with a count equal to or higher than 0.5 in at least one sample were retained for the analysis. Transcripts with log2 Fold Change (log2FC) between +1 and −1 and with a False Discovery Rate (FDR) lower than 0.05 were taken as not differentially expressed (NDE).

    For the identification of the tentative reference genes two strategies were carried out as described below: i) The NDE transcripts were aligned by BLASTn (E value < 1 × 10−5) to 43 constitutive genes previously reported in fruits from the cactus H. polyrhizus, S. monacanthus, and S. undatus[4143] to identify possible homologous constitutive genes in S. thurberi. Then, the homologous transcripts with the minimal coefficient of variation (CV) were selected; ii) For all the NDE transcripts, the percentile 95 value of the mean CPM and the percentile 5 value of the CV were used as filters to recover the most stably expressed transcripts, based on previous studies[44]. Finally, transcripts to be tested by quantitative reverse transcription polymerase chain reaction (qRT-PCR) were selected based on their homology and tentative biological function.

    The fruit harvesting was carried out as described above. Sweet pitaya fruit takes about 43 d to ripen, therefore, open flowers were tagged, and fruits with 10, 20, 30, 35, and 40 DAF were collected to cover the pitaya fruit development process (Supplementary Fig. S1). The superficial part of the peels (~1 mm deep) was removed carefully from the fruits using a scalpel. Peel samples from three fruits were pooled according to their stage of development defined by their DAF, frozen in liquid nitrogen, and pulverized to create a single biological replicate. One biological replicate consisted of peels from three fruits belonging to the same plant. Two to three biological replicates were evaluated for each developmental stage. Two technical replicates were analyzed for each biological replicate. RNA extraction, quantification, RNA purity, and RNA integrity analysis were carried out as described above.

    cDNA was synthesized from 100 ng of RNA by QuantiTect Reverse Transcription Kit (QIAGEN). Primers were designed using the PrimerQuest™, UNAFold, and OligoAnalyzer™ tools from Integrated DNA Technologies (www.idtdna.com/pages) and following the method proposed by Thornton & Basu[45]. Transcripts quantification was carried out in a QIAquant 96 5 plex according to the PowerUp™ SYBR™ Green Master Mix protocol (Applied Biosystems), with a first denaturation step for 2 min at 95 °C, followed by 40 cycles of denaturation step at 95 °C for 15 s, annealing and extension steps for 30 s at 60 °C.

    The Cycle threshold (Ct) values obtained from the qRT-PCR were analyzed through the algorithms BestKeeper, geNorm, NormFinder, and the delta Ct method[46]. RefFinder (www.ciidirsinaloa.com.mx/RefFinder-master/) was used to integrate the stability results and to find the most stable expressed transcripts in sweet pitaya fruit peel during development. The pairwise variation value (Vn/Vn + 1) was calculated through the geNorm algorithm in R Studio software[47].

    An alignment of 17 reported cuticle biosynthesis genes from model plants were carried out by BLASTx against the predicted proteins from sweet pitaya. Two additional alignments of 17 charaterized cuticle biosynthesis proteins from model plants against the transcripts and predicted proteins of sweet pitaya were carried out by tBLASTn and BLASTp, respectively. An E value threshold of 1 × 10−5 was used, and the unique best hits were recovered for all three alignments. The sequences of the 17 characterized cuticle biosynthesis genes and proteins from model plants are showed in Supplementary Table S3. The specific parameters and the unique best hits for all the alignments carried out are shown in Supplementary Tables S4S8.

    Cuticle biosynthesis-related transcripts tentatively coding for a cytochrome p450 family 77 subfamily A (CYP77A), a Gly-Asp-Ser-Leu motif lipase/esterase 1 (GDSL1), and an ATP binding cassette transporter subfamily G member 11 (ABCG11) were identified by best bi-directional hit according to the functional annotation described above. Protein-conserved domains, signal peptide, and transmembrane helix were predicted through InterProScan, SignalP 6.0, and TMHMM, respectively. Alignment of the protein sequences to tentative orthologous of other plant species was carried out by the MUSCLE algorithm[48]. A neighbor-joining (NJ) phylogenetic tree with a bootstrap of 1,000 replications was constructed by MEGA11[49].

    Fruit sampling, primer design, RNA extraction, cDNA synthesis, and transcript quantification were performed as described above. Relative expression was calculated according to the 2−ΔΔCᴛ method[50]. The sample corresponding to 10 DAF was used as the calibrator. The transcripts StEF1a, StTUA, StUBQ3, and StEF1a + StTUA were used as normalizer genes.

    Normality was assessed according to the Shapiro-Wilk test. Significant differences in the expression of the cuticle biosynthesis-related transcripts between fruit developmental stages were determined by one-way ANOVA based on a completely randomized sampling design and a Tukey honestly significant difference (HSD) test, considering a p-value < 0.05 as significant. Statistical analysis was carried out through the stats package in R Studio.

    RNA was extracted from the peels of ripe sweet pitaya fruits (S. thurberi) from plants located in the Sonoran Desert, Mexico. Four cDNA libraries were sequenced in an Illumina NextSeq 500 platform at the University of Arizona Genetics Core Facility. A total of 288,199,704 reads with 150 base pairs (bp) in length were sequenced in paired-end mode. After trimming, 243,194,888 (84.38%) cleaned short reads with at least 29 mean quality scores per read in the Phred scale and between 80 to 150 bp in length were obtained to carry out the assembly. After removing contaminating sequences, redundancy, and low-expressed transcripts, the assembly included 174,449 transcripts with an N50 value of 2,110 bp. Table 1 shows the different quality variables of the S. thurberi fruit peel transcriptome. BUSCO score showed that 85.4% are completed transcripts, although out of these, 37.2% were found to be duplicated. The resulting sequence data can be accessed at the SRA repository of the NCBI through the BioProject ID PRJNA1030439.

    Table 1.  Quality metrics of the Stenocereus thurberi fruit peel transcriptome.
    Metric Data
    Total transcripts 174,449
    N50 2,110
    Smallest transcript length (bp) 200
    Largest transcript length (bp) 19,114
    Mean transcript length (bp) 1,198.69
    GC (%) 41.33
    Total assembled bases 209,110,524
    TransRate score 0.05
    BUSCO score (%) C: 85.38 (S:48.22, D:37.16),
    F: 10.69, M: 3.93.
    Values were calculated through the TrinityStats function of Trinity and TransRate software. Completeness analysis was carried out through BUSCO by aligning the transcriptome to the Embryophyte database through BLAST with an E value threshold of 1 × 10−3. Complete (C), single (S), duplicated (D), fragmented (F), missing (M).
     | Show Table
    DownLoad: CSV

    A summary of the homology search in the main public protein database for the S. thurberi transcriptome is shown in Supplementary Table S1. From these databases, the higher homologous transcripts were found in RefSeq with 93,993 (53.87 %). Based on the E value distribution, for 41,685 (44%) and 68,853 (49%) of the hits, it was found a strong homology (E value lower than 1 × 10−50) to proteins in the Swiss-Prot and RefSeq databases, respectively (Supplementary Fig. S2a & b). On the other hand, 56,539 (52.34%) and 99,599 (71.11%) of the matches showed a percentage of identity higher than 60% in the Swiss-Prot and RefSeq databases, respectively (Supplementary Fig. S2c & d).

    Figure 1 shows the homology between transcripts from S. thurberi and proteins of commercial fruits, as well as proteins and transcripts of cacti. Transcripts from S. thurberi homologous to proteins from fruits of commercial interest avocado (P. americana), peach (P. persica), strawberry (F. vesca), orange (C. sinensis), and grapefruit (V. vinifera) ranged from 77,285 (44.30%) to 85,421 (48.96%), with 70,802 transcripts homologous to all the five fruit protein databases (Fig. 1a).

    Transcripts homologous to transcripts or proteins from the cactus dragon fruit (H. polyrhizus), prickly pear cactus (O. streptacantha), Mexican giant cardon (P. pringlei), and pitahaya (S. undatus) ranged from 76,238 (43.70%) to 114,933 (65.88%), with 64,009 transcripts homologous to all the four cactus databases (Fig. 1b). Further, out of the total of transcripts, 44,040 transcripts (25.25%) showed homology only to sequences from cactus, but not for model plants Arabidopsis, tomato, or the commercial fruits included in this study (Fig. 1c).

    Figure 1.  Venn diagram of the homology search results against model plants databases, commercial fruits, and cactus. The number in the diagram corresponds to the number of transcripts from S. thurberi homologous to sequences from that plant species. (a) Homologous to sequences from Fragaria vesca (Fa), Persea americana (Pa), Prunus persica (Pp), Vitis vinifera (Vv), and Citrus sinensis (Cs). (b) Homologous to sequences from Opuntia streptacantha (Of), Selenicereus undatus (Su), Hylocereus polyrhizus (Hp), and Pachycereus pringlei (Pap). (c) Homologous to sequences from Solanum lycopersicum (Sl), Arabidopsis thaliana (At), from the commercial fruits (Fa, Pa, Pp, Vv, and Cs), or the cactus included in this study (Of, Su, Hp, and Pap). Homologous searching was carried out by BLAST alignment (E value < 1 × 10−5). The Venn diagrams were drawn by ggVennDiagram in R Studio.

    A total of 45,970 (26.35%), 58,704 (33.65%), and 48,186 (27.65%) transcripts showed homology to transcription factors, transcriptional regulators, and protein kinases in the PlantTFDB, iTAK-TR, and iTAK-PK databases, respectively (Supplementary Tables S1, S9S11). For the PlantTFDB, the homologous transcripts belong to 57 transcriptional factors (TF) families (Fig. 2 & Supplementary Table S9), from which, the most frequent were the basic-helix-loop-helix (bHLH), myeloblastosis-related (MYB-related), NAM, ATAF, and CUC (NAC), ethylene responsive factor (ERF), and the WRKY domain families (WRKY) (Fig. 2).

    Figure 2.  Transcription factor (TF) families distribution of S. thurberi fruit peel transcriptome. The X-axis indicates the number of transcripts with hits to each TF family. Alignment to the PlantTFDB database by BLASTx was carried out with an E value threshold of 1 × 10−5. The bar graph was drawn by ggplot2 in R Studio.

    Based on the homology found and the functional domain searches, gene ontology terms (GO) were assigned to 68,559 transcripts (Supplementary Table S12). Figure 3 shows the top 20 GO terms assigned to the S. thurberi transcriptome, corresponding to the Biological Processes (BP) and Molecular Function (MF) categories. For BP, organic substance metabolic processes, primary metabolic processes, and cellular metabolic processes showed a higher number of transcripts (Supplementary Table S13). Further, for MF, organic cyclic compound binding, heterocyclic compound binding, and ion binding were the processes with the higher number of transcripts. S. thurberi transcripts were classified into 142 metabolic pathways from the KEGG database (Supplementary Table S14). The pathways with the higher number of transcripts recorded were pyruvate metabolism, glycerophospholipid metabolism, glycolysis/gluconeogenesis, and citrate cycle. Further, among the top 20 KEEG pathways, the cutin, suberin, and wax biosynthesis include more than 30 transcripts (Fig. 4).

    Figure 3.  Top 20 Gene Ontology (GO) terms assigned to the S. thurberi fruit peel transcriptome. Bars indicate the number of transcripts assigned to each GO term. Assignment of GO terms was carried out by Blast2GO with default parameters. BP and MF mean Biological Processes and Molecular Functions GO categories, respectively. The graph was drawn by ggplot2 in R Studio.
    Figure 4.  Top 20 KEGG metabolic pathways distribution in the S. thurberi fruit peel transcriptome. Bars indicate the number of transcripts assigned to each KEGG pathway. Assignment of KEGG pathways was carried out in the Blast2GO suite. The bar graph was drawn by ggplot2 in R Studio.

    Out of the total of transcripts, 43,391 (24.87%) were classified as lncRNA (Supplementary Tables S15 & S16). Figure 5 shows a comparison of the length (Fig. 5a) and expression (Fig. 5b) of lncRNA and coding RNA. Both length and expression values were higher in coding RNA than in lncRNA. In general, coding RNA ranged from 201 to 18,629 bp with a mean length of 1,507.18, whereas lncRNA ranged from 200 to 5,198 bp with a mean length of 481.51 (Fig. 5a). The higher expression values recorded from coding RNA and lncRNA were 12.83 and 9.45 log2(CPM), respectively (Fig. 5b).

    Figure 5.  Comparison of coding RNA and long non-coding RNA (lncRNA) from S. thurberi transcriptome. (a) Box plot of transcript length distribution. The Y-axis indicates the length of each transcript in base pairs. (b) Box plot of expression levels. The Y-axis indicates the log2 of the count per million of reads (log2(CPM)) recorded for each transcript. Expression levels were calculated by the edgeR package in R studio. (a), (b) The lines inside the boxes indicate the median. The higher and lower box limits represent the 75th and 25th percentiles, respectively. The box plots were drawn by ggplot2 in R Studio.

    To identify the transcripts without significant changes in expression between the four RNA-seq libraries, a differential expression analysis was carried out. Of the total of transcripts, 4,980 were not differentially expressed (NDE) at least in one paired comparison between the libraries (Supplementary Tables S17S20). Mean counts per million of reads (CPM) and coefficient of variation (CV)[44] were calculated for these NDE transcripts. Transcripts with a CV value lower than 0.113, corresponding with the percentile 5 of the CV, and a mean CPM higher than 1,138.06, corresponding with the percentile 95 of the mean CPM were used as filters to identify the most stably expressed transcripts (Supplementary Table S21). Based on its homology and its tentative biological function, five transcripts were selected to be tested as tentative reference genes. Besides, three NDE transcripts homologous to previously identified stable expressed reference genes in other species of cactus fruit[4143] were selected (Supplementary Table S22). Homology metrics for the eight tentative reference genes selected are shown in Supplementary Table S23. The primer sequences used to amplify the transcripts by qRT-PCR and their nucleotide sequence are shown in Supplementary Tables S24 & S25, respectively.

    The amplification specificity of the eight candidate reference genes determined by melting curves analysis is shown in Supplementary Fig. S3. For the eight tentative reference transcripts selected, the cycle threshold (Ct) values were recorded during sweet pitaya fruit development by qRT-PCR (Supplementary Table S26). The Ct values obtained ranged from 16.85 to 30.26 (Fig. 6a). Plastidic ATP/ADP-transporter (StTLC1) showed the highest Ct values with a mean of 27.34 (Supplementary Table S26). Polyubiquitin 3 (StUBQ3) showed the lowest Ct values in all five sweet pitaya fruit developmental stages (Fig. 6a).

    Figure 6.  Expression stability analysis of tentative reference genes. (a) Box plot of cycle threshold (Ct) distribution of candidate reference genes during sweet pitaya fruit development (10, 20, 30, 35, and 40 d after flowering). The black line inside the box indicates the median. The higher and lower box limits represent the 75th and 25th percentiles, respectively. (b) Bar chart of the geometric mean (geomean) of ranking values calculated by RefFinder for each tentative reference gene (X-axis). The lowest values indicate the best reference genes. (c) Bar chart of the pairwise variation analysis and determination of the optimal number of reference genes by the geNorm algorithm. A pairwise variation value lower than 0.15 indicates that the use of Vn/Vn + 1 reference genes is reliable for the accurate normalization of qRT-PCR data. The Ct data used in the analysis were calculated by qRT-PCR in a QIAquant 96 5 plex (QIAGEN) according to the manufacturer's protocol. The box plot and the bar graphs were drawn by ggplot2 and Excel programs, respectively. Abbreviations: Actin 7 (StACT7), alpha-tubulin (StTUA), elongation factor 1-alpha (StEF1a), COP1-interactive protein 1 (StCIP1), plasma membrane ATPase 4 (StPMA4), BEL1-like homeodomain protein 1 (StBLH1), polyubiquitin 3 (StUBQ3), and plastidic ATP/ADP-transporter (StTLC1).

    The best stability values calculated by NormFinder were 0.45, 0.51, 0.97, and 0.99, corresponding to the transcripts elongation factor 1-alpha (StEF1a), alpha-tubulin (StTUA), plastidic ATP/ADP-transporter (StTLC1), and actin 7 (StACT7), respectively (Supplementary Table S27). For BestKeeper, the most stable expressed transcripts were StUBQ3, StTUA, and StEF1a, with values of 0.72, 0.75, and 0.87, respectively. In the case of the delta Ct method[51], the transcripts StEF1a, StTUA, and StTLC1 showed the best stability.

    According to geNorm analysis, the most stable expressed transcripts were StTUA, StEF1a, StUBQ3, and StACT7, with values of 0.74, 0.74, 0.82, and 0.96, respectively. All the pairwise variation values (Vn/Vn + 1) were lower than 0.15, ranging from 0.019 for V2/V3 to 0.01 for V6/V7 (Fig. 6c). The V value of 0.019 obtained for V2/V3 indicates that the use of the best two reference genes StTUA and StEF1a is reliable enough for the accurate normalization of qRT-PCR data, therefore no third reference gene is required[47]. Except for BestKeeper analysis, StEF1a and StTUA were the most stable transcripts for all of the methods carried out in this study (Supplementary Table S27). The comprehensive ranking analysis indicates that StEF1a, followed by StTUA and StUBQ3, are the most stable expressed genes and are stable enough to be used as reference genes in qRT-PCR analysis during sweet pitaya fruit development (Fig. 6b).

    Three cuticle biosynthesis-related transcripts TRINITY_DN17030_c0_g1_i2, TRINITY_DN15394_c0_g1_i1, and TRINITY_DN23528_c1_g1_i1 tentatively coding for the enzymes cytochrome p450 family 77 subfamily A (CYP77A), Gly-Asp-Ser-Leu motif lipase/esterase 1 (GDSL1), and an ATP binding cassette transporter subfamily G member 11 (ABCG11/WBC11), respectively, were identified and quantified. The nucleotide sequence and predicted amino acid sequences of the three transcripts are shown in Supplementary File 1. The best homology match for StCYP77A (TRINITY_DN17030_c0_g1_i2) was for AtCYP77A4 (AT5G04660) from Arabidopsis and SmCYP77A2 (P37124) from eggplant (Solanum melongena) in the TAIR and Swiss-Prot databases, respectively (Supplementary Table S23).

    TransDecoder, InterPro, and TMHMM analysis showed that StCYP77A codes a polypeptide of 518 amino acids (aa) in length that comprises a cytochrome P450 E-class domain (IPR002401) and a transmembrane region (residues 10 to 32). The phylogenetic tree constructed showed that StCYP77A is grouped in a cluster with all the CYP77A2 proteins included in this analysis, being closer to CYP77A2 (XP_010694692) from B. vulgaris and Cgig2_012892 (KAJ8441854) from Carnegiea gigantean (Supplementary Fig. S4).

    StGDSL1 (TRINITY_DN15394_c0_g1_i1) alignment showed that it is homologous to a GDSL esterase/lipase from Arabidopsis (Q9LU14) and tomato (Solyc03g121180) (Supplementary Table S23). TransDecoder, InterPro, and SignalP analysis showed that StGDSL1 codes a polypeptide of 354 aa in length that comprises a GDSL lipase/esterase domain IPR001087 and a signal peptide with a cleavage site between position 25 and 26 (Supplementary Fig. S5).

    Supplementary Figure S6 shows the analysis carried out on the predicted amino acid sequence of StABCG11 (TRINITY_DN23528_c1_g1_i1). The phylogenetic tree constructed shows three clades corresponding to the ABCG13, ABCG12, and ABCG11 protein classes with bootstrap support ranging from 40% to 100% (Supplementary Fig. S6a). StABCG11 is grouped with all the ABCG11 transporters included in this study in a well-separated clade, being closely related to its tentative ortholog from C. gigantean Cgig2_004465 (KAJ8441854). InterPro and TMHMM results showed that the StABCG11 sequence contains an ABC-2 type transporter transmembrane domain (IPR013525; PF01061.27) with six transmembrane helices (Supplementary Fig. S6b).

    The predicted protein sequence of StABCG11 is 710 aa in length, holding the ATP binding domain (IPR003439; PF00005.30) and the P-loop containing nucleoside triphosphate hydrolase domain (IPR043926; PF19055.3) of the ABC transporters of the G family. Multiple sequence alignment shows that the Walker A and B motif sequence and the ABC signature[15] are conserved between the ABCG11 transporters from Arabidopsis, tomato, S. thurberi, and C. gigantean (Supplementary Fig. S6c).

    According to the results of the expression stability analysis (Fig. 6), four normalization strategies were tested to quantify the three cuticle biosynthesis-related transcripts during sweet pitaya fruit development. The four strategies consist of normalizing by StEF1a, StTUA, StUBQ3, or StEF1a+StTUA. Primer sequences used to quantify the transcripts StCYP77A (TRINITY_DN17030_c0_g1_i2), StGDSL1 (TRINITY_DN15394_c0_g1_i1), and StABCG11 (TRINITY_DN23528_c1_g1_i1) by qRT-PCR during sweet pitaya fruit development are shown in Supplementary Table S24.

