-
We found that the mean annual accumulated temperature during 1973 to 2018 was 8,853.1 ± 201.1 °C when daily mean temperatures above or equal to 10 °C were combined. Heat accumulation increased in recent years compared to earlier decades, indicating very likely changes in the phenology. Similarly, number of rainy days recorded ranged from 81 to 170 d for the same period. Number of days receiving rainfall was found to be increasing in recent years compared to earlier decades. During field work, we observed well established shea trees at the Yuanjiang Research Station and collected dendrometric characteristics of shea trees and are presented in Table 1 (n = 794).
Table 1. Tree and site characteristics in the study site.
Statistic Height (m) DBH (cm) Basal
diameter (cm)Crown
diameter (m)Altitude (m) Minimum 5.2 17.2 17.5 2.4 451 Maximum 14.5 40.3 52.5 10.6 509 Mean 9.3 28.2 32.4 6.1 487 Standard deviation (n-1) 1.7 4.9 5.9 1.1 10.1 Number of trees (n) = 794. Of the 794 trees measured in 2018, 395 trees were not bearing fruit. The remaining 399 trees bore fruit, and we categorized these trees based on the amount of the fruit produced. In the 'less' category, we recorded 273 trees that had few fruits. In the 'medium' and 'high' categories, we recorded 79 trees that bore a significant amount of fruit and 47 trees that bore a higher number of fruits, respectively. In 2019, 12 trees were felled and out of the remaining 782 trees, 365 were not bearing fruit. One hundred and seventy three trees bore 'less' fruit, while in 'medium' and 'high' category 142 and 102 trees were recorded (Table 2). We recorded phenological events in the shea tree, which showed that flower bud appeared during early April, fruit appeared during late May and matured by September (Fig. 3). Leaf phenology began in February and the whole of this period was referred to as the active growth period of shea tree in Yuanjiang Research Station. Fruit transverse diameter measured 29.3 ± 0.9 mm, while longitudinal diameter was 33.8 ± 1.06 mm (n = 20). We selected 15 trees randomly to study fruit yield, and the fruit yield ranged from 6.0 to 76.8 kg per tree (average 33.95 ± 21.31 kg) in 2018 and from 16.25 to 86.0 kg per tree (average 42.3 ± 22.61 kg) in 2019.
Table 2. The number of fruiting trees at different levels in 2018 and 2019.
Year 'no fruit' 'less' 'medium' 'high' Total 2018 395 273 79 47 794 2019 365 173 142 102 782 In 2019, 12 trees were felled. Figure 3.
The response of phenological stage to heat accumulation and precipitation. Variation in color reflects change in the phenological stages from flower to fruit.
Fruit phenology of shea tree at Yuanjiang Research Station
-
We recorded the phenology stage of shea trees, sampled from the whole plantation area. Each phenology stage was plotted against the median value of number of days required to reached that particular stage (Fig. 3). Standard deviation for each stage was calculated and plotted. Heat accumulation and total precipitation during different phenological stages was plotted to understand their relationship. Phenology development stages closely follow heat accumulation, indicating about 350 °C was necessary for bud formation, about 900 °C for fruit formation, about 1,700 °C for color change in the fruit (beginning of biological maturation of the fruit) and above 2,000 °C for fruit maturation (Fig. 3). Similarly, total accumulated precipitation of about 600 mm was good for fruit maturation when heat accumulation reached about 2,000 °C.
Fruiting in relation to dendometric character
-
The Kruskal-Wallis test revealed that apart from crown diameter, there was no significant difference in dendrometric characteristics between different categories of fruiting conditions as well as trees with 'no-fruit' (Table 3). Results indicated that differences in the fruiting condition can be attributed to crown diameter, while remaining tree measurements were not significantly related to the fruiting condition.
Table 3. Summary of Kruskal-Wallis test showing dendrometric characters for various fruiting conditions.
Variable p-value (2018) p-value (2019) BA (m2) 0.38 0.09 Basal diameter (cm) 0.11 0.12 Crown diameter (m) 0.04* 0.02* DBH (cm) 0.38 0.09 Height (m) 0.23 0.49 * Significant at p < 0.05. A correlation analysis between all the dendrometirc variables revealed that tree height was correlated with DBH, basal area and basal diameter. Similarly, DBH was highly correlated with basal diameter and basal area. All correlations were significant at p < 0.05. Remaining variables were not correlated with each other (Table 4). A multicollinearity test among the explanatory variables indicated that DBH had highest VIF value (Table 4) and could affect the results of the regression. Although PLS regression deals with collinearity issues, we removed DBH from the PLS regression. However, monthly temperatures were retained in the PLS analysis although high correlation among monthly temperatures were well established.
Table 4. Correlation matrix of dendrometric and geographical variables (explanatory and response) used in PLS regression and results of multi-collinearity test among explanatory variables.