    The three cuticle biosynthesis-related transcripts showed differences in expression during sweet pitaya fruit development (Supplementary Table S28). The same expression pattern was recorded for the three cuticle biosynthesis transcripts when normalization was carried out by StEF1a, StTUA, StUBQ3, or StEF1a + StTUA (Fig. 7). A higher expression of StCYP77A and StGDSL1 are shown at the 10 and 20 DAF, showing a decrease at 30, 35, and 40 DAF. StABCG11 showed a similar behavior, with a higher expression at 10 and 20 DAF and a reduction at 30 and 35 DAF. Nevertheless, unlike StCYP77A and StGDSL1, a significant increase at 40 DAF, reaching the same expression as compared with 10 DAF, is shown for StABCG11 (Fig. 7).

    Figure 7.  Expression analysis of cuticle biosynthesis-related transcripts StCYP77A, StGDSL1, and StABCG11 during sweet pitaya (Stenocereus thurberi) fruit development. Relative expression was calculated through the 2−ΔΔCᴛ method using elongation factor 1-alpha (StEF1a), alpha-tubulin (StTUA), polyubiquitin 3 (StUBQ3), or StEF1a + StTUA as normalizing genes at 10, 20, 30, 35, and 40 d after flowering (DAF). The Y-axis and error bars represent the mean of the relative expression ± standard error (n = 4−6) for each developmental stage in DAF. The Ct data for the analysis was recorded by qRT-PCR in a QIAquant 96 5 plex (QIAGEN) according to the manufacturer's protocol. The graph line was drawn by ggplot2 in R Studio. Abbreviations: cytochrome p450 family 77 subfamily A (StCYP77A), Gly-Asp-Ser-Leu motif lipase/esterase 1 (StGDSL1), and ATP binding cassette transporter subfamily G member 11 (StABCG11).

    Characteristics of a well-assembled transcriptome include an N50 value closer to 2,000 bp, a high percentage of conserved transcripts completely assembled (> 80%), and a high proportion of reads mapping back to the assembled transcripts[52]. In the present study, the first collection of 174,449 transcripts from S. thurberi fruit peel are reported. The generated transcriptome showed an N50 value of 2,110 bp, a TransRate score of 0.05, and a GC percentage of 41.33 (Table 1), similar to that reported for other de novo plant transcriptome assemblies[53]. According to BUSCO, 85.4% of the orthologous genes from the Embryophyta databases completely matched the S. thurberi transcriptome, and only 3.9% were missing (Table 1). These results show that the S. thurberi transcriptome generated is not fragmented, and it is helpful in predicting the sequence of almost all the transcripts expressed in sweet pitaya fruit peel[24].

    The percentage of transcripts homologous found, E values, and identity distribution (Supplementary Tables S1 & S2; Supplementary Fig. S2) were similar to that reported in the de novo transcriptome assembly for non-model plants and other cactus fruits[4143,54] and further suggests that the transcriptome assembled of S. thurberi peel is robust[52]. Of the total of transcripts, 70,802 were common to all the five commercial fruit protein databases included in this study, which is helpful for the search for conserved orthologous involved in fruit development and ripening (Fig. 2a). A total of 34,513 transcripts (20%) show homology only to sequences in the cactus's databases, but not in the others (Supplementary Tables S1 & S2; Fig. 1c). This could suggest that a significant conservation of sequences among plants of the Cactaceae family exists which most likely are to have a function in this species adaptation to desert ecosystems.

    To infer the biological functionality represented by the S. thurberi fruit peel transcriptome, gene ontology (GO) terms and KEGG pathways were assigned. Of the main metabolic pathways assigned, 'glycerolipid metabolism' and 'cutin, suberine, and wax biosynthesis' suggests an active cuticle biosynthesis in pitaya fruit peel (Fig. 4). In agreement with the above, the main GO terms assigned for the molecular function (MF) category were 'organic cyclic compound binding', 'transmembrane transporter activity', and 'lipid binding' (Fig. 3). For the biological processes (BP) category, the critical GO terms for the present research are 'cellular response to stimulus', 'response to stress', 'anatomical structure development', and 'transmembrane transport', which could suggest the active development of the fruit epidermis and cuticle biosynthesis for protection to stress.

    The most frequent transcription factors (TF) families found in S. thurberi transcriptome were NAC, WRKY, bHLH, ERF, and MYB-related (Fig. 2), which had been reported to play a function in the tolerance to abiotic stress in plants[55,56]. Although the role of NAC, WRKY, bHLH, ERF, and MYB TF in improving drought tolerance in relevant crop plants has been widely documented[57,58], their contribution to the adaptation of cactus to arid ecosystems has not yet been elucidated and further experimental pieces of evidence are needed.

    It has been reported that the heterologous expression of ERF TF from Medicago truncatula induces drought tolerance and cuticle wax biosynthesis in Arabidopsis leaf[59]. In tomato fruits, the gene SlMIXTA-like which encodes a MYB transcription factor avoids water loss through the positive regulation of genes related to the biosynthesis and transport of cuticle compounds[22]. Despite the relevant role of cuticles in maintaining cactus physiology in desert environments, experimental evidence showing the role of the different TF-inducing cuticle biosynthesis has yet to be reported for cactus fruits.

    Out of the transcripts, 43,391 were classified as lncRNA (Supplementary Tables S15 & S16). This is the first report of lncRNA identification for the species S. thurberi. In fruits, 3,679 lncRNA has been identified from tomato[26], 3,330 from peach (P. persica)[29], 3,857 from melon (Cucumis melo)[28], 2,505 from hot pepper (Capsicum annuum)[27], and 3,194 from pomegranate (Punica granatum)[36]. Despite the stringent criteria to classify the lncRNA of sweet pitaya fruit (S. thurberi), a higher number of lncRNAs are shown when compared with previous reports. This finding is most likely due to the higher level of redundancy found during the transcriptome analysis. To reduce this redundancy, further efforts to achieve the complete genome assembly of S. thurberi are needed.

    Previous studies showed that lncRNA is shorter and has lower expression levels than coding RNA[6062]. In agreement with those findings, both the length and expression values of lncRNA from S. thurberi were lower than coding RNA (Fig. 5). It has been suggested that lncRNA could be involved in the biosynthesis of cuticle components in cabbage[61] and pomegranate[36] and that they could be involved in the tolerance to water deficit through the regulation of cuticle biosynthesis in wild banana[60]. Nevertheless, the molecular mechanism by which lncRNA may regulate the cuticle biosynthesis in S. thurberi fruits has not yet been elucidated.

    A relatively constant level of expression characterizes housekeeping genes because they are involved in essential cellular functions. These genes are not induced under specific conditions such as biotic or abiotic stress. Because of this, they are very useful as internal reference genes for qRT-PCR data normalization[63]. Nevertheless, their expression could change depending on plant species, developmental stages, and experimental conditions[64]. Reliable reference genes for a specific experiment in a given species must be identified to carry out an accurate qRT-PCR data normalization[63]. An initial screening of the transcript expression pattern through RNA-seq improves the identification of stably expressed transcripts by qRT-PCR[44,64].

    Identification of stable expressed reference transcripts during fruit development has been carried out in blueberry (Vaccinium bracteatum)[65], kiwifruit (Actinidia chinensis)[66], peach (P. persica)[67], apple (Malus domestica)[68], and soursop (Annona muricata)[69]. These studies include the expression stability analysis through geNorm, NormFinder, and BestKeeper algorithms[68,69], some of which are supported in RNA-seq data[65,66]. Improvement of expression stability analysis by RNA-seq had led to the identification of non-previously reported reference genes with a more stable expression during fruit development than commonly known housekeeping genes in grapevine (V. vinifera)[44], pear (Pyrus pyrifolia and P. calleryana)[64], and pepper (C. annuum)[70].

    For fruits of the Cactaceae family, only a few studies identifying reliable reference genes have been reported[4143]. Mainly because gene expression analysis has not been carried out previously for sweet pitaya (S. thurberi), the RNA-seq data generated in this work along with geNorm, NormFinder, BestKeeper, and RefFinder algorithms were used to identify reliable reference genes. The comprehensive ranking analysis showed that out of the eight candidate genes tested, StEF1a followed by StTUA and StUBQ3 were the most stable (Fig. 6b). All the pairwise variation values (Vn/Vn + 1) were lower than 0.15 (Fig. 6c), which indicates that StEF1a, StTUA, and StUBQ3 alone or the use of StEF1a and StTUA together are reliable enough to normalize the gene expression data generated by qRT-PCR.

    The genes StEF1a, StTUA, and StUBQ3 are homologous to transcripts found in the cactus species known as dragonfruit (Hylocereus monacanthus and H. undatus)[41], which have been tested as tentative reference genes during fruit development. EF1a has been proposed as a reliable reference gene in the analysis of changes in gene expression of dragon fruit (H. monacanthus and H. undatus)[41], peach (P. persica)[67], apple (M. domestica)[68], and soursop (A. muricata)[69]. According to the expression stability analysis carried out in the present study (Fig. 6) four normalization strategies were designed. The same gene expression pattern was recorded for the three target transcripts evaluated when normalization was carried out by the genes StEF1a, StTUA, StUBQ3, or StEF1a + StTUA (Fig. 7). Further, these data indicates that these reference genes are reliable enough to be used in qRT-PCR experiments during fruit development of S. thurberi.

    The plant cuticle is formed by two main layers: the cutin, composed mainly of mid-chain oxygenated LC fatty acids, and the cuticular wax, composed mainly of very long-chain (VLC) fatty acids, and their derivates VLC alkanes, VLC primary alcohols, VLC ketones, VLC aldehydes, and VLC esters[3]. In Arabidopsis CYP77A4 and CYP77A6 catalyze the synthesis of midchain epoxy and hydroxy ω-OH long-chain fatty acids, respectively[10,11], which are the main components of fleshy fruit cuticle[3].

    The functional domain search carried out in the present study showed that StCYP77A comprises a cytochrome P450 E-class domain (IPR002401) and a membrane-spanning region from residues 10 to 32 (Supplementary Fig. S4). This membrane-spanning region has been previously characterized in CYP77A enzymes from A. thaliana and Brassica napus[11,71]. It suggests that the protein coded by StCYP77A could catalyze the oxidation of fatty acids embedded in the endoplasmic reticulum membrane of the epidermal cells of S. thurberi fruit. Phylogenetic analysis showed that StCYP77A was closer to proteins from its phylogenetic-related species B. vulgaris (BvCYP772; XP_010694692) and C. gigantea (Cgig2_012892) (Supplementary Fig. S4). StCYP77A, BvCYP77A2, and Cgig2_012892 were closer to SlCYP77A2 and SmCYP77A2 than to CYP77A4 and CYP77A6 proteins, suggesting that StCYP77A (TRINITY_DN17030_c0_g1_i2) could correspond to a CYP77A2 protein.

    Five CYP77A are present in the Arabidopsis genome, named CYP77A4, CYP77A5, CYP77A6, CYP77A7, and CYP77A9, but their role in cuticle biosynthesis has only been reported for CYP77A4 and CYP77A6[72]. It has been suggested that CYP77A2 from eggplant (S. torvum) could contribute to the defense against fungal phytopathogen infection by the synthesis of specific compounds[13]. In pepper fruit (C. annuum), the expression pattern of CYP77A2 (A0A1U8GYB0) and ABCG11 (LOC107862760) suggests a role of CYP77A2 and ABCG11 in cutin biosynthesis at the early stages of pepper fruit development[14].

    In the case of the protein encoded by StGDSL1 (354 aa), the length found in this work is similar to the length of its homologous from Arabidopsis (AT3G16370) and tomato (Solyc03g121180) (Supplementary Fig. S5). A GDSL1 protein named CD1 polymerizes midchain oxygenated ω-OH long-chain fatty acids to form the cutin polyester in the extracellular space of tomato fruit peel[20,21]. It has been suggested that the 25-amino acid N-signal peptide found in StGDSL1 (Supplementary Fig. S5), previously reported in GDSL1 from Arabidopsis, B. napus, and tomato, plays a role during the protein exportation to the extracellular space[21,73].

    A higher expression of StCYP77A, StGDSL1, and StABCG11 is shown at the 10 and 20 DAF of sweet pitaya fruit development (Fig. 7), suggesting the active cuticle biosynthesis at the early stages of sweet pitaya fruit development. In agreement with that, two genes coding for GDSL lipase/hydrolases from tomato named SGN-U583101 and SGN-U579520 are highly expressed in the early stages and during the expansion stages of tomato fruit development, but their expression decreases in later stages[74]. It has been shown that the expression of GDSL genes, like CD1 from tomato, is higher in growing fruit[20,21]. Like tomato, the increase in expression of StCYP77A and StGDSL1 shown in pitaya fruit development could be due to an increase in cuticle deposition during the expansion of the fruit epidermis[20].

    The phylogenetic analysis, the functional domains, and the six transmembrane helices found in the StABCG11 predicted protein (Supplementary Fig. S6), suggests that it is an ABCG plasma membrane transporter of sweet pitaya[15]. Indeed, an increased expression of StABCG11 at 40 DAF was recorded in the present study (Fig. 7). Further, this data strongly suggests that it could be playing a relevant role in the transport of cuticle components at the beginning and during sweet pitaya fruit ripening.

    In Arabidopsis, ABCG11 (WBC11) exports cuticular wax and cutin compounds from the plasma membrane[15,75]. It has been reported that a high expression of the ABC plasma membrane transporter from mango MiWBC11 correlates with a higher cuticle deposition during fruit development[7]. The expression pattern for StABCG11, StCYP77A, and StGDSL1 suggests a role of StABCG11 as a cutin compound transporter in the earlier stages of sweet pitaya fruit development (Fig. 7). Further, its increase at 40 DAF suggests that it could be transporting cuticle compounds other than oxygenated long-chain fatty acids, or long-chain fatty acids that are not synthesized by StCYP77A and StGDSL1 in the later stages of fruit development.

    Like sweet pitaya, during sweet cherry fruit (Prunus avium) development, the expression of PaWCB11, homologous to AtABCG11 (AT1G17840), increases at the earlier stages of fruit development decreases at the intermediate stages, and increases again at the later stages[76]. PaWCB11 expression correlated with cuticle membrane deposition at the earlier and intermediate stages of sweet cherry fruit development but not at the later[76]. The increased expression of StABCG11 found in the present study could be due to the increased transport of cuticular wax compounds, such as VLC fatty acids and their derivates, in the later stages of sweet pitaya development[15,75].

    Cuticular waxes make up the smallest amount of the fruit cuticle. Even so, they mainly contribute to the impermeability of the fruit's epidermis[3]. An increase in the transport of cuticular waxes at the beginning of the ripening stage carried out by ABCG transporters could be due to a greater need to avoid water loss and to maintain an adequate amount of water during the ripening of the sweet pitaya fruit. Nevertheless, further expression analysis of cuticular wax biosynthesis-related genes, complemented with chemical composition analysis of cuticles could contribute to elucidating the molecular mechanism of cuticle biosynthesis in cacti and their physiological contribution during fruit development.

    In this study, the transcriptome of the sweet pitaya (S. thurberi) fruit peel was assembled for the first time. The reference genes found here are a helpful tool for further gene expression analysis in sweet pitaya fruit. Transcripts tentatively involved in cuticle compound biosynthesis and transport are reported for the first time in sweet pitaya. The results suggest a relevant role of cuticle compound biosynthesis and transport at the early and later stages of fruit development. The information generated will help to improve the elucidation of the molecular mechanism of cuticle biosynthesis in S. thurberi and other cactus species in the future. Understanding the cuticle's physiological function in the adaptation of the Cactaceae family to harsh environmental conditions could help design strategies to increase the resistance of other species to face the increase in water scarcity for agricultural production predicted for the following years.

    The authors confirm contribution to the paper as follows: study conception and design: Tiznado-Hernández ME, Tafolla-Arellano JC, García-Coronado H, Hernández-Oñate MÁ; data collection: Tiznado-Hernández ME, Tafolla-Arellano JC, García-Coronado H, Hernández-Oñate MÁ; analysis and interpretation of results: Tiznado-Hernández ME, García-Coronado H, Hernández-Oñate MÁ, Burgara-Estrella AJ; draft manuscript preparation: Tiznado-Hernández ME, García-Coronado H. All authors reviewed the results and approved the final version of the manuscript.

    All data generated or analyzed during this study are included in this published article and its supplementary information files. The sequence data can be accessed at the Sequence Read Archive (SRA) repository of the NCBI through the BioProject ID PRJNA1030439.

    The authors wish to acknowledge the financial support of Consejo Nacional de Humanidades, Ciencias y Tecnologías de México (CONAHCYT) through project number 579: Elucidación del Mecanismo Molecular de Biosíntesis de Cutícula Utilizando como Modelo Frutas Tropicales. We appreciate the University of Arizona Genetics Core and Illumina for providing reagents and equipment for library sequencing. The author, Heriberto García-Coronado (CVU 490952), thanks the CONAHCYT (acronym in Spanish) for the Ph.D. scholarship assigned (749341). The author, Heriberto García-Coronado, thanks Dr. Edmundo Domínguez-Rosas for the technical support in bioinformatics for identifying long non-coding RNA.

  • The authors declare that they have no conflict of interest.

  • [1]

    Feng Y, Head KL, Khoshmagham S, Zamanipour M. 2015. A real-time adaptive signal control in a connected vehicle environment. Transportation Research Part C: Emerging Technologies 55:460−73

    doi: 10.1016/j.trc.2015.01.007

    CrossRef   Google Scholar

    [2]

    Hartenstein H, Laberteaux K. 2010. VANET: vehicular applications and inter-networking technologies. UK: John Wiley & Sons. https://doi.org/10.1002/9780470740637

    [3]

    Kenney JB. 2011. Dedicated short-range communications (DSRC) standards in the United States. Proceedings of the IEEE 99:1162−82

    doi: 10.1109/JPROC.2011.2132790

    CrossRef   Google Scholar

    [4]

    He S, Li J, Qiu TZ. 2017. Vehicle-to-pedestrian communication modeling and collision avoiding method in connected vehicle environment. Transportation Research Record: Journal of the Transportation Research Board 2621:21−30

    doi: 10.3141/2621-03

    CrossRef   Google Scholar

    [5]

    Wan N, Vahidi A, Luckow A. 2016. Optimal speed advisory for connected vehicles in arterial roads and the impact on mixed traffic. Transportation Research Part C: Emerging Technologies 69:548−63

    doi: 10.1016/j.trc.2016.01.011

    CrossRef   Google Scholar

    [6]

    He X, Liu HX, Liu X. 2015. Optimal vehicle speed trajectory on a signalized arterial with consideration of queue. Transportation Research Part C: Emerging Technologies 61:106−20

    doi: 10.1016/j.trc.2015.11.001

    CrossRef   Google Scholar

    [7]

    Ubiergo GA, Jin W. 2016. Mobility and environment improvement of signalized networks through Vehicle-to-Infrastructure (V2I) communications. Transportation Research Part C: Emerging Technologies 68:70−82

    doi: 10.1016/j.trc.2016.03.010

    CrossRef   Google Scholar

    [8]

    Yang H, Jin W. 2014. A control theoretic formulation of green driving strategies based on inter-vehicle communications. Transportation Research Part C: Emerging Technologies 41:48−60

    doi: 10.1016/j.trc.2014.01.016

    CrossRef   Google Scholar

    [9]

    Kamalanathsharma RK, Rakha HA, Yang H. 2015. Networkwide impacts of vehicle ecospeed control in the vicinity of traffic signalized intersections. Transportation Research Record: Journal of the Transportation Research Board 2503:91−99

    doi: 10.3141/2503-10

    CrossRef   Google Scholar

    [10]

    Yuan Q, Liu Z, Li J, Zhang J, Yang F. 2014. A traffic congestion detection and information dissemination scheme for urban expressways using vehicular networks. Transportation Research Part C:Emerging Technologies 47:114−27

    doi: 10.1016/j.trc.2014.08.001

    CrossRef   Google Scholar

    [11]

    Lioris J, Pedarsani R, Tascikaraoglu FY, Varaiya P. 2017. Platoons of connected vehicles can double throughput in urban roads. Transportation Research Part C: Emerging Technologies 77:292−305

    doi: 10.1016/j.trc.2017.01.023

    CrossRef   Google Scholar

    [12]

    Gordon RL, Tighe W, Siemens ITS. 2005. Traffic control systems handbook. United States: Federal Highway Administration, Office of Transportation Management.

    [13]

    JKell JH, Fullerton IJ, Mills MK. 2006. Traffic detector handbook. Volume I. Third Edition. McLean, VA, US: Turner-Fairbank Highway Research Center

    [14]

    Klein LA, Mills MK, Gibson D, Klein LA. 2006. Traffic detector handbook. Volume II. Third Edition. United States: Federal Highway Administration

    [15]

    Stevanovic A, Board TR, Board TR. 2010. Adaptive Traffic Control Systems: Domestic and Foreign State of Practice. Washington D.C.: National Academies Press. https://doi.org/10.17226/14364

    [16]

    Wang Y, Yang X, Liang H, Liu Y. 2018. A review of the self-adaptive traffic signal control system based on future traffic environment. Journal of Advanced Transportation 2018:1096123

    doi: 10.1155/2018/1096123

    CrossRef   Google Scholar

    [17]

    Jing P, Huang H, Chen L. 2017. An adaptive traffic signal control in a connected vehicle environment: a systematic review. Information 8:101

    doi: 10.3390/info8030101

    CrossRef   Google Scholar

    [18]

    Zheng X, Recker W, Chu L. 2010. Optimization of control parameters for adaptive traffic-actuated signal control. Journal of Intelligent Transportation Systems 14:95−108

    doi: 10.1080/15472451003719756

    CrossRef   Google Scholar

    [19]

    Beak B, Head KL, Feng Y. 2017. Adaptive coordination based on connected vehicle technology. Transportation Research Record: Journal of the Transportation Research Board 2619:1−12

    doi: 10.3141/2619-01

    CrossRef   Google Scholar

    [20]

    Day CM, Langdon S, Stevanovic A, Tanaka A, Lee K, et al. 2019. Traffic signal systems research: Past, present, and future trends. Transportation Research Board, Annual meeting, Washington D.C., US.

    [21]

    Ahn S, Coifman B, Gayah V, Hadi M, Hamdar S, et al. 2019. Traffic flow theory and characteristics. Transportation Research Board, Annual meeting, Washington D.C., US.

    [22]

    Guo Q, Li L, Ban XJ. 2019. Urban traffic signal control with connected and automated vehicles: a survey. Transportation Research Part C: Emerging Technologies 101:313−34

    doi: 10.1016/j.trc.2019.01.026

    CrossRef   Google Scholar

    [23]

    Li L, Jiang R, He Z, Chen XM, Zhou X. 2020. Trajectory data-based traffic flow studies: A revisit. Transportation Research Part C: Emerging Technologies 114:225−40

    doi: 10.1016/j.trc.2020.02.016

    CrossRef   Google Scholar

    [24]

    Yu H, Jiang R, He Z, Zheng Z, Li L, et al. 2021. Automated vehicle-involved traffic flow studies: a survey of assumptions, models, speculations, and perspectives. Transportation Research Part C: Emerging Technologies 127:103101

    doi: 10.1016/j.trc.2021.103101

    CrossRef   Google Scholar

    [25]

    Wu Z, Waterson B. 2022. Urban intersection management strategies for autonomous/connected/conventional vehicle fleet mixtures. IEEE Transactions on Intelligent Transportation Systems 23:12084−93

    doi: 10.1109/TITS.2021.3109783

    CrossRef   Google Scholar

    [26]

    Ma W, Li J, Yu C. 2023. Intersection Control in Mixed Traffic with Connected Automated Vehicles: A Review of Recent Developments and Research Frontiers. China Journal of Highway and Transport 36(2):22

    doi: 10.19721/j.cnki.1001-7372.2023.02.002

    CrossRef   Google Scholar

    [27]

    Bretherton D, Wood K, Raha N. 1998. Traffic monitoring and congestion management in the SCOOT urban traffic control system. Transportation Research Record: Journal of the Transportation Research Board 1634:118−22

    doi: 10.3141/1634-15

    CrossRef   Google Scholar

    [28]

    Sims AG, Dobinson KW. 1980. The Sydney coordinated adaptive traffic (SCAT) system philosophy and benefits. IEEE Transactions on Vehicular Technology 29:130−37

    doi: 10.1109/T-VT.1980.23833

    CrossRef   Google Scholar

    [29]

    Gartner NH. 1983. OPAC: A demand-responsive strategy for traffic signal control. Transportation Research Record: Journal of the Transportation Research Board 906:75−81

    Google Scholar

    [30]

    Mirchandani P, Head L. 2001. A real-time traffic signal control system: architecture, algorithms, and analysis. Transportation Research Part C:Emerging Technologies 9:415−32

    doi: 10.1016/s0968-090x(00)00047-4

    CrossRef   Google Scholar

    [31]

    Brilon W, Wietholt T. 2013. Experiences with adaptive signal control in Germany. Transportation Research Record: Journal of the Transportation Research Board 2356:9−16

    doi: 10.1177/0361198113235600102

    CrossRef   Google Scholar

    [32]

    Feng Y, Zamanipour M, Head KL, Khoshmagham S. 2016. Connected vehicle–based adaptive signal control and applications. Transportation Research Record: Journal of the Transportation Research Board 2558:11−9

    doi: 10.3141/2558-02

    CrossRef   Google Scholar

    [33]

    Little JDC. 1966. The synchronization of traffic signals by mixed-integer linear programming. Operations Research 14:568−94

    doi: 10.1287/opre.14.4.568

    CrossRef   Google Scholar

    [34]

    Gartner NH, Little JDC, Gabbay H. 1975. Optimization of traffic signal settings by mixed-integer linear programming. Transportation Science 9:321−43

    doi: 10.1287/trsc.9.4.321

    CrossRef   Google Scholar

    [35]

    Goodall NJ, Smith BL, Park BB. 2013. Traffic signal control with connected vehicles. Transportation Research Record: Journal of the Transportation Research Board 2381:65−72

    doi: 10.3141/2381-08

    CrossRef   Google Scholar

    [36]

    Ilgin Guler S, Menendez M, Meier L. 2014. Using connected vehicle technology to improve the efficiency of intersections. Transportation Research Part C: Emerging Technologies 46:121−31

    doi: 10.1016/j.trc.2014.05.008

    CrossRef   Google Scholar

    [37]

    Maslekar N, Mouzna J, Boussedjra M, Labiod H. 2013. CATS: an adaptive traffic signal system based on car-to-car communication. Journal of Network and Computer Applications 36:1308−15

    doi: 10.1016/j.jnca.2012.05.011

    CrossRef   Google Scholar

    [38]

    Venkatanarayana R, Park H, Smith BL, Skerrit C Jr, Ruhter NW. 2011. Application of IntelliDriveSM to Address Oversaturated Conditions on Arterials. Transportation Research Board, Annual Meeting, Washington D.C., US, 2011. https://trid.trb.org/view/1092584

    [39]

    Liu W, Qin G, He Y, Jiang F. 2017. Distributed cooperative reinforcement learning-based traffic signal control that integrates V2X networks' dynamic clustering. IEEE Transactions on Vehicular Technology 66:8667−81

    doi: 10.1109/TVT.2017.2702388

    CrossRef   Google Scholar

    [40]

    Day CM, Bullock DM. 2016. Detector-free signal offset optimization with limited connected vehicle market penetration: proof-of-concept study. Transportation Research Record: Journal of the Transportation Research Board 2558:54−65

    doi: 10.3141/2558-06

    CrossRef   Google Scholar

    [41]

    Li H, Day CM, Bullock DM. Virtual detection at intersections using connected vehicle trajectory data. 2016 IEEE 19th International Conference on Intelligent Transportation Systems, Rio de Janeiro, Brazil, 1-4 November 2016. USA: IEEE. pp. 2571−76. https://doi.org/10.1109/ITSC.2016.7795969

    [42]

    He Q, Head KL, Ding J. 2012. PAMSCOD: Platoon-based arterial multi-modal signal control with online data. Transportation Research Part C: Emerging Technologies 20:164−84

    doi: 10.1016/j.trc.2011.05.007

    CrossRef   Google Scholar

    [43]

    Li J, Qiu T. 2018. An extended time-delayed V2X-based bi-directional looking car-following model and its linear stability analysis. Transportation Research Board, Annual Meeting, Washington D.C., US, Jan. 2018. https://trid.trb.org/view/1495083 (Accessed: Jan. 22, 2018)

    [44]

    Day CM, Li H, Richardson LM, Howard J, Platte T, et al. 2017. Detector-free optimization of traffic signal offsets with connected vehicle data. Transportation Research Record: Journal of the Transportation Research Board 2620:54−68

    doi: 10.3141/2620-06

    CrossRef   Google Scholar

    [45]

    He Q, Head KL, Ding J. 2014. Multi-modal traffic signal control with priority, signal actuation and coordination. Transportation Research Part C: Emerging Technologies 46:65−82

    doi: 10.1016/j.trc.2014.05.001

    CrossRef   Google Scholar

    [46]

    Remias SM, Day CM, Waddell JM, Kirsch JN, Trepanier T. 2018. Evaluating the performance of coordinated signal timing: A comparison of common data types with connected vehicle data. Transportation Research Board, Annual Meeting, Washington, D.C., US, 2018. pp. 1–22. https://trid.trb.org/view/1495931 (Accessed: Jan. 22, 2018)

    [47]

    Feng Y. 2015. Intelligent traffic control in a connected vehicle environment. Thesis. University of Arizona, Arizona, USA. https://search.proquest.com/docview/1719282734/abstract/999E1FD35E36448EPQ/1 (Accessed: Jan. 04, 2018)

    [48]

    Sen S, Head KL. 1997. Controlled optimization of phases at an intersection. Transportation Science 31:5−17

    doi: 10.1287/trsc.31.1.5

    CrossRef   Google Scholar

    [49]

    Larry HK. 1995. Even-based short-term traffic flow prediction model. Transportation Research Record: Journal of the Transportation Research Board 1510:125−43

    Google Scholar

    [50]

    Jin J, Ma X, Kosonen I. 2017. An intelligent control system for traffic lights with simulation-based evaluation. Control Engineering Practice 58:24−33

    doi: 10.1016/j.conengprac.2016.09.009

    CrossRef   Google Scholar

    [51]

    Gao J, Shen Y, Liu J, Ito M, Shiratori N. 2017. Adaptive traffic signal control: Deep reinforcement learning algorithm with experience replay and target network. arXiv http://arxiv.org/abs/1705.02755 (Accessed: Jan. 31, 2018)

    [52]

    Gartner NH, Stamatiadis C, Tarnoff PJ. 1995. Development of advanced traffic signal control strategies for intelligent transportation systems: multilevel design. In Transportation Research Record No. 1494. Washinton D.C.: National Academy Press. pp. 98−105

    [53]

    Luyanda F, Gettman D, Head L, Shelby S, Bullock D, et al. 2003. ACS-lite algorithmic architecture: applying adaptive control system technology to closed-loop traffic signal control systems. Transportation Research Record: Journal of the Transportation Research Board 1856:175−84

    doi: 10.3141/1856-19

    CrossRef   Google Scholar

    [54]

    P. T. V. America. 2014. PTV VISTRO User Manual. Karlsruhe, Germany.: PTV

    [55]

    Morgan JT, Little JDC. 1964. Synchronizing traffic signals for maximal bandwidth. Operations Research 12:896−912

    doi: 10.1287/opre.12.6.896

    CrossRef   Google Scholar

    [56]

    Little JD, Kelson MD, Gartner NH. 1981. MAXBAND: A versatile program for setting signals on arteries and triangular networks. Transportation Research Record: Journal of the Transportation Research Board 795:40−46

    Google Scholar

    [57]

    Gartner NH, Assmann SF, Lasaga F, Hous DL. 1990. MULTIBAND – A variable-bandwidth arterial progression scheme. Transportation Research Record 1287:212−22

    Google Scholar

    [58]

    Gartner NH, Assman SF, Lasaga F, Hou DL. 1991. A multi-band approach to arterial traffic signal optimization. Transportation Research Part B: Methodological 25:55−74

    doi: 10.1016/0191-2615(91)90013-9

    CrossRef   Google Scholar

    [59]

    Stamatiadis C, Gartner NH. 1996. MULTIBAND-96: a program for variable-bandwidth progression optimization of multiarterial traffic networks. Transportation Research Record:Journal of the Transportation Research Board 1554:9−17

    doi: 10.1177/0361198196155400102

    CrossRef   Google Scholar

    [60]

    Stamatiadis C, Gartner NH. 1999. Progression optimization in large scale urban traffic networks: A heuristic decomposition approach. The 14th International Symposium on Transportation and Traffic Theory. Transportation Research Institute, 1999. Jerusalem, Israel

    [61]

    Gartner NH, Stamatiadis C. 2002. Arterial-based control of traffic flow in urban grid networks. Mathematical and Computer Modelling 35:657−71

    doi: 10.1016/s0895-7177(02)80027-9

    CrossRef   Google Scholar

    [62]

    Gartner NH, Stamatiadis C. 2004. Progression optimization featuring arterial- and route-based priority signal networks. Journal of Intelligent Transportation Systems 8:77−86

    doi: 10.1080/15472450490437771

    CrossRef   Google Scholar

    [63]

    Messer CJ, Whitson RH, Dudek CL, Romano EJ. 1973. A variable-sequence multiphase progression optimization program. Transportation Research Record 445:24−33

    Google Scholar

    [64]

    Chang EC, Messer CJ. 1991. Arterial signal timing optimization using PASSER II-90-Program user's manual. Texas Department of Transportation Austin, Texas, US

    [65]

    Chaudhary NA, Pinnoi A, Messer CJ. 1991. Proposed enhancements to MAXBAND 86 program. Transportation Research Record 1324:98−104

    Google Scholar

    [66]

    Chaudhary NA, Messer CJ. 1996. PASSER IV-96, Version 2.1, User Guide. Reference Manual. Texas Department of Transportation Austin, Texas, US

    [67]

    EChang EC, Cohen SL, Liu C, Chaudhary NA, Messer C. 1988. MAXBAND-86: Program for optimizing left-turn phase sequence in multiarterial closed networks. Transportation Research Record: Journal of the Transportation Research Board 1181:61−67

    Google Scholar

    [68]

    Zhang C, Xie Y, Gartner NH, Stamatiadis C, Arsava T. 2015. AM-Band: an Asymmetrical Multi-Band model for arterial traffic signal coordination. Transportation Research Part C: Emerging Technologies 58:515−31

    doi: 10.1016/j.trc.2015.04.014

    CrossRef   Google Scholar

    [69]

    Köhler E, Möhring RH, Wünsch G. 2005. Minimizing total delay in fixed-time controlled traffic networks. In Operations Research Proceedings 2004, eds. Fleuren H, den Hertog D, Kort P. vol 2004. Berlin, Heidelberg: Springer. pp. 192–99. https://doi.org/10.1007/3-540-27679-3_24

    [70]

    Hu H, Liu HX. 2013. Arterial offset optimization using archived high-resolution traffic signal data. Transportation Research Part C: Emerging Technologies 37:131−44

    doi: 10.1016/j.trc.2013.10.001

    CrossRef   Google Scholar

    [71]

    Shoup GE, Bullock D. 1999. Dynamic offset tuning procedure using travel time data. Transportation Research Record: Journal of the Transportation Research Board 1683:84−94

    doi: 10.3141/1683-11

    CrossRef   Google Scholar

    [72]

    Wallace CE, Courage KG, Hadi MA, Gan AC. 1998. TRANSYT-7F user's guide. Transportation Research Center, University of Florida, Gainesville, Florida.

    [73]

    Robertson DI. 1986. Research on the TRANSYT and SCOOT methods of signal coordination. ITE Journal - Institute of Transportation Engineers 56(1):1986

    Google Scholar

    [74]

    S. Studio. 2013. Synchro 8.0 User’s Guide. Sugar Land, Tex.: Trafficware

    [75]

    Gradinescu V, Gorgorin C, Diaconescu R, Cristea V, Iftode L. 2007. Adaptive traffic lights using car-to-car communication. 2007 IEEE 65th Vehicular Technology Conference − VTC2007-Spring. Dublin, Ireland. USA: IEEE. pp. 21−25. https://doi.org/10.1109/VETECS.2007.17

    [76]

    Chou LD, Deng B, Li DC, Kuo K. 2012. A passenger-based adaptive traffic signal control mechanism in Intelligent Transportation Systems. 2012 12th International Conference on ITS Telecommunications. Taipei, Taiwan, China, 5−8 November 2012. USA: IEEE. pp. 408−11 https://doi.org/10.1109/ITST.2012.6425208

    [77]

    Nafi NS, Khan JY. A VANET based intelligent road traffic signalling system. Australasian Telecommunication Networks and Applications Conference (ATNAC) 2012. Brisbane, QLD, Australia, 7−9 November 2012. USA: IEEE. pp. 1−6. https://doi.org/10.1109/ATNAC.2012.6398066

    [78]

    Chang HJ, Park GT. 2013. A study on traffic signal control at signalized intersections in vehicular ad hoc networks. Ad Hoc Networks 11:2115−24

    doi: 10.1016/j.adhoc.2012.02.013

    CrossRef   Google Scholar

    [79]

    Ahmane M, Abbas-Turki A, Perronnet F, Wu J, Moudni AE, et al. 2013. Modeling and controlling an isolated urban intersection based on cooperative vehicles. Transportation Research Part C:Emerging Technologies 28:44−62

    doi: 10.1016/j.trc.2012.11.004

    CrossRef   Google Scholar

    [80]

    Cai C, Wang Y, Geers G. 2013. Vehicle-to-infrastructure communication-based adaptive traffic signal control. IET Intelligent Transport Systems 7:351−60

    doi: 10.1049/iet-its.2011.0150

    CrossRef   Google Scholar

    [81]

    Pandit K, Ghosal D, Zhang HM, Chuah CN. 2013. Adaptive traffic signal control with vehicular ad hoc networks. IEEE Transactions on Vehicular Technology 62:1459−71

    doi: 10.1109/tvt.2013.2241460

    CrossRef   Google Scholar

    [82]

    Lee J, Park BB, Yun I. 2013. Cumulative travel-time responsive real-time intersection control algorithm in the connected vehicle environment. Journal of Transportation Engineering 139:1020−29

    doi: 10.1061/(asce)te.1943-5436.0000587

    CrossRef   Google Scholar

    [83]

    Kari D, Wu G, Barth MJ. 2014. Development of an agent-based online adaptive signal control strategy using connected vehicle technology. 17th International IEEE Conference on Intelligent Transportation Systems. Qingdao, China, 8-11 October 2014. USA: IEEE. pp. 1802−7 https://doi.org/10.1109/ITSC.2014.6957954

    [84]

    Tiaprasert K, Zhang Y, Wang XB, Zeng X. 2015. Queue length estimation using connected vehicle technology for adaptive signal control. IEEE Transactions on Intelligent Transportation Systems 16:2129−40

    doi: 10.1109/TITS.2015.2401007

    CrossRef   Google Scholar

    [85]

    Bani Younes M, Boukerche A. 2016. Intelligent traffic light controlling algorithms using vehicular networks. IEEE Transactions on Vehicular Technology 65:5887−99

    doi: 10.1109/TVT.2015.2472367

    CrossRef   Google Scholar

    [86]

    Cheng J, Wu W, Cao J, Li K. 2017. Fuzzy group-based intersection control via vehicular networks for smart transportations. IEEE Transactions on Industrial Informatics 13:751−58

    doi: 10.1109/TII.2016.2590302

    CrossRef   Google Scholar

    [87]

    Feng Y, Zheng J, Liu HX. 2018. A real-time detector-free adaptive signal control with low penetration of connected vehicles paper. The Transportation Research Board, 97th Annual Meeting, Washington D.C., USA, 2018 . https://trid.trb.org/view/1496407 (Accessed: Jan. 22, 2018)

    [88]

    Islam SMABA, Hajbabaie A. 2017. Distributed coordinated signal timing optimization in connected transportation networks. Transportation Research Part C: Emerging Technologies 80:272−85

    doi: 10.1016/j.trc.2017.04.017

    CrossRef   Google Scholar

    [89]

    Ban XJ, Li W. 2018. Connected Vehicle Based Traffic Signal Optimization. https://trid.trb.org/view/1528232 (Accessed: Dec. 04, 2018.)