Variables BA Basal D Crown D DBH Height Slope SRI Yield BA 0.85 0.49 0.93 0.77 −0.44 0.18 0.46 Basal D 0.26 0.92 0.84 −0.17 0.21 0.55 Crown D 0.31 0.23 −0.43 −0.42 0.50 DBH 0.76 −0.35 0.29 0.50 Height −0.26 0.24 0.42 Slope −0.18 −0.14 SRI −0.27 VIF 12.77 11.64 2.80 17.57 4.05 1.91 1.85 VIF 6.51 6.33 2.59 3.60 1.78 1.82 Variables in bold represent the response variable while all others were explanatory variables. Variable highly correlated (> 0.65) are italicized. BA, basal area; D, diameter; DBH, Diameter at breast height; SRI, solar radiation index. VIF stands for variance inflation factor that quantifies the severity of multicollinearity. Fruit yield prediction models
-
We generated PLS models using 14 dendrometric, geographical and fruit yield variables. Out of 30 replicated models, we selected nine models based on the regression coefficient (R2) value (Fig. 4). However, we selected best model that showed least RMSE and higher R2. The model described 74% of the variation in the predictor block (R2X) that in turn explained 67% of the variations in fruit yield parameters (R2Y). The predictive quality of the models according to cross-validation was substantially high as indicated by the Q2 value (52%). The median value of Q2 suggested that the fruit yield varied, depending on several of the selected predictor variables. The goodness of model fit statistics show R2 = 0.67 and RMSE = 11.58.
PLS analysis revealed that most of the variables used in the model were important variables contributing to the model and explaining fruit yield. Among these important variables, crown diameter was the most influential variable in explaining fruit yield. The standard coefficient of the model revealed that the larger the crown diameter, the higher the fruit yield per tree (Fig. 4). Similarly, basal diameter, basal area and tree height also positively affected the fruit yield.
Regarding geographic variables, slope was a major influential factor in the model, though it showed a strong negative influence. The model revealed that the monthly average temperature during the active growth period of shea tree was important for fruit yield. February and March temperatures were not important as revealed by a VIP value less than 0.8, while average temperatures of other months were important. All temperature variables except that of July positively affect the fruit yield (Fig. 4). However, the magnitude of the contribution of temperature variable were not high compared to dendrometirc variables.
When considering all nine selected models, six models revealed crown diameter as the most influential variable (Fig. 4). However, basal diameter was important in all nine models. However, basal diameter influence the models least compared to crown diameter. Across all the model dendrometirc variables shows consistency in the influence direction (positive or negative), while other variables show difference across these models. Hence, dendrometric variables were more reliable.
-
The authors confirm contribution to the paper as follows: study conception and design: Zhao G , Wu L , and Ranjitkar S; data collection: Li T, Wang X, Qin H, Ayemele AG, and Han X; data analysis: Ranjitkar S, Cunningham AB, and Zhang S; draft manuscript preparation: Zhao G, and Ranjitkar S. All authors reviewed the results and approved the final version of the manuscript.
-
About this article
Cite this article
Zhao G, Ranjitkar S, Ayemele AG, Li T, Wang X, et al. 2023. From Ghana to the dry-hot valleys of China: assessing factors influencing fruit yield in agroforestry species Vitellaria paradoxa after 54 years of cultivation outside Africa. Circular Agricultural Systems 3:7 doi: 10.48130/CAS-2023-0007
From Ghana to the dry-hot valleys of China: assessing factors influencing fruit yield in agroforestry species Vitellaria paradoxa after 54 years of cultivation outside Africa
- Received: 05 January 2023
- Accepted: 12 May 2023
- Published online: 28 November 2023
Abstract: Although distributed across the Sudano-Sahelian region as an agroforestry system tree species, Vitellaria paradoxa has yet to be reported as successfully established outside of Africa, significantly limiting its yield and further exploitation. In this paper, in order to assess a well-established population of V. paradoxa in the Yuanjiang dry-hot valley of China and examine the relationships between morphological-geological factors and fruit yield, we monitored dendrometric traits and fruiting across 844 shea trees located on different aspects, and applied partial least square regression to build a yield model based on dendrometric and geographical variables. Results revealed climatic resemblance of the introduction site in Yuanjiang to the natural habitat in Ghana, and the growth performance and fruit yield were also comparable, but accumulated precipitation of about 600 mm was better for fruit yield when heat accumulation reached about 2,000 °C. Apart from crown diameter (p < 0.05), dendrometric parameters (basal diameter, basal area and tree height) had positively weak relationships with fruit yield. On the contrary, aside from north and northeast aspect, other aspects showed a strong negative influence. The findings presented that growth and productivity of V. paradoxa increased with dendrometric parameters and monthly average temperature on shady and semi-shady slope, providing a theoretical basis for the development of shea tree and construction of agroforestry system in dry tropical areas outside Africa.