    [90]

    Islam SMABA, Hajbabaie A, Aziz HMA. 2020. A real-time network-level traffic signal control methodology with partial connected vehicle information. Transportation Research Part C: Emerging Technologies 121:102830

    doi: 10.1016/j.trc.2020.102830

    CrossRef   Google Scholar

    [91]

    Li J. 2021. Adaptive signal control and coordination in connected vehicle environment. Thesis. University of Alberta, Edmonton, Canada. https://doi.org/10.7939/r3-9ms4-3206

    [92]

    Li J, Peng L, Qiu TZ. 2021. Real-time predictive coordination based on vehicle-triggered platoon dispersion in a low penetration connected vehicle environment. IET Intelligent Transport Systems 15:1548−61

    doi: 10.1049/itr2.12121

    CrossRef   Google Scholar

    [93]

    Mo Z, Li W, Fu Y, Ruan K, Di X. 2022. CVLight: Decentralized learning for adaptive traffic signal control with connected vehicles. Transportation Research Part C:Emerging Technologies 141:103728

    doi: 10.1016/j.trc.2022.103728

    CrossRef   Google Scholar

    [94]

    Goodall NJ, Park BB, Smith BL. 2014. Microscopic estimation of arterial vehicle positions in a low-penetration-rate connected vehicle environment. Journal of Transportation Engineering 140:04014047

    doi: 10.1061/(asce)te.1943-5436.0000716

    CrossRef   Google Scholar

    [95]

    Christofa E, Argote J, Skabardonis A. 2013. Arterial queue spillback detection and signal control based on connected vehicle technology. Transportation Research Record: Journal of the Transportation Research Board 2356:61−70

    doi: 10.1177/0361198113235600108

    CrossRef   Google Scholar

    [96]

    Xiang J, Chen Z. 2016. An adaptive traffic signal coordination optimization method based on vehicle-to-infrastructure communication. Cluster Computing 19:1503−14

    Google Scholar

    [97]

    Yang K, Tan I, Menendez M. 2017. A reinforcement learning based traffic signal control algorithm in a connected vehicle environment. 17th Swiss Transport Research Conference (STRC 2017), Ascona, Switzerland, May 17-19, 2017. STRC. ETH Zurich. https://doi.org/10.3929/ethz-b-000130809 (Accessed: Jan. 31, 2018)

    [98]

    Day CM, Li H, Richardson LM, Howard J, Platte T, et al. 2017. Detector-free optimization of traffic signal offsets with connected vehicle data. https://trid.trb.org/View/1437124 (Accessed: May 02, 2017)

    [99]

    Zheng J, Sun W, Huang S, Shen S Yu C, et al. 2018. Traffic signal optimization using crowdsourced vehicle trajectory data. Proceeding of the Transportation Research Board 97th Annual Meeting, Washington DC, United States, 7-11 Januray 2018. Transportation Research Board, Washington D.C., USA. https://trid.trb.org/view/1496953 (Accessed: Apr. 14, 2018)

    [100]

    Aziz HMA, Wang H, Young S, Sperling J, Beck J. 2017. Synthesis study on transitions in signal infrastructure and control algorithms for connected and automated transportation. Technical Report. ORNL/TM-2017/280, VT1301000; CEVT340. USA: Office of Scientific and Technical Information (OSTI). https://doi.org/10.2172/1366412

    [101]

    Li J, Qiu C, Seraj M, Peng L, Qiu TZ. 2019. Platoon priority visualization modeling and optimization for signal coordination in the connected vehicle environment. Transportation Research Record: Journal of the Transportation Research Board 2673:36−48

    doi: 10.1177/0361198119837505

    CrossRef   Google Scholar

    [102]

    Mahmassani HS. 2016. Autonomous vehicles and connected vehicle systems: flow and operations considerations. Transportation Science 50:1140−62

    doi: 10.1287/trsc.2016.0712

    CrossRef   Google Scholar

    [103]

    Fountoulakis M, Bekiaris-Liberis N, Roncoli C, Papamichail I, Papageorgiou M. 2017. Highway traffic state estimation with mixed connected and conventional vehicles: microscopic simulation-based testing. Transportation Research Part C: Emerging Technologies 78:13−33

    doi: 10.1016/j.trc.2017.02.015

    CrossRef   Google Scholar

    [104]

    Zhang Z, Guo M, Fu D, Mo L, Zhang S. 2022. Traffic signal optimization for partially observable traffic system and low penetration rate of connected vehicles. Computer-Aided Civil and Infrastructure Engineering 37:2070−92

    doi: 10.1111/mice.12897

    CrossRef   Google Scholar

    [105]

    Roess RP, Prassas ES, McShane WR. 2011. Traffic engineering. 4th Edition. Upper Saddle River, NJ: Pearson.

    [106]

    Gartner NH, Messer CJ, Rathi EAK. 2011. Traffic flow theory: A state of the art report-revised monograph on traffic flow theory. Transportation Research Board, Washington DC, United States. 2001:1−386

    [107]

    Burghout W, Wahlstedt J. 2007. Hybrid traffic simulation with adaptive signal control. Transportation Research Record: Journal of the Transportation Research Board 1999:191−97

    doi: 10.3141/1999-20

    CrossRef   Google Scholar

    [108]

    Cai C, Wong CK, Heydecker BG. 2009. Adaptive traffic signal control using approximate dynamic programming. Transportation Research Part C: Emerging Technologies 17:456−74

    doi: 10.1016/j.trc.2009.04.005

    CrossRef   Google Scholar

    [109]

    Aboudolas K, Papageorgiou M, Kouvelas A, Kosmatopoulos E. 2010. A rolling-horizon quadratic-programming approach to the signal control problem in large-scale congested urban road networks. Transportation Research Part C: Emerging Technologies 18:680−94

    doi: 10.1016/j.trc.2009.06.003

    CrossRef   Google Scholar

    [110]

    Liu G, Qiu TZ. 2016. Multi-Objective signal optimization with embedded enhanced store-and-forward model for oversaturated corridor. Transportation Research Board 95th Annual Meeting, Washington DC, United States, 10-14 Jan. 2016. Transportation Research Board, Washington D.C., USA. https://trid.trb.org/view.aspx?id=1393364 (Accessed: Jul. 13, 2016)

    [111]

    Papageorgiou M, Diakaki C, Dinopoulou V, Kotsialos A, Wang Y. 2003. Review of road traffic control strategies. Proceedings of the IEEE 91:2043−67

    doi: 10.1109/JPROC.2003.819610

    CrossRef   Google Scholar

    [112]

    Aboudolas K, Papageorgiou M, Kosmatopoulos E. 2009. Store-and-forward based methods for the signal control problem in large-scale congested urban road networks. Transportation Research Part C: Emerging Technologies 17:163−74

    doi: 10.1016/j.trc.2008.10.002

    CrossRef   Google Scholar

    [113]

    Burger M, van den Berg M, Hegyi A, de Schutter B, Hellendoorn J. 2013. Considerations for model-based traffic control. Transportation Research Part C: Emerging Technologies 35:1−19

    doi: 10.1016/j.trc.2013.05.011

    CrossRef   Google Scholar

    [114]

    Hao Z, Boel R, Li Z. 2018. Model based urban traffic control, part I: local model and local model predictive controllers. Transportation Research Part C: Emerging Technologies 97:61−81

    doi: 10.1016/j.trc.2018.09.026

    CrossRef   Google Scholar

    [115]

    Hao Z, Boel R, Li Z. 2018. Model based urban traffic control, part II: Coordinated model predictive controllers. Transportation Research Part C:Emerging Technologies 97:23−44

    doi: 10.1016/j.trc.2018.09.025

    CrossRef   Google Scholar

    [116]

    Han Y, Hegyi A, Yuan Y, Roncoli C, Hoogendoorn S. 2019. An extended linear quadratic model predictive control approach for multi-destination urban traffic networks. IEEE Transactions on Intelligent Transportation Systems 20:3647−60

    doi: 10.1109/TITS.2018.2877259

    CrossRef   Google Scholar

    [117]

    Lu K, Du P, Cao J, Zou Q, He T, et al. 2019. A novel traffic signal split approach based on Explicit Model Predictive Control. Mathematics and Computers in Simulation 155:105−14

    doi: 10.1016/j.matcom.2017.12.004

    CrossRef   Google Scholar

    [118]

    Pedroso L, Batista P. 2021. Decentralized store-and-forward based strategies for the signal control problem in large-scale congested urban road networks. Transportation Research Part C: Emerging Technologies 132:103412

    doi: 10.1016/j.trc.2021.103412

    CrossRef   Google Scholar

    [119]

    de Souza F, Carlson RC, Müller ER, Ampountolas K. 2022. Multi-commodity traffic signal control and routing with connected vehicles. IEEE Transactions on Intelligent Transportation Systems 23:4111−21

    doi: 10.1109/TITS.2020.3041436

    CrossRef   Google Scholar

    [120]

    Paul B, Ramteke M, Maitra B, Mitra S. 2018. New approach for calibrating robertson's platoon dispersion model. Journal of Transportation Engineering, Part A: Systems 144:04018014

    doi: 10.1061/jtepbs.0000141

    CrossRef   Google Scholar

    [121]

    Day CM, Bullock DM. 2012. Calibration of platoon dispersion model with high-resolution signal event data. Transportation Research Record: Journal of the Transportation Research Board 2311:16−28

    doi: 10.3141/2311-02

    CrossRef   Google Scholar

    [122]

    Pacey GM. 1956. The progress of a bunch of vehicles released from a traffic signal, Road Research Laboratory Note RN/2665/GMP. London: Transport and Road Research Laboratory

    [123]

    Robertson DI. 1969. TRANSYT: a traffic network study tool, Transport and Road Research Laboratory Report LR 253. London: Transport and Road Research Laboratory

    [124]

    Liu G. 2015. Development and evaluation of model-based adaptive signal control for congested arterial traffic. PhD Thesis. University of Alberta, Canada

    [125]

    Daganzo CF. 1994. The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory. Transportation Research Part B: Methodological 28:269−87

    doi: 10.1016/0191-2615(94)90002-7

    CrossRef   Google Scholar

    [126]

    Maerivoet S, De Moor B. 2017. Traffic Flow Theory. arXiv: physics/0507126. http://arxiv.org/abs/physics/0507126 (Accessed: Jan. 06, 2017)

    [127]

    Vilaró JC, Torday A, Gerodimos A. 2010. Combining mesoscopic and microscopic simulation in an integrated environment as a hybrid solution. IEEE Intelligent Transportation Systems Magazine 2:25−33

    doi: 10.1109/MITS.2010.939217

    CrossRef   Google Scholar

    [128]

    Burghout W, Koutsopoulos HN, Andréasson I. 2005. Hybrid mesoscopic–microscopic traffic simulation. Transportation Research Record:Journal of the Transportation Research Board 1934:218−25

    doi: 10.1177/0361198105193400123

    CrossRef   Google Scholar

    [129]

    Zhang C, Qiu TZ, Kim A. 2022. Centralized and decentralized signal control with short-term origin-destination demand for network traffic. Journal of Advanced Transportation 2022:5806160

    doi: 10.1155/2022/5806160

    CrossRef   Google Scholar

    [130]

    Chen H, Qiu TZ. 2022. Distributed dynamic route guidance and signal control for mobile edge computing-enhanced connected vehicle environment. IEEE Transactions on Intelligent Transportation Systems 23:12251−62

    doi: 10.1109/TITS.2021.3111855

    CrossRef   Google Scholar

    [131]

    Yao Z, Jiang Y, Zhao B, Luo X, Peng B. 2020. A dynamic optimization method for adaptive signal control in a connected vehicle environment. Journal of Intelligent Transportation Systems 24:184−200

    doi: 10.1080/15472450.2019.1643723

    CrossRef   Google Scholar

    [132]

    Shen L, Liu R, Yao Z, Wu W, Yang H. 2019. Development of dynamic platoon dispersion models for predictive traffic signal control. IEEE Transactions on Intelligent Transportation Systems 20:431−40

    doi: 10.1109/TITS.2018.2815182

    CrossRef   Google Scholar

    [133]

    Yao Z, Shen L, Liu R, Jiang Y, Yang X. 2020. A dynamic predictive traffic signal control framework in a cross-sectional vehicle infrastructure integration environment. IEEE Transactions on Intelligent Transportation Systems 21:1455−66

    doi: 10.1109/TITS.2019.2909390

    CrossRef   Google Scholar

    [134]

    Yang L, Wang Y, Yao Z. 2020. A new vehicle arrival prediction model for adaptive signal control in a connected vehicle environment. IEEE Access 8:112104−12

    doi: 10.1109/ACCESS.2020.3002943

    CrossRef   Google Scholar

    [135]

    Winston WL, Goldberg JB. 2004. Operations research: applications and algorithms. 4th Edition. Belmont, CA: Thomson/Brooks/Cole

    [136]

    Kouvaritakis B, Cannon M. 2016. Model predictive control. Switzerland: Springer Cham. https://doi.org/10.1007/978-3-319-24853-0

    [137]

    Chen S, Sun DJ. 2016. An improved adaptive signal control method for isolated signalized intersection based on dynamic programming. IEEE Intelligent Transportation Systems Magazine 8:4−14

    doi: 10.1109/MITS.2016.2605318

    CrossRef   Google Scholar

    [138]

    Gartner NH, Deshpande RM. 2013. Dynamic programming approach for arterial signal optimization. Transportation Research Record:Journal of the Transportation Research Board 2356:84−91

    doi: 10.1177/0361198113235600110

    CrossRef   Google Scholar

    [139]

    Robertson DI, Bretherton RD. 1974. Optimum control of an intersection for any known sequence of vehicle arrivals. Proceedings of the 2nd IFAC/IFIP/IFORS Symposium on Traffic Control and Transportation Systems, Amsterdam, Netherlands, 1974. North-Holland.

    [140]

    Caceres H, Kandukuri MR, He Q, Zhang Z. 2017. Multi-modal hierarchically responsive signal control with a lexicographical dynamic programming approach. Transportation Research Board 96th Annual MeetingTransportation Research Board, 2017, Washington DC, United States. Transportation Research Board, Washington D.C., USA.https://trid.trb.org/View/1437750 (Accessed: May 03, 2017)

    [141]

    Jamshidnejad A, Papamichail I, Papageorgiou M, de Schutter B. 2018. Sustainable model-predictive control in urban traffic networks: efficient solution based on general smoothening methods. IEEE Transactions on Control Systems Technology 26:813−27

    doi: 10.1109/TCST.2017.2699160

    CrossRef   Google Scholar

    [142]

    Chen H, Wu F, Hou K, Qiu TZ. 2022. Backpressure-based distributed dynamic route control for connected and automated vehicles. IEEE Transactions on Intelligent Transportation Systems 23:20953−64

    doi: 10.1109/TITS.2022.3170788

    CrossRef   Google Scholar

    [143]

    Wu Q, Shen J, Yong B, Wu J, Li F, et al. 2019. Smart fog based workflow for traffic control networks. Future Generation Computer Systems 97:825−35

    doi: 10.1016/j.future.2019.02.058

    CrossRef   Google Scholar

    [144]

    Zhou P, Chen X, Liu Z, Braud T, Hui P, et al. 2021. DRLE: decentralized reinforcement learning at the edge for traffic light control in the IoV. IEEE Transactions on Intelligent Transportation Systems 22:2262−73

    doi: 10.1109/TITS.2020.3035841

    CrossRef   Google Scholar

    [145]

    Zhang Y, Zhou Y, Lu H, Fujita H. 2021. Cooperative multi-agent actor–critic control of traffic network flow based on edge computing. Future Generation Computer Systems 123:128−41

    doi: 10.1016/j.future.2021.04.018

    CrossRef   Google Scholar

    [146]

    Wu Q, Wu J, Shen J, Du B, Telikani A, et al. 2022. Distributed agent-based deep reinforcement learning for large scale traffic signal control. Knowledge-Based Systems 241:108304

    doi: 10.1016/j.knosys.2022.108304

    CrossRef   Google Scholar

    [147]

    Wang T, Hussain A, Zhang L, Zhao C. 2022. Collaborative edge computing for social Internet of vehicles to alleviate traffic congestion. IEEE Transactions on Computational Social Systems 9:184−96

    doi: 10.1109/TCSS.2021.3074038

    CrossRef   Google Scholar

    [148]

    Han Y. 2017. Fast model predictive control approaches for road traffic control. PhD Thesis. Delft University of Technology, Netherlands.

    [149]

    Bellemans T. 2003. Traffic Control on Motorways. Thesis. Katholieke Universiteit Leuven, Belgium. https://research.tudelft.nl/en/publications/traffic-control-on-motorways

    [150]

    Hegyi A, de Schutter B, Hellendoorn H. 2005. Model predictive control for optimal coordination of ramp metering and variable speed limits. Transportation Research Part C: Emerging Technologies 13:185−209

    doi: 10.1016/j.trc.2004.08.001

    CrossRef   Google Scholar

    [151]

    Han Y, Ramezani M, Hegyi A, Yuan Y, Hoogendoorn S. 2018. Network Fundamental Diagram for Hierarchical Ramp Metering in Freeways. Transportation Research Board 97th Annual Meeting, Washington DC, United States, 7−11 Jan. 2018. Transportation Research Board, Washington D.C., USA. https://trid.trb.org/view/1494956 (Accessed: Nov. 01, 2018)

    [152]

    Han Y, Hegyi A, Yuan Y, Hoogendoorn S, Papageorgiou M, et al. 2017. Resolving freeway jam waves by discrete first-order model-based predictive control of variable speed limits. Transportation Research Part C: Emerging Technologies 77:405−20

    doi: 10.1016/j.trc.2017.02.009

    CrossRef   Google Scholar

    [153]

    Wang X. 2015. Proactive integrated control for relieving freeway congestion. Thesis. University of Alberta, Canada. https://era.library.ualberta.ca/items/45894206-f110-4038-84bc-1140a2660f7d

    [154]

    Wang X, Seraj M, Bie Y, Qiu TZ, Niu L. 2016. Implementation of variable speed limits: preliminary test on whitemud drive, Edmonton, Canada. Journal of Transportation Engineering 142:5016007

    doi: 10.1061/(asce)te.1943-5436.0000895

    CrossRef   Google Scholar

    [155]

    Wang X, Qiu TZ, Niu L, Zhang R, Wang L. 2016. A micro-simulation study on proactive coordinated ramp metering for relieving freeway congestion. Canadian Journal of Civil Engineering 43:599−608

    doi: 10.1139/cjce-2016-0050

    CrossRef   Google Scholar

    [156]

    Wang X, Yin D, Qiu TZ. 2018. Applicability analysis of an extended METANET model in traffic-state prediction for congested freeway corridors. Journal of Transportation Engineering, Part A:Systems 144:04018046

    doi: 10.1061/jtepbs.0000157

    CrossRef   Google Scholar

    [157]

    Dotoli M, Fanti MP, Meloni C. 2006. A signal timing plan formulation for urban traffic control. Control Engineering Practice 14:1297−311

    doi: 10.1016/j.conengprac.2005.06.013

    CrossRef   Google Scholar

    [158]

    Lin S, de Schutter B, Xi Y, Hellendoorn H. 2011. Fast model predictive control for urban road networks via MILP. IEEE Transactions on Intelligent Transportation Systems 12:846−56

    doi: 10.1109/tits.2011.2114652

    CrossRef   Google Scholar

    [159]

    Liu G, Han X, Li P, Qiu TZ. 2014. Adaptive model-based offset optimization for congested arterial network. The Transportation Research Board 93rd Annual MeetingTransportation Research Board, Washington DC, 2014. Transportation Research Board, Washington D.C., USA. https://trid.trb.org/view/1287873 (Accessed: Oct. 24, 2018)

    [160]

    Baldi S, Michailidis I, Ntampasi V, Kosmatopoulos E, Papamichail I, et al. 2019. A simulation-based traffic signal control for congested urban traffic networks. Transportation Science 53:6−20

    doi: 10.1287/trsc.2017.0754

    CrossRef   Google Scholar

    [161]

    Priemer C, Friedrich B. 2009. A decentralized adaptive traffic signal control using V2I communication data. 12th international IEEE conference on intelligent transportation systems 2009, St. Louis, MO, USA, 4−7 October 2009. USA: IEEE. pp. 1−6. https://doi.org/10.1109/ITSC.2009.5309870

    [162]

    Atkins WS. 2016. Research on the Impacts of Connected and Autonomous Vehicles (CAVs) on Traffic Flow. UK: Department for Transport London.

    [163]

    Talebpour A, Mahmassani HS. 2016. Influence of connected and autonomous vehicles on traffic flow stability and throughput. Transportation Research Part C: Emerging Technologies 71:143−63

    doi: 10.1016/j.trc.2016.07.007

    CrossRef   Google Scholar

    [164]

    Blanco M, Atwood J, Vasquez HM, Trimble TE, Fitchett VL, et al. 2015. Human factors evaluation of level 2 and level 3 automated driving concepts. Report. DOT HS 812 182. National Highway Traffic Safety Administration, Washington D,C, USA. https://trid.trb.org/view/1367054 (Accessed: Oct. 23, 2021)

    [165]

    Wang Y, Wei L, Chen P. 2020. Trajectory reconstruction for freeway traffic mixed with human-driven vehicles and connected and automated vehicles. Transportation Research Part C: Emerging Technologies 111:135−55

    doi: 10.1016/j.trc.2019.12.002

    CrossRef   Google Scholar

    [166]

    Li H, Sima C, Dai J, Wang W, Lu L, et al. 2022. delving into the devils of bird's-eye-view perception: A review, evaluation and recipe. arXiv:2209.05324 http://arxiv.org/abs/2209.05324 (Accessed: Sep. 25, 2022.)

    [167]

    Hewing L, Wabersich KP, Menner M, Zeilinger MN. 2020. Learning-based model predictive control: toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3:269−96

    doi: 10.1146/annurev-control-090419-075625

    CrossRef   Google Scholar

  • Cite this article

    Li J, Peng L, Hou K, Tian Y, Ma Y, et al. 2023. Adaptive signal control and coordination for urban traffic control in a connected vehicle environment: A review. Digital Transportation and Safety 2(2):89−111 doi: 10.48130/DTS-2023-0008
    Li J, Peng L, Hou K, Tian Y, Ma Y, et al. 2023. Adaptive signal control and coordination for urban traffic control in a connected vehicle environment: A review. Digital Transportation and Safety 2(2):89−111 doi: 10.48130/DTS-2023-0008

Figures(3)  /  Tables(15)

Article Metrics

Article views(6919) PDF downloads(1588)

REVIEW   Open Access    

Adaptive signal control and coordination for urban traffic control in a connected vehicle environment: A review

Digital Transportation and Safety  2 2023, 2(2): 89−111  |  Cite this article

Abstract: Existing signal control systems for urban traffic are usually based on traffic flow data from fixed location detectors. Because of rapid advances in emerging vehicular communication, connected vehicle (CV)-based signal control demonstrates significant improvements over existing conventional signal control systems. Though various CV-based signal control systems have been investigated in the past decades, these approaches still have many issues and drawbacks to overcome. We summarize typical components and structures of these existing CV-based urban traffic signal control systems and digest several important issues from the summarized vital concepts. Last, future research directions are discussed with some suggestions. We hope this survey can facilitate the connected and automated vehicle and transportation research community to efficiently approach next-generation urban traffic signal control methods and systems.

    • The emerging improvements in recent wireless communication technology that have enabled vehicles to communicate with roadway infrastructure, and with each other, are collectively known as connected vehicle (CV) technology[1]. CV technology features low latency, real-time data, high reliability, and high security in a high-mobility environment[1]. It has developed rapidly for its potential to improve the mobility, safety, and environmental impact of traffic systems over the past several years[29]. These three challenges, i.e., safety, mobility, and environment, are significant issues faced by modern transportation systems. The impact of these three issues includes significant economic loss, heavy casualties, as well as long-term adverse environmental damage in large urban areas[10].

      To tackle these serious problems, urban transportation systems have relied heavily on various proposed urban traffic control systems (UTCSs) over the last few decades[1, 1116]. Considering the complexity of urban transportation networks and performance dependency on different control types, both the choice and design of proper traffic signal control systems are important. Thus, there is a large body of literature that has investigated developments of the conventional traffic signal control systems, and most of their methods can be categorized into three strategies: fixed-time, actuated, and adaptive control[1, 17].

      Within the current practice, fixed-time control systems typically create best-suited timing settings for different times of the day (TOD) determined by the historical traffic data. This method assumes that the traffic demand remains fairly constant during the entire period of a particular timing plan. However, this assumption is seldom valid in realistic scenarios, causing the fixed-time strategy to demonstrate weak control performance[1].

      Actuated control systems collect real-time traffic flows from fixed infrastructure-based detectors, e.g., loop detectors, and apply simple logics, including phase calls, green extension, and max out, to change the timing plans. However, these systems have proven to be sub-optimal because the simple logic is based on a set of pre-defined and static parameters[17, 18].

      The existing adaptive signal control methods use real-time traffic data to predict future traffic flows and obtain optimal signal timing settings. Subsequent control decisions are based on defined maximal or minimal objective functions[1, 17]. The adaptive signal control (ASC) has been widely applied to urban arterial networks.

      Furthermore, to provide smooth traffic flows and reduce the number of stops and delays along an urban corridor or multiple intersections, signal coordination systems have been proposed and implemented by synchronizing traffic signals along a corridor[19].

      In summary, the existing literature[1216] examines existing UTCSs that generally consist of three essential components: data, traffic model, and control strategy, graphically represented in Fig. 1 below.

      Figure 1. 

      Three basic components of urban traffic control systems (UTCSs).

      The data describes the spatial and temporal characteristics of the acquired data as input, where usually it includes typical fixed and mobile sensing data. The traffic model depicts the dynamics of traffic on the road links, which include micro-, meso-, and macro-level traffic dynamics. The control strategy utilizes various timing plans to control traffic dynamics, for which standard signal variables include cycle length, split, and offset and the common strategies include optimization-based and optimal control-based methods. Generally, every UTCS includes these three basic components, although not always in some of the early-developed products.

      Moreover, since the CV technology features low latency, real-time data, and two-way communication in a high-mobility vehicular environment[1], it further enhances the existing signal control systems[16,17,2026]. Thus, there are many CV-based adaptive signal control and coordination introduced in the past decade, aimed at further improving the efficiency of UTCSs[16, 17, 2026]. Also, in general, these CV-based signal control methods can be discussed from the previous three essential components: data, traffic model, and control strategy. Compared with the traditional UTCSs, these CV-based signal control methods feature new data sources and quality, new varying-parametric dynamics, and new optimization and control strategy. The new data source and quality are collected from moving connected vehicles as well as connected infrastructure devices. Next, the micro-level traffic dynamics and corresponding time-varying parameters are more accessible and predictive with the new connected data inputs and the new connectivity technique. Last, for the control strategy, more complex, advanced, and efficient control strategies are presented considering the two-way communication, the rich data inputs, and the predictive dynamics.

      Overall, in this paper, we summarize the typical components and structures of the existing CV-based urban traffic signal control systems and digest several important issues from these three key concepts. These identified issues are explained and discussed in detail. Next, some suggestions for future research directions are provided. Last, the conclusion closes this review. The structure of this review is shown in Fig. 2.

      Figure 2. 

      The structure of the current review for the traditional and CV-based urban traffic control systems.

    • Before discussing further details of the three basic UTCS components in the literature review, a brief background of different traffic control technologies is outlined here, thus introducing traditional and widely implemented traffic control systems in current transportation systems, i.e., adaptive signal control and traffic signal coordination. Also, briefly outlined in this section is the emerging CV technology, as well as updates of both enhanced adaptive signal control and coordination in the CV environment.

    • CV technology leverages vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications based on dedicated short-range communication (DSRC) or Cellular Vehicle-to-Everything communication (C-V2X)[16,17,2023], where V2V and V2I communication can be collectively called vehicle-to-everything (V2X) communication. It has been developing rapidly over recent years, improving efficiency, safety, and environmental benefits for traffic systems[29].

      In addition, CV technology features low latency, real-time data, high reliability, and large security in a fast-mobility condition, which provides a new control dimension in solving the issues of signal control. For example, new real-time CV data, including connectivity indications, signal phase and timings, and vehicle trajectories, all extracted from basic safety messages (BSMs), are providing the potential for significant performance improvements.

    • Conventional traffic signal control systems are classified into three strategies: fixed-time, actuated, and adaptive control[1, 17]. Characteristics of these three signal control systems are summarized in Table 1.

      Table 1.  Summary of three conventional signal control systems.

      Signal controlData typeTraffic predictionControl strategy
      Fixed-timeHistoricalN/APre-defined
      timing plans
      ActuatedReal-timeN/ASimple logics
      AdaptiveReal-timePredictions by
      traffic models
      Signal
      optimizations

      Compared with both fixed-time and actuated signal control systems, the current adaptive signal control system utilizes real-time traffic data to forecast near-future traffic flow conditions. Subsequently, an optimal signal timing setting is obtained to make control decisions based on defined performance-based objective functions. The adaptive traffic control system has been widely applied to urban arterial networks around the world since the 1970s because of its capability to respond to changes in traffic demand.

      Different system architectures and algorithms for adaptive traffic control systems have been proposed and implemented during the last several decades. Typical examples of the adaptive signal control systems include SCOOT (Split, Cycle, and Offset Optimization Technique)[27], SCATS (the Sydney Coordinated Adaptive Traffic System)[28], OPAC (Optimization Policies for Adaptive Control)[29], RHODES (Real-time Hierarchical Optimized Distributed Effective System)[30], ACS-lite (Adaptive Control System)[15], and the recent MOTION system[31].

    • Among various signal control strategies, traffic signal coordination is another significant and widely implemented strategy with enhanced performance measures[19, 32] to improve the mobility of arterial roads. Usually, the coordination system synchronizes traffic signals over the span of a corridor to provide signal progression for the approaching vehicle, thus reducing the number of stops and delays[19]. Since the signal coordination control is recognized to perform better than other control strategies for corridors, a focus on coordination improvement is essential, indeed critical, for current urban transportation systems.

      To enhance coordination systems, various methods have been proposed to achieve better performance[19,33,34]. These approaches can be classified into two major types of optimization methodology[19]: (1) Advancement of the quality of progression, like the classical MAXBAND[33], and (2) optimization of a performance index, like the mixed-integer traffic optimization program (MITROP) method[34]. For the former methodology, the objective is to maximize the green bandwidth along a particular arterial roadway. For the latter methodology, different objectives are formulated to minimize performance indices like the number of stops, total delays, average travel times, or a combination thereof.

    • Existing signal control systems are usually based on traffic flow data from fixed location detectors[1, 17, 19]. Due to the rapid advances in the emerging vehicular communication, the CV-based signal control demonstrates significant improvements as compared to existing conventional signal control systems[1, 19, 35, 36]. As a result, many CV-based adaptive signal control methods[1, 35, 3739] and coordination approaches[19, 32, 4044], aimed at improving the efficiency of adaptive and coordination systems, have been introduced in the past several years. They can be summarized into several categories: adaptive signal control methods aiming for an isolated signalized intersection, adaptive signal control methods for multiple signalized intersections, and signal coordination for multiple signalized intersections. Typical examples include PAMSCOD (platoon-based arterial multi-modal signal control with online data)[42] and its variants[45], proposed in 2012 and 2014, respectively.

      The general definition of a real-time signal control consisting of both adaptive signal control (ASC) and signal coordination in the CV environment is described in Fig. 3. As depicted in Fig. 3, a vehicle platoon approaches a corridor with two signalized intersections and then passes through it. The vehicle platoon might encounter red lights at the signalized intersections and thus experience potential stop delays, thus increasing total travel time significantly. To mitigate stop delays, a CV-based adaptive signal control and coordination framework is deployed as a real-time and, therefore, efficient method.

      Figure 3. 

      A graphical statement of signal control in a mixed CV environment, with an urban road segment with two adjacent signalized intersections.

      In such a CV-based signal control framework, including both adaptive signal control and coordination, the critical real-time data transmission between the CVs and the connected roadside infrastructure, as well as the real-time control strategy, improves traffic control performance to be more flexible and efficient[19]. These data generated from the CV technology can be categorized into two fundamental classes[32]. The first class is the real-time CV data, including trajectories, motion data, and signal priority request data. The second class is the real-time infrastructure-based data providing signal phasing and timing (SPaT), the roadway geometry, and current priority status data. These real-time data offer an opportunity to develop a new generation signal control using these real-time CV data. Thus, the full utilization of this highly valuable data could be further exploited to decrease the total travel time in the CV-based signal control framework.

      However, existing works on CV-based adaptive signal control and coordination methods still have outstanding issues[17, 19, 43, 46], and, therefore, the potential of CV technology in this domain warrants further study.

    • This section engages in a comprehensive review of existing urban traffic signal control methods, including the following points:

      1. Adaptive signal control,

      2. Traffic signal coordination,

      3. Connected vehicle-based adaptive signal control,

      4. Connected vehicle-based traffic signal coordination,

      5. Detailed comparisons and limitation analysis. These analysis are conducted for both the existing traditional (non-CV-) and connected vehicle- (CV-) based signal control systems from three fundamental components. These three components are data, traffic model, and control strategy, previously outlined in Fig. 1.

    • The adaptive signal control uses real-time traffic flow data to predict future traffic flow conditions, then generates an optimal signal timing plan. There have been numerous adaptive signal control systems proposed and developed over the past several decades. From the surveys by Stevanovic et al. and Wang et al.[15, 16], there are more than 20 implemented urban adaptive traffic control systems. Ten of the most widely implemented urban traffic control systems (UTCSs) are reviewed and analyzed in detail in the published NCHRP (National Cooperative Highway Research Program) report[15].

      In the following discussion, various ASC systems, including SCOOT[27], SCATS[28], are examined in detail to understand their system architectures and algorithms based on performance indices. Then a summary of these systems is given in a table to distinguish them using several different metrics.

      The SCATS[28] utilizes a subsystem consisting of several adjacent intersections that is a centralized signal control system. Each near subsystem can be joined together to build one larger subsystem, or divided to build smaller subsystems. Each intersection of one subsystem is controlled by an actuated signal control system. The changes in the cycle, split, and offset are based on heuristic algorithms without traffic models. The heuristic algorithm chooses one timing plan from several pre-defined timing plans to balance the saturation degree on each traffic approach. Only stop-bar detectors are required to record traffic occupancy and volume data when obtaining the saturation data.

      SCOOT[27] utilizes a platoon dispersion model and an online optimization method to obtain a proper real-time signal timing setting, which is a hierarchical traffic control system. The delay minimization is implemented to change the current timing plan, in which three parameters are optimized: split, cycle, and offset. Before adjusting the current signal timing plan, the signal timing is used as a fixed timing plan. Upstream and advanced detectors are required to obtain traffic counts, residual queues, and lower bounds of queues, respectively.

      Other UTCSs worth mentioning include the following. OPAC[29] is a real-time signal optimization system based on dynamic programming (DP). The deployed DP-based optimization model minimizes delays over a finite future prediction horizon and can eventually be used for a coordinated network[47].

      RHODES[30] is based on a hierarchical framework, where it has both an upper level determining the network flow control and a lower level minimizing the intersection level's performance indices. In the lower level, a rolling horizon scheme-based DP is proposed to achieve performance optimizations[48, 49]. Both stop-bar and advanced detectors are required to predict an arrival table for an intersection-level control at the lower level.

      ACS-lite[15] focuses on developing lower maintenance and installation costs and a deployable adaptive signal control system. The ACS-lite system is composed of three algorithms: a time-of-day (TOD) planner, a run-time refiner, and a transition controller[47]. The TOD planner changes the current timing plan for different TODs and is responsive to existing traffic conditions. The run-time refiner determines the optimal time to change one timing plan to another. The transition controller determines the optimal transition strategy during the transition period.

      Other recent adaptive signal controls include the MOTION system proposed by Brilon & Wietholt in 2013[31], the FITS system introduced by Jin et al. in 2017[50], and the Deep Learning (DL)-based system proposed by Gao et al. in 2017[51]. The MOTION ASC system[31] possesses typical architecture, and the system itself determines optimal timing plans at the global network level and utilizes the actuated signal control at the local intersection level[50]. The FITS system[50] introduced an intelligent control system based on fuzzy logic to optimize timing plan parameters. The DL-based system[51] proposed a deep reinforcement learning method-based system to automatically distill useful flow features from raw traffic condition data to obtain optimal timing plans. Considering the differences with respect to three key components discussed here, these ASC systems can be summarized into three categories: adjusted control, responsive control, advanced adaptive control[1416, 52]. This classification is shown in Table 2.

      Table 2.  Fine classifications of adaptive signal control (ASC)[1416,52].

      CategoryAdjusted controlResponsive controlAdvanced adaptive control
      a Data quality: sensor density level (L)Static sensor data
      L1 & L1.5, less than one sensor up to one sensor per linkL2, one sensor per link up to one per laneL3, two sensors per lane
      a Responsive to demand variationsSlow reactive response based on pre-calculated historical traffic flowPrompt reactive response based on changes in regularly disrupted trafficVery rapid proactive response based on short-term predicted movements
      a Change frequency in control plan (HZ)Minimum of 15 minutes, usually several times during a rush period, (< 1/900 HZ)Minimum of 5-15 minutes, per several cycles, (< 1/300 HZ)Continuous adjustments are made to all timing parameters, per several seconds (< 1/5 HZ)
      c Control strategyPattern matching from pre-stored plans by static optimizationCyclic timing plan generating and matching via static/dynamic optimizationReal-time timing adjusting via dynamic optimization and optimal control
      a,b Generations of UTCSs (G)G1 & G1.5a , e.g., SCATS[28] G2a, e.g., SCOOT[27] G3b , e.g., OPAC[29], RHODES[30],
      ACS Lite[53]
      Coordination includedMostly yesMostly yesYes
      a Adopted from Klein et al.[14] and Stevanovic et al.[15]. b Summarized from Gartner et al.[52] and Wang et al.[16]. c Identified in this report drawn from across a number of studies.

      As shown in Table 2, all existing UTCSs are divided into the three outlined categories[1416, 52]. The more advanced the control system, the higher the sensor density level and UTCS generation. At the same time, the responsive change frequency and control strategy are faster, higher, and more comprehensive. A detailed analysis of this is shown in the following sub-chapter 'comparisons and limitations'.

      As shown in Table 2, the traffic-adjusted control uses both L1 (Level 1) and L1.5 sensor density levels, which means there is less than one sensor and up to one sensor per link. The responsiveness to demand is a slow reactive response with a minimum of a 15-min change frequency. This kind of control system is categorized as UTCS G1 (Generation 1) and G1.5. A typical, widely implemented example is SCATS.

      Second, the traffic responsive control uses L2 sensor density level, which means there is one sensor per link up to one sensor per lane. The responsiveness to demand is prompt and reactive, with a minimum of a 5 to 15-min change frequency. This type of control system is categorized as UTCS G2. A typical example is SCOOT.

      Lastly, the advanced adaptive control utilizes L3 sensor density level, which means that there are two sensors per lane. The responsiveness to demand is rapid and proactive, with a several-seconds-level change frequency. This type of control system is categorized as UTCS G3. Typical examples include OPAC, RHODES, and ACS Lite.

      However, there are two significant limitations related to data quality and sensor costs because the current ASC systems are mostly utilizing data from infrastructure-based sensors[17, 30] that include video-based and pavement-based loop detectors. First, these infrastructure-based sensors are fixed-location sensors that are only providing the instantaneous individual vehicle data when a vehicle passes over the installation location. There is no spatial vehicle status, such as location, speed, and acceleration, provided by these point sensors. Second, the installation and maintenance costs of these point loop detectors are high. If any detectors are not working correctly, the performance of implemented ASC systems significantly degrades[17, 30]. The additional disadvantages of control strategies are existed. Thus, a significant need to develop new advanced approaches to fix the two limitations is still present.

    • Among various signal control strategies, traffic signal coordination is another important and widely implemented strategy with enhanced performance[19, 32]. Usually, the coordination system synchronizes traffic signals over the span of a corridor to provide signal progressions for approaching vehicles to reduce the number of stops and delays[19]. Even though the coordination control performs better than other control strategies for corridors, it still needs improvement.

      To enhance the performance of the signal coordination, various methods[33, 34, 5474] are proposed to achieve better performance measures. These approaches are classified into two categories of optimization methodology[19]: advancement of the quality of progression, like the classical MAXBAND[33], and optimization of a performance index, like using the mixed-integer traffic optimization program (MITROP) method[34]. This is shown in Table 3.

      Table 3.  Classifications of signal coordinations in UTCSs[19].

      CategoryAdjusted controlResponsive controlAdvanced adaptive control
      a Data quality: sensor density level (L)Same as Table 2
      a Responsive to demand variations
      a Change frequency in control plan
      c Control strategy
      a,b Generations of UTCSs (G)
      Specific control strategy for CoordinationAdvancement of the quality of progression,
      e.g., classical MAXBAND[33] and recent AMBAND[68]
      Optimization of a performance index,
      e.g., MITROP[34]

      Regarding the first class, improving the quality of progression, many optimization methods have been tried to maximize green bandwidth[33,5568]. Little et al. proposed several mixed integer linear programming (MILP)-based models to synchronize traffic signals for maximizing the bandwidth along a corridor; these proposed methods were called the MAXBAND series[33, 55,56]. Many extensions of the MAXBAND were then proposed considering more traffic variables and phenomena. Two classes that showed significant improvement are MULTIBAND[5762] and PASSER series[6367]. The MULTIBAND series was designed by Gartner et al.[5762] to introduce the variable bandwidth progression considering dynamic changes in traffic volumes[19], while the PASSER series (progression analysis and signal system evaluation routine) proposed by Messer, Chang, and Chaudhary[6367] further considered a phase sequence optimization method and a queue clearance method for the bandwidth maximization via heuristic algorithms. Recently, an asymmetrical multi-BAND (AMBAND) model proposed by Zhang et al. extended the MULTIBAND to achieve a broader bandwidth by relaxing the requirement of the symmetrical progression band[68].

      Regarding the second category, optimization of a performance index, various algorithms have been proposed to improve one or more performance measures[34, 54, 6974]. These performance indices include delay, travel time, number of stops, and their combinations. Several examples of these methods are described below in order to illustrate their effectiveness.

      Early on, Gartner et al. developed the mixed integer traffic optimization program (MITROP) to minimize the platoon's average delays using a proposed platoon flow model and link performance function. The optimal offset values are determined by a piece-wise linear approximation of the platoon delay model[34]. Then, the faster computation was achieved by Köhler et al. using an extended, simplified formulation of the original model[69]. Hu & Liu recently developed an improved offset optimization method to minimize total delays using high-resolution loop detector data[70]. Also, an individual vehicle travel times data-based method was presented by Shoup & Bullock to achieve optimal offset settings using vehicle re-identification equipment[71]. Furthermore, a weighted combination function of the number of stops and the delay is used by several widely recognized signal optimization tools to obtain optimal coordination plans[19,72, 74,54].

      However, since existing coordination systems are mostly based on fixed-location-based detectors and sensors, these sensors have two limitations related to data quality and sensor costs[19]. Also, the limitations of traffic prediction models and control strategies are given in the following sections. Thus, improving signal coordination is crucial.

    • Most of the existing ASC systems rely on traffic conditions from fixed-location-based detectors[1, 17, 19]. Because of rapid advancements in emerging vehicular communication, CV-based signal control demonstrates significant improvements over existing conventional signal control systems[1, 19, 35, 36]. As already highlighted, CV technology features low latency, real-time data, high reliability, and large security in a fast-mobility condition, thereby providing a new perspective to solve the issues of signal controls. The real-time data includes connectivity indication, transmitted SPaT data, and vehicle status data extracted from the BSM and other data. Thus, by utilizing the CV-based data, traffic signal control strategies are more dynamically reactive to real-time fluctuations and changes in traffic conditions.

      Various CV-based adaptive signal control approaches have been proposed, and they are divided into two types regarding their applied scopes: one type applies to a single isolated signalized intersection, and the other type applies to multiple signalized intersections.

      In terms of methods aimed at an isolated signalized intersection, they[1,36,7593] are categorized into different types according to their different performance indices. These performance indices include delay, queue length, waiting time, travel time, or a combination of them. This is shown in Table 4.

      Table 4.  Summary of the objective functions in the existing CV-based ASCs applied to both the isolated intersection and multiple intersections.

      Author, yearObjective functions+
      Delay1Queue length2Waiting time3Stop4Travel time5 Type
      Gradinescu et al.[75] in 2007Average delay1
      Chou et al.[76] in 2012Vehicle and
      Passenger delay
      Stops*
      Nafi and Khan[77] in 2012Average waiting time3
      Chang and Park[78] in 2013Queue lengthJunction waiting time*
      Ahmane et al.[79] in 2013Queue length2
      Cai et al.[80] in 2013Travel time5
      Pandit et al.[81] in 2013Delay1
      Lee et al.[82] in 2013Cumulative
      Travel time
      5
      Kari et al.[83] in 2014Travel delay1
      Guler et al.[36] in 2014Total delayStops*
      Tiaprasert et al.[84] in 2015Queue length2
      Feng et al.[1] in 2015Vehicle delayQueue length1
      Younes and Boukerche[85] in 2016Delay1
      Feng et al.[32] in 2016Vehicle delay1
      Islam et al.[88] in 2017Queue length2
      Liu et al.[39] in 2017Average waiting time3
      Cheng et al.[86] in 2017Average waiting time3
      Feng et al.[87] in 2018Total delay1
      Ban et al.[89] in 2018Delay1
      Al Islam et al.[90] in 2020Average delayTotal travel time*
      Li et al.[91, 92] in 2021Delay1
      Mo et al.[93] in 2022Average delay1
      + Index type: 1 delay, 2 queue length, 3 waiting time, 4 stop, 5 travel time, * combination.

      For the delay index, which is the focus, Gradinescu et al. in 2007[75] proposed an ASC based on an optimization model to decrease the average delay. Pandit et al. in 2013[81] proposed an ASC based on the oldest arrival algorithm to minimize delays. Kari et al. in 2014[83] developed an agent-based online ASC to minimize travel delays via the arrival time prediction. Younes & Boukerche in 2016[85] presented a new ASC to minimize delays. Feng et al. in 2015[1] proposed an ASC using an enhanced controlled optimization of phases (COP) algorithm and an Estimation of Location and Speed (ELVS) method of unequipped vehicles to minimize vehicle delays. Feng et al. in 2018[87] presented a real-time detector-free CV-ASC to optimize total delays. Ban et al. in 2018[89] developed a new ASC method to reduce delays. Li et al. in 2021[91, 92] proposed a predictive model to investigate the ASC and signal coordination performances under low penetration conditions to minimize the delays. Mo et al. in 2022[93] developed a decentralized reinforcement learning-based signal control to optimize the average delays.

      For the queue length index, Ahmane et al. in 2013[79] presented an ASC to minimize queue lengths. Tiaprasert et al. in 2015[84] presented a queue length estimation-based ASC to minimize queue lengths for both saturated and under-saturated conditions. Islam & Hajbabaie in 2017[88] proposed a distributed optimization method with a modified MILP for minimizing the queue lengths.

      For the waiting time index, Nafi & Khan in 2012[77] introduced an ASC to minimize average waiting time. Liu et al.[39] developed reinforcement learning-based ASC systems. Cheng et al. in 2017[86] developed a Fuzzy group-based ASC to minimize average waiting time.

      For the travel time index, Cai et al. in 2013[80] developed a travel-time-based ASC using approximate dynamic programming (ADP) to reduce travel times. Lee et al. in 2013[82] presented a cumulative travel-time-based ASC to minimize cumulative travel times.

      For the combination index, which is the second key point, Chou et al. in 2012[76] presented a passenger feeling-based ASC to minimize passenger delays, as well as vehicle delays and stops. Chang & Park in 2013[78] proposed an ASC to reduce junction waiting times and queue lengths. Guler et al. in 2014[36] proposed an ASC based on a discharging sequence to decrease the total delay and number of stops. Al Islam et al.[90] in 2020 developed a real-time distributed framework for adjacent signal controllers.

      Regarding proposed methods applied to multiple signalized intersections, they are described as follows[35,37,94]: In 2013, Goodall et al.[35] proposed a predictive microscopic simulation algorithm (PMSA) for the ASC. The algorithm obtains vehicle status data from CVs and inputs them into a microscopic-level simulation model to forecast near-future traffic flows. Then, a rolling horizon scheme with a 15 s interval was deployed to optimize a combination of several performance indices, such as delays, stops, and accelerations. The status of unequipped vehicles was estimated based on the status of the CV[94]. Considering the high computational costs of parallel simulations for the prediction process, this method cannot be used in real-time conditions[1]. Also, the performance degraded in undersaturated conditions. In 2013, Maslekar et al.[37] presented a clustering algorithm to obtain optimal cycle lengths, green intervals, and other parameters by estimating the density of approaching vehicles. A modified Webster's model was deployed to calculate cycle length. Simulations presented that the proposed method reduced the average waiting times and the number of stops. Also, though several research projects evaluated their models in both under-saturated and saturated traffic conditions in a CV environment[35, 42, 84], their performances could significantly decrease in both under-saturated and saturated conditions. To address saturated conditions, Christofa et al. (2013)[95] proposed queue spillback detection based on CV data then mitigated the queue spillbacks. In 2011, Venkatanarayana et al.[38] presented a signal control method using location and speed in the CV environment. The control strategy detected the real-time queue length at the downstream to responsively change splits at the upstream intersection. However, the method was only evaluated in a simple network.

      Also, the use of recent machine learning and agent techniques to develop ASC for multiple intersections was demonstrated by Xiang & Chen in 2016[96]. Xiang at el. presented a multi-agent-based ASC. The intersection was modeled as an agent and was modeled by a Markov decision process. The signal control was optimized based on vehicle status, actions, and other parameters. However, this method did not consider the offset optimization in the CV environment, thus decreasing the effectiveness. Liu et al.[39] and Yang et al. in 2017[97] developed reinforcement learning-based ASC systems to obtain optimal timing plans. However, both systems still require a proper coordination to run along a corridor.

      According to differences with respect to the three components, the existing CV-ASC systems are classified in Table 5.

      Table 5.  Fine classifications of the CV-based ASC[1416,52].

      CategoryCV-based basic ASCCV-based advanced ASC
      a, c Data quality: sensor density level (L)
      and market penetration rate (Pcv)
      Mobile sensor data
      L4a, Pcv = 100%,
      i.e., 100 % market penetration rate
      L3.5c & L4a, Pcv < 100% & Pcv = 100%,
      i.e., both non-full and full market penetration rate
      Each connected vehicle (CV) regularly reports its location, speed, and possibly its destinationa
      b Responsive to demand variationsVery rapid proactive response based on short-term traffic predictions
      b Change frequency in control plan (HZ)Continuous adjustments, per several seconds to per second (< 1 HZ)
      c Control StrategyReal-time timing adjustment via static optimization, dynamic optimization, and optimal control
      c Generations of UTCSs (G)G4c, e.g., work by Gradinescu et al.[75]G4.5c , e.g., PAMSCOD[42] and detector-free ASC[ 87]
      a Adopted from Klein et al.[14], Stevanovic et al. [15]. b Summarized from Gartner et al. [52], and Wang et al. [16]. c Identified in this report.

      As shown in Table 5, the first significant difference of CV-based ASC as compared to previous traditional ASC systems is the emergence of mobile sensor data introduced by CV technology. The second difference is that the CV-ASC has a higher change frequency (i.e., less than 1 HZ) in the control plan because of recently developed control strategies. This higher change frequency gives the CV-ASC systems faster response times to the demand variations.

      According to the differences in the data types, i.e., different market penetration rates, these existing CV-based ASC systems are classified into two types: 1) basic CV-ASC, and 2) advanced CV-ASC. The basic CV-ASC system can only work in 100% market penetration rate conditions, while the advanced CV-ASC system can perform well in both partial and full market penetration rate conditions. However, a significant issue is that the real-time ASC performance degrades in low market penetration conditions. In addition, there are limitations to the prediction models and control strategies, as given in the following sections.

    • The limitations caused by the infrastructure-based detectors[19], coupled with the substantial benefits of CV technology, have prompted the rapid development of both the CV-based ASC and CV-based signal coordination.

      Several recent CV-based coordination approaches[19,32, 40-43, 46, 98, 99] have been introduced, aimed at improving the efficiency of the coordination systems. These approaches are briefly outlined in Table 6 by author, country/region, and institution.

      Table 6.  Summary of the CV-based advanced signal coordination systems’ research teams and outputs.

      Author, yearCountry/
      region
      Institution
      He et al.[42] in 2012USAUniversity of Arizona
      C.M. Day et al.[40] in 2016USAPurdue University
      Li et al.[41] in 2016USAPurdue University
      Feng et al.[32] in 2016USAUniversity of Arizona
      Beak et al.[19] in 2017USAUniversity of Arizona,
      University of Michigan
      C.M. Day et al.[98] in 2017USAPurdue University
      Remias et al.[46] in 2018USAPurdue University
      Zheng et al.[99] in 2018USA,
      China
      University of Michigan,
      Didi Chuxing LLC
      Mo et al.[93] in 2022USAColumbia University

      Further, these proposed approaches can be classified into two types, offline 'detector-free' offset optimization and online priority-based coordination, shown in Table 7.

      Table 7.  Fine classifications of the CV-based advanced signal coordination systems[19,32,4043,98].

      CategoryCV-based advanced signal coordination systems
      a, c Data quality: sensor density level (L) and
      market penetration rate (Pcv)
      Mobile sensor data
      L3.5c & L4a, Pcv < 100% & Pcv = 100%, i.e., both non-full and full market penetration rate
      b Responsive to demand variationsSlow reactive response based on
      historic traffic flows
      Rapid proactive response based on short-term predicted movements
      b Change frequency in control plan (HZ)Minimum of 15 min−3 h,
      (< 1/900 HZ)
      Continuous adjustments, usually per cycle
      (< 1/100 HZ)
      Minimum Pcv_min0.1% for per 3 hrs change, 5% for
      per 15 mins change
      25% for per cycle change
      Specific control strategy of coordinationoffline offset method,
      e.g., detector-free method [98,40,41,46]
      online priority-based method,
      e.g., adaptive coordination method[19,32,42]
      c Generations of UTCSs (G)UTCS G4.5c
      a Adopted from Klein et al.[14], Stevanovic et al. [15]. b Summarized from Gartner et al.[52], and Wang et al.[16]. c Identified in this report.

      As shown in Table 7, the first type is the so-called offline 'detector-free' offset optimization originated from Day et al.[98, 40, 41, 46]. These researchers presented detector-free offset optimization studies, where CV data-based trajectories were used to generate 'virtual detections'. Then, arrival profiles created by virtual detections were used to obtain signal offset optimization for signal coordination. Later, an extension model of this method was proposed to better determine coordination plans under low penetration rate conditions[43] by integrating similar historical automated vehicle location data. In 2018, Zheng et al.[99] proposed a method to utilize CV-based trajectory data to assess signal coordination quality, thus optimizing the traffic signals. However, the current detector-free methods are not capable of real-time signal coordination control use[100], which means they do not feature CVs' real-time data.

      The second type is an online priority-based method, which is shown in Table 7. This method has a higher frequency response to demand variations but requires a high market penetration, i.e., Pcv_min = 25%. Feng et al. evaluated an online coordination with fixed offset values in a CV environment, where the coordination was integrated with an adaptive control algorithm in a high penetration rate situation[32]. The model was then extended to optimize offsets along a corridor using a CV-based corridor-level optimization[19]. However, the optimal common cycle length was determined offline by average flow data, which degenerates optimal effectiveness. Also, He et al. tested a platoon-based arterial signal control using the CV technology that included the dynamic signal coordination for both under-saturated and saturated traffic conditions[42]. Within their method, they tried to obtain a multi-modal dynamical progression for significant platoons by considering existing queue delays. In addition, Li et al. investigated a platoon-based bicyclic coordination diagram (Bi-PCD) for offset optimization in a CV environment[101]. However, CV penetration rates significantly influence the positive performances of those CV-based algorithms discussed above, which presents a challenge[19, 32, 42]. The prediction results are sensitive to market penetration rates because variations are largely yielded in low penetration rate conditions[19, 42].

      Consequently, one problem is that the real-time coordination performance degrades with incomplete information in low market penetration conditions. In other words, achieving progressive improvements in online CV-based coordination methods with higher response frequencies in lower penetration rate conditions is critical. Also, the limitations of prediction models and control strategies are given in the following section.

    • In this section, we present some comparisons and limitations for these existing methods reviewed in the previous contents. As was shown in Fig. 1, there are three basic components in the existing traditional (non-CV-) and CV-based (CV-) ASC and coordination systems: 1) data quality, 2) traffic model, and 3) control strategy.

      Several of the previous tables are put together now to clarify significant differences among different non-CV- and CV-based ASC and signal coordination systems. The summarized tables are shown in Tables 8 & 9.

      Table 8.  Fine classifications of traditional (non-CV-based) and CV-based ASC*.

      CategoryNon-CV-based
      Adjusted control
      Non-CV-based
      Responsive control
      Non-CV-based
      Advanced adaptive control
      CV-based
      Basic ASC
      CV-based
      Advanced ASC
      a Data quality: sensor density level (L)Static sensor dataMobile sensor data
      L1 & L1.5, less than
      one sensor up to one sensor per link
      L2, one sensor per link up to one per laneL3, two sensors per laneL4a, Pcv = 100%, i.e., 100% market penetration rateL3.5c & L4a, Pcv < 100% & Pcv = 100%, i.e., both non-full and full market penetration rate
      a Responsive to demand variationsSlow reactive
      response based on
      pre-calculated historical traffic flow
      Prompt reactive response based on changes in regularly disrupted trafficVery rapid proactive response based on short-term predicted movementsVery rapid proactive response based on short-term traffic predictions
      a Change frequency in control plan
      (HZ)
      Minimum of 15 min, usually several times during a rush period,
      (< 1/900 HZ)
      Minimum of 5−15 min, per several cycles,
      (< 1/300 HZ)
      continuous adjustments are made to all timing parameters, per several seconds
      (< 1/5 HZ)
      Continuous adjustments, per several seconds to per second (< 1 HZ)
      c Control strategyPattern matching from pre-stored plans by static optimizationCyclic timing plan generating and matching via static/dynamic optimizationreal-time
      timing adjustment via dynamic optimization and optimal control
      Real-time timing adjustment via static optimization, dynamic optimization, and optimal control
      a,b Generations of UTCSs (G)G1 & G1.5a,
      e.g., SCATS[28]
      G2a, e.g., SCOOT[27]G3b, e.g., OPAC[29], RHODES[ 30],
      ACS Lite[53]
      G4c, e.g., the work by Gradinescu et al.[75]G4.5c, e.g., PAMSCOD[42] and detector-free ASC[87]
      Coordination includedMostly yesMostly yesYesMostly yesMostly yes
      Traffic modelMicroscopic/ macroscopic/ mesoscopic modelsMostly microscopic models
      * Summarized from previous Tables 2 & 5, where further details of the above notations are available.

      Table 9.  Fine classifications of traditional (non-CV-based) and CV-based signal coordination*.

      CategoryNon-CV-based
      Adjusted control
      Non-CV-based
      Responsive control
      Non-CV-based
      Advanced adaptive control
      CV-based
      Advanced signal coordination systems
      a Data quality: sensor density level (L)Static sensor dataMobile sensor data
      L1 & L1.5,L2,L3,L3.5c & L4a, Pcv < 100% & Pcv = 100%, i.e., both non-full and full market penetration rate
      a Responsive to demand
      variations
      Same as Table 8Slow reactive response based on historical traffic flowsRapid, proactive response based on short-term predicted movements
      a Change frequency in control plan
      (HZ)
      Minimum of 15 min−3h,
      (< 1/900 HZ)
      Continuous adjustments,
      usually per cycle
      (< 1/100 HZ)
      c Minimum Pcv_min0.1% for per 3 hrs change,
      5% for per 15 mins change
      25% for per cycle change
      a,b Generations of UTCSs (G)G4.5c ,
      Specific control strategy for CoordinationAdvancement of quality of progression,
      e.g., classical MAXBAND[33] and recent AMBAND[68]
      Optimization of a performance index,
      e.g., MITROP[34]
      Offline offset method, e.g., detector-free
      method[98,40,41,46]
      Online priority-based method,
      e.g., adaptive coordination method[19,32,42]
      Traffic modelMicroscopic/ macroscopic/ mesoscopic modelsMostly microscopic models
      * Summarized from previous Tables 3 & 7, where further details of the above notations are available.

      Some rough descriptions of these existing systems from the three perspectives are given. After that, a detailed limitation analysis is presented.

      There are several preliminary observations from these two tables. First, a data paradigm shift appears; the mobile sensor data almost replaces the traditional static sensor data. Also, new issues related to data quality emerge in the data paradigm shift when switching to the new mobile sensor data basis.

      Second, the control strategies feature fewer delays and better real-time and efficient response performance over time, but they are becoming more complex. For example, the most advanced control methods are always adopted in the most recent CV-based signal control systems.

      Lastly, various traffic models are widely used in both traditional ASC and signal coordination systems. These models include different major micro-/meso-/macroscopic models. On the other hand, traffic models included in the emerging CV-based ASC and signal coordination systems are mostly dependent on microscopic models.

      The above discussions are summary descriptions of the existing systems from three perspectives: data, traffic model, and control strategy. A further detailed comparison and limitation analysis of them is given in the following sections.

    • As shown in Tables 8 & 9, the traditional ASC and signal coordination systems are based on fixed location-based detectors with different sensor density levels[17, 30]. These fixed location-based sensors include video-based and pavement-based loop detectors. They generate static sensor data, including occupancy, flow data, and speed profiles.

      However, there are several limitations to traditional fixed detector-based static sensor data related to data quality and sensor costs. First, these sensors are fixed-location detectors that only give instantaneous individual vehicle data when a vehicle passes through the installation location. There is no direct spatial vehicle data provided by these point sensors, such as location, speed, and acceleration.

      Second, the installation and maintenance costs of these sensors are significantly high. These high installation and maintenance costs make re-installations and functional operations of detectors inefficient. Thus, if any detectors are operating inefficiently or incorrectly, the performance of the implemented urban signal control systems can significantly degrade to low levels[17, 30]. Additionally, proactive information, like signal priority request commands, cannot be integrated into the static sensor data. This limitation can incur additional device installation and maintenance costs when implementing a priority-based traffic control, like transit priority control.

    • CV technology features low latency, real-time data, high reliability, and high security in a high-mobility environment. Each CV regularly broadcasts its position, speed, and possible destination. Thus, when compared to the static sensor's data quality and costs, it avoids the previous two limitations by its advantages of real-time spatial motion reports and low installation and maintenance costs. More importantly, CV technology enables a vehicle to acquire SPaT data from signal controllers and issue a signal priority request to signal controllers, something beyond the capability of fixed sensors.

      However, during the initial implementation stage of CV technology, not every vehicle is a CV. Consequently, the initial stage is characterized by a low market penetration rate situation that possesses two major drawbacks.

      First, during the initial deployment stage, there are limited numbers of CVs on the road generating limited amounts of CV data. Consequently, the limited CV data volume degrades the performance of the CV-based signal control system[19, 43,102,103].

      Second, there are large numbers of non-CVs on the road at the same time. They are not connected, and their motion information is missing. This lack of non-CV data creates uncertainties for performance quality as well as large fluctuations and disturbances within the road traffic, thereby increasing computation complexity when obtaining optimal timings[17]. In addition, the high frequency of data exchange also increases data disturbances and fluctuations, thus adding to the complexity of the CV environment.

      A summary of the above comparisons and limitations is given in Table 10.

      Table 10.  Summary of the data comparisons and limitations for both the static and mobile sensor data.

      Data TypeSpatial-temporal
      property of traffic data
      Cost*Extra proactive dataPros/
      Cons
      Static sensor dataInstantaneous data at fixed locationHighNoCons
      Mobile sensor (CV) dataFull penetrationComplete spatial and temporal CV data, high frequency of data exchangeLowYes, e.g., priority request dataPros
      Low penetrationLimited CV dataCons
      Large missing of non-CV data
      * Usually considering the installation and maintenance cost.

      As shown in Table 10, the mobile sensor data outperforms the traditional static sensor data in three respects: 1) spatial-temporal property, 2) cost, and 3) the capability to provide extra proactive data. However, it still has two issues in low penetration conditions, which are the limited CV data and the missing non-CV data. These two issues need to be resolved in order to provide better control performance. Additionally, an exploration of the new method is also needed to utilize the extra proactive data fully.

    • Low penetration conditions cause two critical issues: 1) the limitations on CV data and 2) missing non-CV data. Some current research works aiming to solve these issues in the CV environment are discussed below.

      (a) Limited CV data. Most of the existing CV-based ASC and signal coordination methods do not design unique methods to overcome this issue. Thus, these widely accepted practical studies can only perform well with sufficient CVs, i.e., when the penetration rate is above a minimum penetration rate. Results of different minimum penetration rates (Pcv_min) are identified in many studies[40, 87, 94]. There are few studies[19, 40, 41, 46, 87, 98] that worked at solving this problem. From 2016 to 2018, Day et al.[98, 40, 41, 46] proposed a detector-free coordination series based on historical limited CV data. However, their work was not implemented in real-time conditions. In 2017, Beak et al.[19] tested a stop-bar detector-assisted method to achieve adaptive coordination. In 2018, Feng et al.[87] presented a real-time detector-free CV-ASC using a probabilistic estimation model based on both a prior arrival distribution assumption and historical CV data.

      In 2020, Islam et al.[90] developed a real-time distributed signal coordination framework by exchanging information between adjacent signal controllers. In this framework, non-CV trajectories are estimated by car-following concepts based on both loop and CV data. Also, the spatial vehicle distributions over the road segment are estimated by temporal CV data. In 2021, Li et al.[91, 92] proposed a probabilistic single-vehicle-based predictive model to investigate the signal coordination performances under low penetration conditions. In 2022, Mo et al.[93] developed a decentralized reinforcement learning-based signal control for signalized intersections. Both non-CV and CV data are used for offline training in low penetration conditions, while only CV data are utilized in the real-time signal control. Recently, in 2022, Zhang et al.[104] also presented a hybrid offline-online signal control strategy. In this framework, an offline signal parameter optimization is developed first, followed by an online deep recurrent Q-learning (DRQN) signal optimization. Specifically, a Bayesian deduction is utilized to estimate the traffic volumes.

      Thus, there is no applied method to solve this issue in low ( around 10% ) and ultra-low ( around 5% ) penetration conditions when considering real-time.

      (b) Missing non-CV data. Similar to the concern of limited CV data, most of the existing CV-based ASC and signal coordination systems do not design specific methods to overcome this issue. A few researchers[1, 94] have tried methods that estimate the status of unequipped vehicles. In 2014, Goodall et al.[94] utilized a micro-simulation-based method to estimate non-CV locations, but it could not be applied in real-time. In 2015, Feng et al.[1] extended Goodall's method by proposing an estimation algorithm of the vehicle location and speed (EVLS) based on Wiedemann's model. However, Wiedemann's model still needs further extensions, and there is no field validation for this proposed method.

      A summary of the existing methods for these two issues are shown in Table 11.

      Table 11.  Summary of studies targeting the low-penetration issue for urban signals.

      Low penetration
      rate issue
      Limited CV data issueMissing of non-CV data issueCV
      applications
      Min Pcv
      Proposed methods
      Goodall et al.[94] in 2014n/aMicro-simulation-based estimation
      of the non-CV position
      CV-ASC10%−25%
      Feng et al.[1] in 2015n/aEVLS algorithmCV-ASC25%−50%
      Day et al.[98, 40, 41, 46] from
      2016 to 2018
      Historical limited CV data-based aggregationn/adetector-free coordination5%,
      15 mins
      change
      Beak et al.[19] in 2017Stop-bar detector-assisted methodn/aadaptive coordination25%
      Feng et al.[87] in 2018Probabilistic model based on both prior arrival distribution and historical CV datan/aCV-ASC10%
      Al Islam et al.[90 ] in 2020Spatial vehicle distribution estimation by CVsvehicle trajectories via both the loop and CV dataCV-ASC and coordination0%, 10%
      Li et al.[91, 92] in 2021Vehicle-triggered platoon dispersionn/aCV-based coordination5%, 10%
      Mo et al.[93] in 2022Decentralized learning methodn/aCV-ASC10%
      Zhang et al.[104] in 2022Bayesian deductionn/aCV-ASC5%, 10%

      In conclusion, the existing studies that are aiming at solving two issues in low penetration rate conditions have their drawbacks. Thus, research on this topic is still needed.

    • As shown in Tables 8 & 9, the second observation is that various traffic models are used in the traditional ASC and signal coordination systems. These models include different micro-/meso-/macroscopic models.

      However, models included in the emerging CV-based ASC and signal coordination systems are based mostly on microscopic models. The following content gives a brief review of existing traditional and CV-based signal control systems.

    • Microscopic models describe details of various components' behaviour that makeup moving traffic streams on the road[105107]. These components include vehicles, roadside controllers, static detectors, road geometry, and so on. The most widely used microscopic models are various car-following models and lane-change models.

      However, there are several limitations to microscopic simulation models[105107]. First, the microscopic modeling of large participated components like vehicles introduces a large computational cost when simulating large arterial networks. The second is that the digital coding of the road surface network incurs substantial complexity and financial cost. Third, there is limited availability of the real-time control plans from modern controllers when requiring complete information. In particular, there is a lack of SPaT data dynamic descriptions. Last, it is challenging to obtain details of the fluctuations and disturbances from the surrounding traffic demands and traffic streams.

    • Mesoscopic models are usually identified to fill the gap between high-level aggregations of macroscopic models and high-level disaggregations of microscopic models and work at an intermediate level of detail[105107]. Typically, these popular mesoscopic models are classified into three types[105107]. The first type is the queuing approach for both freeways and signalized arterial roads. In this method, the queuing theory is introduced to model interaction between arrival patterns and signal status. The second form is the cellular automata-based method. In this method, the road is discretized into cells that each vehicle can occupy based on specific rules. The last alternative groups individual vehicles into packets or cells. The packet or cell controls the aggregate individual vehicles.

      However, due to high-level aggregated representations of traffic streams and road geometry in these mesoscopic models, dynamic behaviour of facilities cannot be accurately analyzed or replicated[105107]. Mainly, it lacks dynamic descriptions of the SPaT data. Also, large participating components like vehicles introduce huge computational costs when simulating big arterial networks.

    • There are various macroscopic models that describe the moving traffic stream at a high level of aggregation as traffic flow[105107]. Macroscopic models are a widely used strategy within many UTCSs. Various typical UTCSs[15, 108110] that applied different macroscopic traffic models from 1960s to 2010s are shown in the following Table 12. These macroscopic models can be classified into three generalized as well as typical types: dispersion-and-store model (DSM), cell transmission model (CTM), and store-and-forward model (SFM).

      Table 12.  Summary of traditional UTCSs applied different traffic models.

      DecadeTypical UTCSsDataaGlobal optimization formulation
      and/or solution algorithm
      Traffic model
      1960sTRANSYT in UK in 1968Loop dataDomain-constrained optimizationDSM model[15]
      1970sSCATS in Australia in 1979SL, Loop dataStrategic and tactical controlFlow-delay profiles[15]
      SCOOT in UK in 1979US, Loop dataDomain-constrained optimizationFlow-occupancy profiles, DSM model[15]
      DYPIC in UK in 1974 [108]US, Loop dataBackward dynamic programming[108],
      Rolling horizon approach
      DSM model
      1980s -1990sOPAC in US in 1983[15]MB & SL, Loop dataComplete enumeration / exhaustive enumeration[111, 112],
      Rolling horizon
      approach
      DSM model[15]
      RHODES in US in 1992[ 15]MB & SL, Loop dataDynamic programming[111, 112], Rolling horizon approach[30]DSM model[15]
      UTOPIA /SPOT in Italy in 1985[15]US & SL, Loop dataOnline dynamic optimization and off-line optimization[108] , Rolling horizon approach[113]DSM model
      PRODYN in France in 1984[108]US, Loop dataForward dynamic programming[111, 112] ,
      Rolling horizon approach[109]
      DSM model
      2000sACS-lite in US in 2003[15]US, Loop dataDomain-constrained optimization, three
      levels of optimization methodology
      DSM model
      2010sAboudolas et al. in 2010[109]AL, Loop dataQuadratic programming, Rolling horizon approachSFM model
      Liu & Qiu in 2016[110]US & SL, Loop dataMulti-objective optimization problem and
      an evolutionary algorithm
      Extended SFM model
      Hao et al. in 2018[114, 115]US, Loop dataModel predictive control-based method integrating optimizationsCTM model
      Han et al. in 2018[116]n/aLinear quadratic model predictive controlExtended CTM model
      Lu et al. in 2019[117]n/aExplicit model predictive controlSFM model
      Pedroso and Batista in 2021[118]USDecentralized and decentralized-decoupled traffic-responsive urban controlDecentralized SFM
      Souza et al. in 2022[119]Loop data, Historical dataIntegrating signal control and routingMulti-commodity SFM
      a SL = stop-line, MB = mid-block, US = upstream, AL = arbitrary location, adopted from Stevanovic et al. [15] and Aboudolas et al.[109].

      (a) Dispersion-and-store model (DSM)[73,120, 121]. The DSM, originally proposed by Pacey et al. in 1956 and Robertson in 1969[73,120123], is an empirical observation mimicking both the platoon dispersion behaviour during a green signal and platoon storage during a red signal. Usually, two forms are used for this modeling: a normal distribution form and a geometric distribution form. The geometric distribution form is also called Robertson's Platoon Dispersion Model (RPDM) and has been widely incorporated in many UTCSs, e.g., SCOOT[120, 121]. However, the DSM cannot model real-time precise complex queue formulation and dissipation since the road segment between any two adjacent intersections is considered as one link. In addition, its adaptiveness to traffic fluctuations is difficult to calibrate[124].

      (b) Cell transmission model (CTM). The CTM proposed by Daganzo in 1994[125] discretized the continuum of Lighthill & Witham's kinematic model (LWR) into multiple cells. In this case, the road network is represented by many small cells. One cell's vehicle dynamics are based on a transition process between two consecutive cells. In 2018, Hao et al. extended the CTM to an extended urban cell transmission model (UCTM) to obtain the average travel delays of the vehicles in the upstream approaches of each intersection[114, 115]. However, the major disadvantage of CTM is that the fine discretization of the arterial network requires substantial computational complexity and sensor density. A shortage of sensors and limited computational capability significantly degrade the performance of CTM-based control methods[124].

      (c) Store-and-forward model (SFM). Gazis et al. originated the SFM model in 1965, which was extended by Aboudolas et al. in 2009 to model traffic dynamics in congested arterials[112]. Similar to CTM, vehicles in the SFM model are either stored within the current link in the red signal or forwarded to the next link in the green signal. The link dynamic is given by the conservation law. The most significant characteristic of the SFM is that the discrete time step Tk is equal to cycle length C, i.e., Tk = C[124]. This leads the model to describe a continuous (uninterrupted) average outflow from each link outside of the consideration for a queuing formulation or for dissipation due to a green-red switching mechanism[112]. In other words, SFM has difficulty modeling real-time accurate complex queue formulations and dissipations, similar to the disadvantage of the DSM. This model only provides an efficient representation of the dynamics in congested networks.

      In conclusion, the dynamics of facilities are not accurately analyzed and replicated[106, 107, 126], similar to the disadvantages of mesoscopic models with the high-level aggregated representation of the traffic streams and road geometry. For example, macroscopic models lack dynamic descriptions of the SPaT data. Also, DSM, CTM, and SFM have the difficulty with modeling real-time accurate complex queue formulations and dissipations. In other words, there is a problematic level of performance degradation because of queuing uncertainties.

    • The hybrid models that combine the advantages of two or more levels of the individual models, emerge as possible solutions[127]. There are two major types: mesoscopic–microscopic models and macroscopic-microscopic models[107, 128]. Usually, researchers aim to integrate the strengths of macroscopic or mesoscopic models (better modeling of large networks and easier calibrations) with microscopic models (greater details and modeling control strategies capability)[107, 128]. However, all of these studies are based on simulations that have extraordinary computational complexity. Consequently, existing research studies[107, 127, 128] are only suitable for offline verification and evaluation of different ITS and signal strategies rather than for real-time signal control use.

    • Most of the existing CV-based ASC[1,36, 7587] and signal coordination[19,32, 4043, 46, 98] systems depend on microscopic models. Thus, they suffer the problems described above in the sub-chapter 'microscopic models'. One major issue is that performances degrade because of a shortage of sensors and computational capability.

      There are not many works utilizing the mesoscopic models and macroscopic models for the CV-based ASC and signal coordination. Zhang et al. in 2022[129] demonstrate a distributed queueing model to improve the signal control performances in an edge computing environment. Chen & Qui in 2021[130] implement the CTM with dynamic routing plans for a distributed signal control in an edge computing environment. Souza et al. in 2022[119] propose a multi-commodity SFM utilizing a destination-based turning rate to improve signal control performances. Yao et al. from 2019 to 2020[131134] proposed a real-time dynamic dispersion model in a CV environment, where travel time, vehicle speed, vehicle location, or their combination is utilized. Li et al. in 2021[92] proposed a predictive dispersion model to investigate signal coordination performances under low penetration conditions in a CV environment.

      To the best of our knowledge, none of the existing CV-based ASC and signal control systems are based on hybrid models. Thus, they cannot benefit from the advantages of the hybrid models.

    • The second observation, as summarized in Tables 8 & 9, is that the control strategies feature fewer delays, and better real-time and more efficient response performance over time whilst, at the same time, are becoming more complex. The responsiveness to demand has upgraded from a slow reactive response to rapid proactive response. The change frequency of the control plan is evaluated to around 1 HZ for traditional advanced ASC and CV-based advanced ASC. As for the CV-based signal coordination, the offset is quickly adjusted at per cycle level.

      What is apparent is that these adopted control strategies are becoming more complex over time. In this study, these control strategies are divided into three types: (1) static optimization-based basic control strategy[135], (2) dynamic optimization-based intermediate control strategy[135], and (3) model predictive control (MPC)-based advanced control strategy[136].

    • A static optimization-based basic method refers to a method where a signal control system achieves an optimal timing plan by solving a static optimization problem. The word 'static' used in the term 'static optimization' means that objective functions and constraints are time-independent, where they are focusing on the current time step. Most of the existing methods[15] utilizing static optimization omit the term 'static'. However, this thesis uses the term 'static optimization' to clarify and claim the time-independent characteristics of these methods. Usually, mathematical programming, e.g., linear programming (LP), mixed integer linear programming, is used for solving this static optimization.

      This static optimization-based basic control strategy is used in various traditional adjusted control and responsive control systems, e.g., SCATS. Furthermore, if no other feedback control methods (e.g., rolling horizon method[109]) are added, the static optimization-based method is an open-loop system without a feedforward control. Consequently, it causes these control systems to have slow reactive responses with a slow change frequency to demand variations. This means that these systems are readily affected by traffic demand fluctuations and traffic stream disturbances.

      Thus, the static optimization-based method has limited capability to optimize timing plans in high-dynamic conditions. The control performance is significantly affected by traffic demand fluctuations and traffic stream disturbances.

    • Compared to the basic control strategy using 'static optimization', 'dynamic optimization' is widely used in the intermediate control strategy and is a method whereby the decision variables of constraints involve sequences of decisions over time or multiple periods[135]. In other words, it has a dynamic model, i.e., traffic model, as a constraint to describe traffic dynamics, whereby the traffic model can be either a microscopic, a mesoscopic, or a macroscopic model. The deployed traffic model predicts the future status of the traffic system. Usually, this type of control system is labeled as a model-based control.

      Without adding other feedback control strategies (e.g., rolling horizon method[109]), this dynamic optimization causes the intermediate control strategy to be an open-loop system with a feedforward control. Thus, this intermediate control strategy performs better than the basic control strategy since it has a prior feedforward control and is adopted in most responsive control systems and advanced adaptive control systems, as shown in Tables 8 & 9. Typical examples include SCOOT[27], MOTION[31], BALANCE[15], ACS Lite[53], MOVE[15], OPAC[15], RHODES[15], UTOPIA[15], PYODYN[15], DYPIC[15], and Aboudolas et al.[109] amongst others.

      In order to solve dynamic optimization problems, there are several proposed methods: (a) dynamic programming (DP), (b) rolling horizon approach, and (c) other intelligent approaches.

      (a) Dynamic programming (DP). Dynamic programming is a technique that can be used for solving many optimization issues over time (i.e., dynamic optimization)[124, 135]. In most applications, DP breaks the original large-scale and complex problem into a series of small, solvable problems by Bellman's equation. DP has been used in some signal control systems, including OPAC V1[15] and studies by Caceres et al.[137140]. However, the DP method has problems to overcome for the real-time control[108]. In detail, the DP method requires complete future information for the optimization horizon, which is very hard to achieve in the real-time operation since the upstream sensor may only provide 5-10 s future vehicle arrival data.

      (b) Rolling horizon approach. The rolling horizon approach refers to a 'rolling planning horizon' that has a rolling mechanism with a planning horizon consisting of Kp time intervals[108, 124]. The planning horizon has two portions: a head portion with first KH time intervals and a remaining tail portion with next ( KpKH ) time intervals. The traffic status is updated by measured data during the head portion and predicted by traffic models during the tail portion. The dynamic optimization is then solved during the whole planning horizon with the measured and predicted traffic status. Thus, a sequence of optimal control actions (e.g., split, offset) over the whole planning horizon is obtained. In practice, only the first optimal control action[108, 124] or a sequence of control actions over the head portion[111] is implemented. After that, a rolling mechanism is applied, in which the planning horizon moves forward into the future by one rolling period, and the above routine is repeated. Moreover, the rolling horizon approach introduces a feedback loop that further increases the system's performance. Various traditional UTCSs[15,108110] that have applied the rolling horizon approach are shown in Table 13.

      Table 13.  Summary of traditional UTCSs using the rolling horizon approach.

      Typical UTCSs DataaRolling horizon approach Global optimization formulation and/or solution algorithm
      OPAC[15]MB & SL, Loop dataYes[15]Complete enumeration (CE) / exhaustive enumeration[111, 112]
      RHODES[15]MB & SL, Loop dataYes[30]Dynamic programming[ 111, 112]
      UTOPIA/SPOT[15]US & SL, Loop dataYes[113]Online dynamic optimization and off-line optimization[ 108]
      PRODYN[108]US, Loop dataYes[109]Forward dynamic programming[111, 112]
      DYPIC[ 108]US, Loop dataYes[ 108]Backward dynamic programming[ 108]
      Aboudolas et al.[109] in 2010AL, Loop dataYesQuadratic programming
      Liu & Qiu[110] in 2016US & SL, Loop dataYesMulti-objective optimization problem and an evolutionary algorithm
      Hao et al.[114, 115] in 2018US, Loop dataYesMPC-based method integrating optimizations, CTM model
      Jamshidnejad et al.[141] in 2018Loop dataYesSustainable model-predictive control, S-model
      Han et al.[116] in 2018Loop dataYesLQ-MPC, extended CTM, corridor
      Lu et al.[117] in 2019Loop dataYesExplicit model predictive control (EMPC), SFM model
      Pedroso & Batista[118] in 2021Loop dataOne-stepDecentralized and decentralized-decoupled traffic-responsive urban control, Decentralized SFM
      Souza et al.[119] in 2022Loop dataYesIntegrating signal control and routing, Multi-commodity SFM
      a SL = stop-line, MB = mid-block, US = upstream, AL = arbitrary location, adopted from Stevanovic et al. [15] and Aboudolas et al. [109].

      However, there is a concern that the rolling horizon approach does not always abide by the optimality principle if the parameter design (e.g., length of the projection horizon) is not well devised[124]. The concern is that the rolling horizon approach causes a disadvantage where it degrades its performance in highly dynamic environments, especially in CV environments.

      (c) Intelligent approaches. Intelligent approaches use other models that usually are not traffic models to update timing plans. There are several typical examples: the Fuzzy logic-based system like Jin et al. in 2017[50], the deep learning (DL)-based system like Gao et al. in 2017[51], the reinforcement learning (RL) technique like Mo et al.[93] in 2022, and the distributed signal control using the emerging edge computing technique like Chen et al.[142] in 2022. This is shown in Table 14.

      Table 14.  Summary of UTCSs using modern intelligent approaches.

      Typical worksPlatformaIntelligent strategyControl features
      Jin et al.[50] in 2017Embedded deviceFuzzy-basedA fuzzy group-based approach, machine-to-machine connectivity
      Gao et al.[51] in 2017Centralized structureDeep reinforcement learning-basedConvolutional neural network for automatic feature crafting, experience replay and target network for stability
      Wu et al.[143] in 2019Edge computingDeep reinforcement learning-basedDistributed reinforcement learning
      Zhou et al.[144] in 2021Hierarchical structureDeep reinforcement learning-basedMulti-agent training with rich CV data, hierarchical control
      Zhang et al.[145] in 2021Edge computingDeep reinforcement learning-basedMulti-agent actor-critic control, value decomposition, a cooperative scheme
      Wu et al.[146] in 2022,Edge computingDeep reinforcement learning-basedGame theory-aided reinforcement learning
      Wang et al.[147] in 2022Edge computingDeep reinforcement learning-basedSocial features and connections
      Mo et al.[93] in 2022DecentralizedDeep reinforcement learning-basedAsymmetric advantage actor-critic, non-CV, and CV data for offline training, CV data for online control
      Chen et al.[142] in 2022Edge, distributedDistributed dynamic route-basedDistributed backpressure principle, dynamic route control

      However, for these Intelligent approaches, like either a deep learning-based or a reinforcement learning-based method, the sophisticated learning structure for the low penetration conditions is still missing[93]. In addition, the detailing mechanisms of raw CV data types and amounts, and their real-time controlling capabilities for either centralized or distributed signal control are still remaining unclear[93].

    • A special advanced model-based control strategy called model predictive control (MPC) is considered in this section[113, 136]. MPC is the most widely accepted modern control strategy to offer a compromise between optimality and computation speed[136]. Generally speaking, MPC-based traffic control utilizes both a traffic model and the current traffic state to predict the dynamic evolution of traffic states, then applied to obtain optimal signals. An MPC controller includes several basic components, including a state estimation module, a state evolution model, and an optimization module[113], with further details of MPC outlined by Kouvaritakis & Cannon[136]. It is widely recognized that MPC can further decrease the adverse effects of traffic disturbances[148].

      Traffic controls that explicitly use MPC were originally proposed by Bellemans in 2003[149] and Hegyi et al. in 2005[150] for both ramp metering (RM) and the variable speed limit (VSL) studies on freeways. In recent years, Hegyi et al.[113, 151], Papageorgiou et al.[148, 152], and Wang et al.[153156] further summarized, extended, and validated the MPC-based RM and VSL studies on freeways. Studies that focus on traffic signal controls that explicitly employ MPC focus on congested arterial networks include Dotoli et al.[157], Aboudolas et al.[112], Lin et al.[158], Liu & Qiu[124, 159], and Baldi et al.[160]. Only few works explored performance in non-congested arterials[114, 115] .

      There are other traffic control systems[15,108] that use similar schemes, shown in Table 13. These systems also obtain optimal signals by applying predictions and models, but they are not formulated and implemented explicitly to the MPC structure correspondingly[113]. Thus, these systems cannot feature the benefits of MPC without simultaneously solving their problems.

      Although MPC shows good performance ability in RM and VSL control on freeways and signal control on congested arterials, several concerns arise concerning its capability on non-congested arterials. First, the traffic dynamic and signal mechanism are more involved in under-saturated arterials without a simplified traffic model, causing a lack of computational tractability. Second, the performance of traffic control systems can degrade from unpredictable demand variations and traffic disturbances on the road when using an open-loop prediction model of the MPC. The reason for the open-loop structure is that the nominal future demand and signal control variables are still functions of time.

    • Corresponding to the above classification, the existing control strategies in various CV-based signal control systems are categorized into the following approaches: (1) static optimization-based control, (2a) dynamic optimization-based control with the DP, (2b) dynamic optimization-based control with the rolling horizon scheme, (2c) dynamic optimization-based control with other intelligent approaches, and (3) MPC-based control. This classification is shown in Table 15.

      Table 15.  Summary of CV-based signal control systems.

      AuthorsCV dataRolling horizon approachGlobal optimization formulation
      and/or solution algorithm*
      CV applicationsBenefit+
      Gradinescu et al.[75] in 2007OnlineNoStatic optimization1CV-ASC28.3%1
      Priemer et al.[161] in 2009NoDynamic optimization with DP &
      Complete enumeration2a
      CV-ASC24%1
      Lee et al.[82] in 2013NoStatic optimization1CV-ASC34%5
      Cai et al.[80] in 2013NoDynamic optimization2cCV-ASC11.69%5
      Pandit et al.[81] in 2013NoDynamic optimization2cCV-ASC~25%1
      Kari et al.[83] in 2014NoStatic optimization1CV-ASC57.31%1
      Guler et al.[36] in 2014NoDynamic optimization2cCV-ASC~50%*
      Younes et al.[85] in 2016NoScheduling algorithm2cCV-ASC25%1
      Islam et al.[88] in 2017NoModified MILP1CV-ASC27%2
      Liu et al.[39] in 2017NoReinforcement learning2cCV-ASC~30%3
      PAMSCOD[42] and its variant [45]
      in 2012 and 2014, respectively
      YesMILP2bCV-ASC25%1
      Goodall et al.[35] in 2013Yes[16]Dynamic optimization with
      rolling horizon2b
      CV-ASC20%4
      Feng et al.[1] and its variant[87]
      in 2015 and 2018, respectively
      YesHybrid structure2bCV-ASC16.33%1
      C.M. Day et al.[98, 40, 41, 46]
      from 2016 to 2018
      Offline NoStatic optimization1CV-based coordination
      Priority-based method [32][42] in 2016Online NoStatic optimization1CV-based coordination25%1
      Beak et al.[19] in 2017Online NoStatic optimization1CV-based coordination19%1
      Al Islam et al.[90] in 2020Online YesDynamic optimization with
      rolling horizon2b
      CV-ASC and coordination50%*
      Li et al.[91, 92] in 2021Online YesMPC3CV-based coordination35%1
      Zhang et al.[104] in 2022Offline & onlineNoDeep reinforcement learning-based2cCV-ASC66%1
      Mo et al.[93] in 2022Offline & onlineNoDeep reinforcement learning-based2cCV-ASC30%1
      * 1 = static optimization-based control, 2a = dynamic optimization-based control with the DP, 2b = dynamic optimization-based control with the rolling horizon scheme, 2c = dynamic optimization-based control with other intelligent approaches, 3 = MPC. + index type: 1 delay, 2 queue length, 3 waiting time, 4 stop, 5 travel time, * combination.

      From Table 15, the existing control strategies usually fall into the static and dynamic optimization-based options. There are no existing studies based on the MPC. Therefore, the existing CV-based signal control systems suffer from the original drawbacks of these two control types. Furthermore, it cannot draw upon the benefits of the MPC. Finally, the high frequency of data exchange and the low penetration issue increases data disturbances and fluctuations. This causes more complexity when designing an MPC in the CV environment. In particular, the slow revision of timing plans in existing MPC-based controls is not compatible with the rapid, high-frequency data communication in the CV environment.

    • In this section, more discussions about the intelligence types and mixed traffics in different environments are presented.

    • The essential parts of different environments are the connectivity and the automation. The connectivity and the automation are important but different in connected and automated transportation systems[2026].

      With the connectivity technology, different communication methods, including the vehicle-to-vehicle (V2V) communication and vehicle-to-infrastructure (V2I) communication, are collectively called the Connected Vehicle (CV) environment. With the automation technology, the vehicle has the capability to perform different levels of automation, like highly automated vehicle (HAV) and full automated vehicles (FAV), where this environment with different automated vehicles can be called the Automated Vehicle (AV) environment. Correspondingly, if a vehicle is connected to other vehicles, road infrastructure, and operates at a particular level of automation, the resulting transportation system can be referred to as a connected and automated vehicle (CAV) environment.

      The existing signal control methods in CV, AV, and CAV environments can be classified into three types based on the object[2026]: vehicle intelligence (such as GLOSA, Green Light Optimized Speed Advisory), infrastructure intelligence (such as advanced signal control system), and joint intelligence that integrates both vehicle and infrastructure intelligence (such as integrated vehicle routing and signal optimization[119,130]).

    • In general, in mixed traffic scenarios, there is a mixed flow composed of human-driven vehicles (HDVs), CVs, AVs, and CAVs. Mixed traffic flow has brought new opportunities and challenges, which have received extensive attention from both academia and industry. Numerous research works have been conducted in this area. There are two key points in the mixed flow research: one is the driving parameter, and the other is the penetration impact.

      First, in mixed traffic scenarios, according to our current understanding, there are no significant differences in driver behaviors between connected vehicles and traditional vehicles at signal-controlled intersections, specifically from a car-following driving perspective. This is because both types of vehicles are operated by human drivers. However, different automated vehicles with different automation levels may have different driving behaviors, like different reaction times[162164]. Thus, considering human driving is assisted by low-level automation intelligence in a CV environment, there may exist little differences other than significant differences in driver behaviors between CVs and traditional vehicles.

      Moreover, regarding the definitions of penetration rates for vehicles with connectivity and automation, there are three typical types in existing studies[2026]. They are the penetration rate of the CV, the AV, and the CAV, respectively. Usually, these penetration rates are different and are not necessarily equal with each other. However, most existing methods have a certain requirement for the proportion of CAVs. These methods are applicable to mixed traffic flow with higher penetration rates, where the higher penetration rate refers to the proportion of CAVs in mixed traffic flow exceeding 20%-30%. These existing research works are constrained by high penetration rates and even require known specific values. When the penetration rate is low or ultra-low, there are still challenges, such as large state estimation errors, decreased control effectiveness, and parameter mismatch bias[2026]. Thus, low penetration rate (LPR) and ultra-low penetration rate (ULPR) conditions need further improvement.

    • Based on the comprehensive literature review, there are already numerous works and systems which have been presented and demonstrated during the last several decades. Though they have shown powerful and efficient advantages, there are still some challenges and concerns for both on-CV and CV-based ASC and signal coordination systems. These problems and challenges, as well as potential future research directions, are discussed in this section.

    • In this section, the key challenges requiring answers are summarized from three fundamental component perspectives, i.e., data, traffic model, and control strategy. For the sake of clarity, this section now provides a comprehensive issue summary of these systems.

    • First, let us discuss some potential challenges regarding the CV data as well as some further emerged data types. For the CV-based mobile data, there are still several new issues. Most significantly, these issues are caused by low market penetration conditions. Two issues are apparent at this point. The primary concern is the small CV samples among the large traffic flow population when there is a low penetration rate (LPR) of CVs. The low penetration rate condition will continue for many years before a critical threshold rate is reached that can take the use of CV technology to the next level of benefit (e.g., 20%−30% for traffic signal control[94] ). Even worse, at the very early stage, there exists ultra low penetration rate (ULPR) condition, where the penetration rate of CV can be as low as 1%−5%. The LPR (5%−10%) as well as ULPR (1%−5%) conditions will continue to cause the loss of CV data and degrade the performance of the CV-based signal control framework[19, 43, 43, 102, 103].

      Furthermore, the presence of a large number of non-CVs causes incomplete information, accumulates disturbances, and increases uncertainty when obtaining optimal signal timings[17]. Moreover, there are few proposed methods[1, 94] to estimate the state of non-connected vehicles from different perspectives (e.g., location, speed, acceleration). The existing techniques that are aimed at solving these two issues in low-penetration conditions continue to demonstrate performance drawbacks. Thus, before reaching a critical threshold rate, the LPR as well as ULPR are our key challenges.

    • For the traffic models, we have witnessed the huge improvements over the last several decades. This limited review selected some typical models and some challenges are discussed for the fast-developing and will-coming connected and automated vehicle and transportation era. First, for the microscopic models, they introduce considerable computational complexity, and have limited availability when requiring complete information. Specifically, they lack a dynamic description of signal status. Next, macroscopic and mesoscopic models provide limited details due to the high-level aggregate representations when modeling the control and information systems. Furthermore, for traffic models in these existing CV-based ASC and coordination systems, several issues are raised. As for the microscopic models in the existing CV-based ASC[1, 36, 7587] and signal coordination[19, 32, 4042, 46, 98] systems, they still are suffering high computational costs with limited utility when the information is incomplete. In addition, though hybrid models combine advantages of two or more levels of the other models, none of the existing CV-based ASC and coordination systems are based on hybrid models. Thus, developing efficient and accurate traffic models for the fast-changing connected and automated transportation era is still a big challenge for the researchers and practitioners.

    • As for control strategies in a CV environment, the existing deployed control strategies usually use either the static or the dynamic optimization-based control strategy. There are several problems with these strategies. First, the existing CV-based signal control systems suffer from the original drawbacks of static and dynamic optimization-based control strategies. There are few existing CV-based ASC and signal coordination techniques based on the model predictive control (MPC) method. In particular, there are few existing designed MPCs for non-congested arterials in the CV environment.

      Then, the low-penetration issue, the high frequency of data exchange, and the issues of microscopic models increase disturbances and fluctuations, which further cause more complexity when designing an MPC in the CV environment. For example, the slow timing plan revision capability of the existing MPC-based control is not compatible with rapid, high-frequency data communication by V2V and V2I communication in the CV environment. Furthermore, the performance of MPC-based traffic control systems can still be degraded by unpredictable demand variations and traffic disturbances on the road when using an open-loop optimization model of the MPC. Thus, considering that existing non-CV- and CV-based ASC and coordination systems continue to have challenges to overcome, the potential of CV technology needs further study.

    • In order to provide an efficient real-time CV-based adaptive signal control and coordination framework for the fast-changing connected and automated transportation era, while resolving the outlined existing challenges, several future research directions are investigated and discussed in this work[2024]. These future potentials are also provided from three key aspects.

      First, as for the data perspective, the current context is that the reaching of a critical threshold rate of connected vehicles or connected and automated vehicles still needs a long time period. Thus, investigating comprehensive data sampling and acquisition methods with only a few CV data in either LPR or ULPR conditions is still a potential way to explore the mixed traffic characteristics fully. The enhanced data acquisition method for LPR or ULPR conditions can present enough spatial-temporal traffic characteristics and phenomena. In addition, considering that there are still a large number of non-CV vehicles (human-driven vehicles) on the road, developing efficient sensing and sampling methods to capture the complexity of microscopic driving behaviors via these human-driven vehicles might improve the mixed traffic flow characteristics further. The estimation method is a compensated data source to improve the performance of the CV-based methods, like vehicle trajectories[165]. Also, considering the fast-developing new lidar sensing technique, the lidar data have several advantages, including high positioning accuracy, direct depth information, and bird's-eye view perception (BEV)[165, 166]. The corresponding generated new data type, i.e., the point-cloud map, might further contribute to the traffic flow characterizing improvements. Currently, the future potential methods might include the probabilistic approach[104], the car-following principle-based approach[90], or the learning-based data-driven approach[93]. More explorations are needed further for LPR/ULPR CV data, non-CV data, and newly-emerged data.

      Next, during the last decade, we also stepped into the super-fast development of learning techniques and edge computing capabilities. To resolve the changllenges of the control strategies, these super-fast developing techniques show us some potentials. The learning techniques further extend the existing optimization or predictive strategies' capability to handle automated machine-crafted features, to learn control design, to preserve safe or robust control[167]. These learning techniques include deep learning (DL), reinforcement learning (RL), deep reinforcement learning (DRL)[93,104], large pre-trained techniques[165, 166], and their developments. Also, the recent successes of edge computing in the computer science and communication communities bring large computational capabilities to the edge or terminal devices[142]. The improved computing capability in the vehicle or road infrastructure further welcomes powerful and efficient sensing and controlling techniques to improve the control performances. This enhanced computing in the edge facilitates the local sensing, planning, and controlling in a distributed way. Thus they may have the potential to improve performances of the decentralized or distributed control strategies when handling the huge complexity introduced by both a large number of road participators as well as their microscopic driving mechanisms and behaviors.

      Last, we discuss some opportunities for the traffic models in this connected and automated transportation era. The key potentials among the traffic models have some similar trends in this new paradigm of traffic flows. The traditional or classic micro-, miso-, and macroscopic models might further be updated and extended. For the urban traffic flows, large network-level or regional models and multi-modal systems for huge cities or areas are needing[2023], like Macroscopic Fundamental Diagram (MFD) developments, since more and more road participators and road infrastructure are included in the future. Also, considering the emerging techniques, including connectivity, automation, and edge computing, the new technique-driven model developments require more efforts and works, like connected and automated vehicle dynamics, microscopic human safety behaviors, high-fidelity driving, and traffic simulator-based data-driven models, trajectory-based traffic models[23], and distributed/decentralized traffic spatial characteristics.

    • Existing traditional signal control systems for urban traffic are usually based on traffic flow data from fixed location detectors. Because of rapid advances in the emerging vehicular communication, connected vehicle (CV)-based signal control demonstrates significant improvements over existing conventional signal control systems. Though various CV-based signal control systems have been investigated in the past decade, these approaches still have some issues and challenges. Thus, to better utilize and implement these existing CV-based and non-CV-based research works, their pros and cons are fully weighed-up in this review. In summary, the contributions and findings of this review are listed as follows:

      First, in this review, the typical components and structures of these CV-based and non-CV-based urban traffic signal control systems are summarized. The typical components are data, traffic model, and control strategy. Across the unified three components, a clear demonstration of the differences and evolutionary relationship between both CV-based and non-CV-based methods is presented across three components. In detail, with this foundation, the advantages and disadvantages of CV-based signal control methods are comprehensively illustrated.

      Second, several important issues of these CV-based urban traffic signal control systems are digested and identified. These identified issues include sub-optimal results in low market penetration conditions, a lack of uncertainty consideration for rapidly changing demands and driving modes, and non-scalable and complex signal control systems architecture.

      Next, some future directions and potential topics are pointed out with the hopes of overcoming these existing revealed issues. These topics are still categorized into new data, new traffic model, and new control strategy. For example, one new data source is the Lidar-based data source with a bird's-eye view. The corresponding new data type, i.e., the point-cloud map, can further obtain more characteristics of the traffic flows, including not only the vehicles but also surrounding pedestrians and bicycles. The other interesting topic examples include new automation-driven model and new learning-based control strategy.

      In summary, we hope this review can highlight some key research areas as well as identify several essential research questions, where it can highly promote the further development of this exciting and promising urban traffic signal control in the fast-developing connected and automated transportation era.

      • This research is jointly supported by National Key R&D Program of China (Grant No. 2018YFE0204302), National Natural Science Foundation of China (Grant No. 52062015, No. 61703160), the Talent Research Start-up Fund of Nanjing University of Aeronautics and Astronautics (YAH22019), and Jiangsu High Level 'Shuang-Chuang' Project.

      • The authors declare that they have no conflict of interest.

      • Copyright: © 2023 by the author(s). Published by Maximum Academic Press, Fayetteville, GA. This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.
    Figure (3)  Table (15) References (167)
  • About this article
    Cite this article
    Li J, Peng L, Hou K, Tian Y, Ma Y, et al. 2023. Adaptive signal control and coordination for urban traffic control in a connected vehicle environment: A review. Digital Transportation and Safety 2(2):89−111 doi: 10.48130/DTS-2023-0008
    Li J, Peng L, Hou K, Tian Y, Ma Y, et al. 2023. Adaptive signal control and coordination for urban traffic control in a connected vehicle environment: A review. Digital Transportation and Safety 2(2):89−111 doi: 10.48130/DTS-2023-0008

Catalog

  • About this article

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return